Volume Comparison with Respect to Scalar Curvature
Speaker(s): Wei Yuan (Sun Yat-sen University)
Time: 16:30-17:30 June 6, 2019
Venue: Room 29, Quan Zhai, BICMR
Abstract: In Riemannian geometry, volume comparison theorem is one of the most fundamental results. The classic results concern volume comparison involving restrictions on Ricci curvature. In this talk, we will investigate the volume comparison with respect to scalar curvature. In particular, we show that one can only expect such results for small geodesic balls of metrics near V-static metrics. As for global results, we give volume comparison for metrics near stable Einstein metrics. As applications, we give a partial affirmative answer to Schoen’s conjecture about hyperbolic manifolds, which recovers a result due to Besson-Courtois-Gallot with a different approach. We also provide a partial affirmative answer to a conjecture proposed by Bray concerning the positive scalar curvature case.