A Quantum H*(T)-module via Quasimap Invariants
发布时间:2024年09月19日
浏览次数:488
发布者: Ruixin Li
主讲人: Jae Hwang Lee (BICMR)
活动时间: 从 2024-10-22 14:00 到 15:00
场地: 北京国际数学研究中心,全斋全29教室
Abstract: For X a smooth projective variety, the quantum cohomology ring QH*(X) is a deformation of the usual cohomology ring H*(X), where the product structure is modified to incorporate quantum corrections. These correction terms are defined using Gromov--Witten invariants. When X is toric with geometric quotient description V//T, the cohomology ring H*(V//T) also has the structure of a H*(T)-module. In this paper, we introduce a new deformation of the cohomology of X using quasimap invariants with a light point. This defines a quantum H*(T)-module structure on H*(X) through a modified version of the WDVV equations. We explicitly compute this structure for the Hirzebruch surface of type 2. We conjecture that this new quantum module structure is isomorphic to the natural module structure of the Batyrev ring for a semipositive toric variety.