Three manifolds with nonnegative Ricci curvature
发布时间:2013年06月21日
浏览次数:8340
发布者:
主讲人: Dr. Gang Liu (Berkeley)
活动时间: 从 2013-06-21 00:00 到 00:00
场地: Room 29 at Quan Zhai, BICMR
Speaker: Dr. Gang Liu (Berkeley)
Time: 9:30-11:30 am, June 21 (Friday)
Venue: Room 29 at Quan Zhai, BICMR
Abstract: Let M be a complete noncompact three manifold with nonnegative Ricci curvature(not necessarily orientable). We show M is either diffeomorphic to R^3 or the universal cover splits as a Riemann product of a real line and a two dimensional surface with nonnegative Gaussian curvature. As a corollary, this confirms a conjecture of Milnor in dimension three.