Local Well-posedness of Skew Mean Curvature Flow for Small Data in d≥4 Dimensions
发布时间:2020年11月04日
浏览次数:5870
发布者: He Liu
主讲人: Jiaxi Huang(BICMR)
活动时间: 从 2020-11-23 15:00 到 16:00
场地: 北京国际数学研究中心,全斋全9教室
The skew mean curvature flow is an evolution equation for $d$ dimensional manifolds embedded in $\R^{d+2}$ (or more generally, in a Riemannian manifold). It can be viewed as a Schr\"odinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schr\"odinger Map equation. In this talk, we prove small data local well-posedness in low-regularity Sobolev spaces for skew mean curvature flow in dimension $d\geq 4$. This is based on joint work with Daniel Tataru.