Fokker-Planck Equations and Machine Learning
主讲人: Yuhua Zhu(Stanford University)
活动时间: 从 2021-11-29 09:30 到 10:30
场地: Online
Abstract: As the continuous limit of many discretized algorithms, PDEs can provide a qualitative description of algorithm's behavior and give principled theoretical insight into many mysteries in machine learning. In this talk, I will give a theoretical interpretation of several machine learning algorithms using Fokker-Planck (FP) equations. In the first one, we provide a mathematically rigorous explanation of why resampling outperforms reweighting in correcting biased data when stochastic gradient-type algorithms are used in training. In the second one, we propose a new method to alleviate the double sampling problem in model-free reinforcement learning, where the FP equation is used to do error analysis for the algorithm. In the last one, inspired by an interactive particle system whose mean-field limit is a non-linear FP equation, we develop an efficient gradient-free method that finds the global minimum exponentially fast.
Tencent Meeting ID: 990-695-384
Password: 123456