许晨阳教授获美国数学会科尔代数学奖
据美国数学会(American Mathematical Society, AMS)官网最新公布的消息,2021年度科尔代数学奖(The 2021 Frank Nelson Cole Prize in Algebra)颁给许晨阳教授,以表彰他在代数学领域取得的最新杰出成果:许晨阳与合作者们一起发展了K-稳定Fano簇模空间的代数理论,并且用K-稳定性实现了研究极小模型纲领中奇点的一个全新途径。
K-稳定的概念由北京大学田刚院士于1996年引进,之后K-稳定的概念得到进一步发展并更加代数化,成为代数几何重要的概念之一。许晨阳自2012年在北大担任教职以来,在相关领域做了持续的深入探索,取得重大进展,获得国际数学界的高度评价。AMS官网对许晨阳此次获奖的代表性论文工作作了介绍:许晨阳独立完成的论文“A minimizing valuation is quasi-monomial”证明了Jonsson和Mustață关于对数典范阈值的一个猜想,以及李驰关于正规化体积的一个猜想。在与不同合作者合著的一系列论文中(特别是与Hacon和McKernan合著的“Boundedness of moduli of varieties of general type”和与Blum合著的“Uniqueness of K-polystable degenerations of Fano varieties”论文),他引入了新的强有力的方法,建立了K-稳定Fano簇模空间的一般框架,并在许多情形下给出了详细的描述。这为模空间理论开辟了一个全新的领域,而此前人们认为该理论仅适用于一般型和Calabi-丘簇。这可以看作是森重文发起的极小模型纲领的一个巨大扩展。
许晨阳是代数几何方向的世界领军数学家,2012年回国加盟北京大学北京国际数学研究中心。曾获得2016年度“ICTP拉马努金奖”,2018年受邀在国际数学家大会上作报告。2018年秋季起他先后担任美国麻省理工学院、美国普林斯顿大学数学教授。近年来,许晨阳在代数几何学领域继续攻坚克难,2018年至今,在Annals of Math.,Invent. Math.,J. Euro. Math. Soc.,Duke Math. J.等顶级期刊上发表了多篇论文,此次科尔代数学奖特别奖励其中的5篇论文(获奖论文列表见文后)。
科尔代数学奖每三年颁发一次,以表彰在过去六年中出现的代数领域最重要的研究成果。该奖和科尔数论奖一起设立于1928年。2021年的科尔奖将在2021年1月举行的在线AMS-MAA数学联合会议上正式颁授。
获奖论文列表:
[1] C. Hacon, J. McKernan and C. Xu, “Boundedness of moduli of varieties of general type,” J. Euro. Math. Soc. 20 (2018), Issue 4, 865–901.
[2] C. Li, X. Wang and C. Xu, “On the proper moduli spaces of smoothable Kähler-Einstein Fano varieties,” Duke Math. J. 168 (2019), 138–1459.
[3] H. Blum and C. Xu, “Uniqueness of K-polystable degenerations of Fano varieties,” Annals of Math. 190 (2019), 609–656.
[4] C. Xu, “A minimizing valuation is quasi-monomial,” Annals of Math. 191 (2020), 1003–1030.
[5] J. Alper, H. Blum, D. Halpern-Leistner and C. Xu, “Reductivity of the automorphism group of K-polystable Fano varieties,” Invent. Math., to appear.
美国数学会官网消息:
https://www.ams.org/news?news_id=6454