[Distinguished Lecture] Prime Fano 3-folds and the Reid sextic
主讲人: Shigeru Mukai (RIMS)
活动时间: 从 2024-11-19 16:00 到 17:00
场地: 北京国际数学研究中心,镜春园82号甲乙丙楼报告厅
Abstract: A compact complex manifold is prime Fano if c1(X) is positive and generates the 2nd integral cohomology group. In dimension 3, there are 10 deformation types, with parameter g varying from 2 to 10 and 12, by Fano-Iskovskih. The first half are easy to describe but seem “deeply” irrational. The latter half are linear sections of various Grassmann varieties associated to Dynkin diagrams D5, A5, C3, G2 for g<12 and deformations of the Umemura compactification of SL(2)/Icosa for g=12. After a brief survey I will explain a recent discovery on their relation with supersingular K3 surfaces, which are mostly obtained from the (Bring-)Reid sextic surface modulo 2, 3 and 5.
个人简介:向井茂教授(Shigeru Mukai)是日本著名的代数几何学家,曾任京都大学数理解析研究所(RIMS)所长, 2002年国际数学家大会报告人。他曾荣获日本数学会秋季奖、中日文化奖、大阪奖等多个重要奖项。1981年,向井教授在其博士论文中提出了著名的傅立叶-向井变换,并将其应用于阿贝尔簇的研究。此外,他的研究领域还包括K3曲面上的向量丛、三维法诺簇的分类(著名的森-向井分类)、模空间理论以及非交换Brill-诺特理论。