Measures of Maximal Entropy for Symbolic Systems Beyond SFT
Speaker(s): Christian Wolf(City University of New York)
Time: 21:00-22:00 March 8, 2024
Venue: Online
In this talk we present results about the uniqueness of measures of maximal entropy for symbolic systems beyond subshifts of finite type (SFT). In particular, we consider coded shifts which include several well-known examples of shift spaces. A coded shift space is defined as the closure of all bi-infinite concatenations of words from a fixed countable generating set. We derive sufficient conditions for the uniqueness of measures of maximal entropy based on the partition of the coded shift into its sequential set (sequences that are concatenations of generating words) and its residual set (sequences added under the closure). We also discuss flexibility results for the entropy on the sequential and residual set. Finally, we present a local structure theorem for intrinsically ergodic coded shift spaces which shows that our results apply to a larger class of coded shift spaces compared to previous works by Climenhaga, Climenhaga and Thompson, and Pavlov. The results presented in this talk are joint work with Tamara Kucherenko and Martin Schmoll.
Zoom (ID: 842 9270 8644, Password: 106244)