The Genus Expanded Cut-and-join Operator Algebra and Hurwitz Number
Time: 2016-10-25
Published By: Ningbo Lu
Speaker(s): Quan Zheng (SCU)
Time: 15:15-17:15 October 12, 2016
Venue: Room 9, Quan Zhai, BICMR
Abstract. To distinguish the contributions to the generalized Hurwitz number of the source Riemann surface with different genus, by observing carefully the symplectic surgery and the gluing formulas of the relative GW-invariants, we define the genus expanded cut-and-join operators, which can form a differential operator algebra. Moreover, the differential operator algebra is isomorphic to the central subalgebra of the symmetric group algebra for the finite case, and is isomorphic is isomorphic to the central subalgebra of infinite
symmetric group algebra for the shifted case. As an application, we get some differential equations for the generating functions of the Hurwitz numbers for the source Riemann surface with different genus, thus we can express the generating functions in terms of the genus expanded cut-and-join operators.
symmetric group algebra for the shifted case. As an application, we get some differential equations for the generating functions of the Hurwitz numbers for the source Riemann surface with different genus, thus we can express the generating functions in terms of the genus expanded cut-and-join operators.