Variation on a theme of Caffarelli and Vasseur
Speaker(s): 郝成春(副研究员) 中科院数学所
Time: May 25 - June 2, 2010
Venue: 资源大厦1328
<p>题目:Variation on a theme of Caffarelli and Vasseur</p>
<p>报告时间:5月25日下午: 2:00--5:00 (星期三)</p>
<p>报告时间:5月27日下午: 2:00--5:00 (星期五)</p>
<p>报告时间:6月2日下午: 2:00--5:00 (星期三)</p>
<p>报告人: 中科院数学所 郝成春(副研究员)</p>
<p>论文摘要:Recently, using De Giorgi-type techniques, Caffarelli and Vasseur have shown that a certain class of weak solutions to the drift diffusion equation with initial data in $L^2$ gain Hölder continuity, provided that the BMO norm of the drift velocity is bounded uniformly in time. We show a related result: a uniform bound on the BMO norm of a smooth velocity implies a uniform bound on the $C^eta$ norm of the solution for some $eta > 0$. We apply elementary tools involving the control of Hölder norms by using test functions. In particular, our approach offers a third proof of the global regularity for the critical surface quasigeostrophic (SQG) equation in addition to the two proofs obtained earlier.</p>