Scattering threshold for the focusing nonlinear Klein-Gordon equation [Part I]
Speaker(s): 徐桂香副研究员 北京应用物理与计算数学研究所
Time: March 17 - March 26, 2010
Venue: 资源大厦1328房间
报告时间: 3月17日下午: 2:00--5:00 (星期三)
报告时间: 3月19日下午: 2:00--5:00 (星期五)
报告时间: 3月24日下午: 2:00--5:00 (星期三)
报告时间: 3月26日下午: 2:00--5:00 (星期五)
报告人: 北京应用物理与计算数学研究所, 徐桂香副研究员
文章摘要:We will discuss Ibrahim-Masmoudi-Nakanishi’s recent result on the scattering threshold for the focusing nonlinear Klein-Gordon equation. They obtained scattering versus blow-up dichotomy below the ground state energy for the focusing nonlinear Klein-Gordon equation, in the spirit of Kenig-Merle for the $H^1$ critical wave and Schrodinger equations. The result includes the $H^1$ subcritical case, where the threshold is given by the ground state, the $H^1$ critical case, where the threshold is given by the ground state for the massless equation, and the 2D square-exponential case, where the mass for the gournd state may be modified, depending on the constant in the sharp Trudinger-Moser inequality. The main difficulty is the lack of scaling invariance in both the linear and the nonlinear terms.