Rough Solutions of the $3$-D Compressible Euler Equations
Time: 2019-12-23
Published By: He Liu
Speaker(s): Qian Wang (University of Oxford)
Time: 16:00-17:00 December 26, 2019
Venue: Room 9, Quan Zhai, BICMR
I will talk about my recent work arxiv:1911.05038. We prove the local-in-time well-posedness for the solution of the compressible Euler equations in $3$-D, for the Cauchy data of the velocity, density and vorticity $(v,\varrho, \omega) \in H^s\times H^s\times H^{s'}$, $22$. At the opposite extreme, in the incompressible case, i.e. with a constant density, the result is known to hold for $ \omega\in H^s$, $s>3/2$ and fails for $s\le 3/2$, see the work of Bourgain-Li. It is thus natural to conjecture that the optimal result should be $(v,\varrho, \omega) \in H^s\times H^s\times H^{s'}$, $s>2, \, s'>\frac{3}{2}$. We view our work here as an important step in proving the conjecture. The main difficulty in establishing sharp well-posedness results for general compressible Euler flow is due to the highly nontrivial interaction between the sound waves, governed by quasilinear wave equations, and vorticity which is transported by the flow. To overcome this difficulty, we separate the dispersive part of sound wave from the transported part, and gain regularity significantly by exploiting the nonlinear structure of the system and the geometric structures of the acoustic spacetime.