Asymptotic behavior at infinity of solutions of Monge-Amp\`ere equations in half spaces
Speaker(s): Dongsheng Li (Xi'an Jiaotong University)
Time: 09:00-11:00 April 13, 2019
Venue: Room 77201, Jingchunyuan 78, BICMR
In this talk, I will discuss our work in which we prove that any convex viscosity solution of $\det D^2u=1$ outside a bounded domain of $\mathbb{R}^n_+$ tends to a quadratic polynomial at infinity with rate at least $\frac{x_n}{|x|^{n}}$ if $u$ is a quadratic polynomial on $\{x_n=0\}$ and satisfies $\mu|x|^2\leq u\leq\mu^{-1}|x|^2$ as $|x|\rightarrow\infty$ for some $0<\mu\leq\frac{1}{2}$.
报告人简介:
李东升,现任西安交通大学数学与统计学院教授,博士生导师,陕西省数学会常务理事兼副秘书长。主要从事偏微分方程方面的研究,发表科研论文50余篇;主持4项国家自然科学基金;获陕西省科技进步二等奖两项。