Geometrization
Speaker(s): Professor Gang Tian (BICMR)
Time: 14:00-15:00 June 4, 2021
Venue: Lecture Hall, Jiayibing Building, Jingchunyuan 82, BICMR
主讲人简介:
田刚院士,现任中国数学会理事长,国际数学联盟执委,北京国际数学研究中心主任,北京大学讲席教授;曾在普林斯顿大学、纽约州立大学石溪分校、纽约大学库朗研究所、麻省理工学院等顶尖院校任职。担任多个国际著名数学刊物编委,分别任国际数学界公认的顶级杂志《Annals of Mathematics》、《Journal of the American Mathematical Society》主编、编委。在第24届世界数学家大会上作1小时大会报告,曾获美国国家科学基金授予的沃特曼奖以及美国数学会颁发的韦伯伦几何学奖。
田刚院士在复几何、几何分析及数学物理领域作出了一系列重要的工作:特别是在Kähler-Einstein度量研究中做了开创性工作。首先,彻底解决了复曲面上的Calabi问题;其次,对于高维的情形,引进了K-稳定性的概念,证明存在Kähler-Einstein度量的Fano流形必须是K稳定的,并于2012年率先证明了著名的Yau-Tian-Donaldson猜想,从而解决了K-稳定Fano流形上Kähler-Einstein度量存在性这个60年来悬而未决的世界数学难题。此外,他还是Gromov-Witten不变量理论的奠基人之一,与人合作,建立了量子上同调理论的严格数学基础,首次证明了量子上同调的可结合性,并构造了辛流形的Gromov-Witten不变量,解决了辛几何中Arnold猜想的非退化情形,以及接触几何中Weinstein猜想的稳定情形;在高维规范场数学理论研究中,建立了自对偶Yang-Mills联络与标度几何间的深刻联系,给出了用标度闭链对该种联络进行紧化的途径; 提出了Kähler-Ricci流奇点理论分析研究纲领,指出它与代数流形分类的紧密联系, 启动了用Ricci流方法研究双有理几何的解析极小模型纲领,开辟了新的研究方向。