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1 Introduction

The Mordell conjecture, proved by Faltings in 1983, is a milestone in the history
of Diophantine geometry. The Bombieri–Lang conjecture, a high-dimensional
generalization of the Mordell conjecture, asserts that a projective variety over
a number field satisfying a reasonable hyperbolicity condition has only finitely
many rational points. If we change the hyperbolicity condition to the condition
of being general type, then the conjecture asserts that the set of rational points
is not Zariski dense.

In Vojta’s landmark Ph.D. thesis (cf. [Voj87]), he formulated a highly non-
trivial connection between Diophantine geometry and Nevanlinna theory, which
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leads to far-reaching conjectures. This connection is now called Vojta’s dictio-
nary. According to Vojta’s dictionary, the analogy of an infinite sequence of
distinct rational points is an entire curve. This predicts the Bombieri–Lang
conjecture.

Besides the Mordell conjecture and more generally the case for projective
varieties which admit a finite morphism to the moduli stack of polarized abelian
varieties proved by Faltings [Fal83], the only known case of the Bombieri–Lang
conjecture over number fields is for subvarieties of abelian varieties. This was
proved by Faltings [Fal91, Fal94] by extending the proof of Vojta [Voj91] on the
Mordell conjecture.

The geometric Bombieri–Lang conjecture is an analogue of the Bombieri-
Lang conjecture over function fields. For a philosophy, we quote the following
statement from Lang [Lan74, p. 781]:

As usual, the absolute Mordell property has a relative formulation
for algebraic families of hyperbolic varieties: If there is an infinity
of sections, then the family contains split subfamilies, and almost all
sections are due to constant sections.

A new phenomena is caused by split subfamilies (constant subvarieties). A
similar philosophy also applies to varieties of general type over function fields.

The geometric Bombieri–Lang conjecture was previously proved in the fol-
lowing cases (in various versions). For curves, it was proved by Manin [Man63]
(for characteristic 0), Grauert [Gra65] (for characteristic 0), and Samuel [Sam66]
(for positive characteristics). For subvarieties of abelian varieties, it was proved
by Raynaud [Ray83] (for characteristic 0), Buium [Bui92] (for characteristic
0), Abramovich–Voloch [AV92] (for positive characteristics), and Hrushovski
[Hru96] (for all characteristics). For smooth projective varieties with ample
cotangent bundles, it was proved by Noguchi [Nog81] (for characteristic 0),
Martin-Deschamps [MD84] (for characteristic 0), and Gillet–Rössler [GR18] (for
all characteristics).

In this paper, we introduce a new approach to the geometric Bombieri–Lang
conjecture for hyperbolic varieties in characteristic 0. The idea is as follows.
Let X be a projective variety over a function field K of one variable over a field
k of characteristic 0. By the Lefschetz principle, we can reduce the problem to
the case k = C. Let B be the complex projective curve with function field K,
and X be a (projective) integral model of X over B. If X(K) has a sequence of
unbounded Weil heights, assuming a non-degeneracy conjecture, we construct
an entire curve in a smooth closed fiber of X over B, which implies that the
fiber is not hyperbolic and thus induces a contradiction. The construction relies
on the classical Brody lemma in complex geometry, which constructs an entire
curve in a complex analytic variety as a limit of a suitable sequence of complex
discs. Another ingredient of the approach is partial heights of algebraic points
on projective varieties over complex function fields, a new analytic notion gener-
alizing the notion of Weil heights. The non-degeneracy conjecture is a technical
conjecture which asserts that if a sequence has unbounded Weil height, then it
also has unbounded partial heights.
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Our construction realizes the mechanism of Vojta’s dictionary relating Dio-
phantine geometry to Nevanlinna theory in a reasonably concrete way. Recall
that a key part of the dictionary is an analogue between an infinite sequence of
rational points and an entire curve. To get a clean statement, we assume that k
is finitely generated over Q in the above construction. Then from any sequence
of points in X(K) with unbounded heights, our conditional construction gives
an entire curve in Xι(C) for “most” embeddings ι : K ↪→ C.

As an unconditional result, we prove the geometric Bombieri–Lang conjec-
ture for any hyperbolic projective variety with a finite morphism to an abelian
variety over a function field of characteristic 0. In fact, we prove the non-
degenerate conjecture in this case by applying Betti forms of complex abelian
schemes introduced by Ngaiming Mok. This unconditional result includes the
case of subvarieties of abelian varieties, and our approach is different from the
previous works.

1.1 The geometric Bombieri–Lang conjecture

To state our main results, we will first formulate a precise statement of the
geometric Bombieri–Lang conjecture. Although our main theorems are only for
the hyperbolic case, we will formulate the conjecture in the general case. We will
start with some definitions related to hyperbolicity and Diophantine geometry.
We refer to [Lan87, Kob98, Lan91] for introductions to these subjects.

Let Y be a complex analytic variety. By an entire curve in Y , we mean
a non-constant holomorphic map φ : C → Y . The analytic special set of Y ,
denoted by Span(Y ), is the Zariski closure of the union of the images of all
entire curves in Y . We say that Y is Brody hyperbolic (or simply hyperbolic) if
Span(Y ) = ∅.

A famous theorem of Brody asserts that a compact complex analytic variety
is Brody hyperbolic if and only if it is Kobayashi hyperbolic. Throughout this
paper, “hyperbolic” always means “Brody hyperbolic”.

In the algebraic situation, the counterparts are as follows. Let X be a projec-
tive variety over a field K. The algebraic special set of X, denoted by Spalg(X),
is the Zariski closure in X of the union of the images of all non-constant rational
maps from abelian varieties over K to XK . We say that X is algebraically hyper-
bolic if Spalg(X) = ∅1. We note that the terminology “algebraically hyperbolic”
was used by Demailly [Dem97] for a different meaning.

Let X be a projective variety over C. The above two sets of definitions
are related by a series of famous conjectures. In fact, Lang conjectures that
Spalg(X) = Span(X). As a special case, Lang’s conjecture implies that X is
hyperbolic if and only if it is algebraically hyperbolic. On the other hand, the
Green–Griffiths–Lang conjecture asserts that X is of general type if and only
Span(X) 6= X. We refer to [Lan91, §VIII.1] for more details on these far-reaching
conjectures.

Finally, we formulate the geometric Bombieri–Lang conjecture as follows.

1It is called “groupless” in [JK20, JV21].
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Conjecture 1.1 (Geometric Bombieri–Lang). Let K be a finitely generated field
over a field k of characteristic 0 such that k is algebraically closed in K. Let X be
a projective variety over K. Let Z be the Zariski closure of (X \ Spalg(X))(K)
in X. Then there is a finite set {Z1, . . . , Zr} of distinct closed subvarieties
of Z containing all irreducible components of Z and satisfying the following
conditions:

(1) For each i = 1, . . . , r, there is a birational K-map ρi : Ti,K 99K Zi, where
Ti,K = Ti ×k K is the base change for a projective variety Ti over k.

(2) Denote by Ui the maximal open K-subvariety of Ti,K such that ρi extends to
a K-morphism ρ◦i : Ui → Zi. Then the set (X \ Spalg(X))(K) is contained
in the union over i = 1, . . . , r of the images of the composition

Ti(k) ∩ Ui(K)
ρ◦i−→ Zi(K) −→ Z(K) −→ X(K).

Here the intersection Ti(k)∩Ui(K) is taken in (Ti,K)(K) via the canonical
injection Ti(k)→ (Ti,K)(K).

Moreover, if XK does not contain any (possible singular) rational curve, then
we can take every birational K-map ρi : Ti,K 99K Zi to be a K-morphism under
which Ti,K is Zi-isomorphic to the normalization Z ′i of Zi.

In the conjecture, the last statement applies to the hyperbolic case and the
case that X has a finite morphism to an abelian variety. In fact, in these cases,
XK does not contain any rational curve. These are the major cases treated in
this paper. On the other hand, for general X, the rational map ρi can fail to
be a morphism (cf. Example 2.11).

In the conjecture, the set {Z1, . . . , Zr} contains all irreducible components
of Z, but it may need to contain more elements to cover all the algebraic points
as in (2) even in the algebraically hyperbolic case. This is justified by Example
2.12.

If X is algebraically hyperbolic, with Lang’s conjectural equivalence be-
tween algebraic hyperbolicity and analytic hyperbolicity, the above conjecture
is a precise form to realize Lang’s philosophy we quoted at the beginning. In
§2.4, we formulated various (weaker) versions of Conjecture 1.1. For example, if
k is algebraically closed, Conjecture 2.15 asserts that the union Spalg+const(X)
of Spalg(X) with all positive-dimensional birationally constant closed subva-
rieties of X is Zariski closed in X; then Conjecture 2.16 asserts that (X \
Spalg+const(X))(K) is finite.

As recalled above, Conjecture 1.1 (or its suitable variant) is proved for
curves by [Man63, Gra65], for subvarieties of abelian varieties by [Ray83, Bui92,
Hru96], and for smooth projective varieties with ample cotangent bundles by
[Nog81, MD84]. Moreover, the conjecture for base changes of hyperbolic va-
rieties from k = C to a finitely generated extension K is proved by Noguchi
[Nog92, Cor. 4.2], as an example of his hyperbolically embedded case. We also
refer to [Bog77] and [Jav21] for more results related to constant varieties (i.e.,
base changes of varieties from k to K).
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1.2 Main results

To state our main results, we will start with the case of hyperbolic varieties
finite over abelian varieties.

Hyperbolic covers of abelian varieties

Consider the situation thatX has a finite morphism to an abelian variety. In this
case, both Lang’s conjecture (Spalg(X) = Span(X)) and the Green–Griffiths–
Lang conjecture are confirmed, by combining results of Ueno, Kawamata and
Yamanoi. We refer to Theorem 4.1 and Corollary 4.3 for more details.

The following theorem asserts that the geometric Bombieri–Lang conjecture
holds for algebraically hyperbolic varieties with finite morphisms to abelian
varieties.

Theorem 1.2 (Theorem 4.6). Let K be a finitely generated field over a field k of
characteristic 0 such that k is algebraically closed in K. Let X be a projective
variety over K with a finite morphism f : X → A for an abelian variety A
over K. Assume that X is algebraically hyperbolic in that Spalg(X) = ∅. Then
Conjecture 1.1 holds for X/K/k.

Note that we do not assume that X is smooth over K or that f is surjective
in the theorem. In particular, X is allowed to be a closed subvariety of A, and
in this case versions of the geometric Bombieri–Lang conjecture were proved by
[Ray83, Bui92].

In a forthcoming paper, we will prove some case of the theorem without
assuming that X is algebraically hyperbolic.

Remark 1.3. In the case of number fields, if f : X → A is finite and surjective
(but not an isomorphism), very little is known in the direction of the Bombieri–
Lang conjecture. See [CDJ+22] for some results on the sparsity of rational
points in this situation.

Partial heights

Our proofs of the above theorem requires our new notion of partial heights. Let
us sketch this notion and introduce the non-degeneracy conjecture.

Let K = C(B) be the function field of a smooth projective curve B over
C. Let X be a projective variety over K. Let π : X → B be an integral
model of X over B, which is assumed to be integral, projective and flat. For
convenience, we identify X(K) = X (B), so a point x ∈ X(K) corresponds to a
section x : B → X by abuse of notations.

Let L be a line bundle on X, and L be a line bundle on X extending L.
Then we have a height function

hL : X (B) −→ R, x 7−→ deg(x∗L).

The function hL is a Weil height function for L.
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Let ωL be a closed (1, 1)-form on X representing the cohomology class c1(L).
Then we simply have

hL(x) =

∫
B

x∗ωL, x ∈ X (B).

The integration is on the whole section B, but partial heights are defined by
taking a smaller domain of integration.

To define a partial height, let D ⊂ B be a measurable subset, and let ω
be a real (1, 1)-form on an open neighborhood of the closure of π−1(D) in X .
Here the measurability makes sense by taking a coordinate chart of B, and
“real” means the complex conjugate ω = ω. Define the partial height function
h(D,ω) : X(K)→ R by

h(D,ω)(x) :=

∫
D

x∗ω, x ∈ X (B).

If D = B and ω represents c1(L), then we recover the original height function
hL. For application of the partial height, we usually take D to be a disc in B.

Note that partial heights seem “smaller” than the usual Weil height of an
ample line bundle. However, the following non-degeneracy conjecture (cf. Con-
jecture 2.3) asserts that they are actually comparable.

Conjecture 1.4 (non-degeneracy conjecture). Assume that X does not contain
any (possibly singular) rational curve. Let hL : X(K) → R be a Weil height
function associated to an ample line bundle L on X. Let h(D,ω) : X(K) → R
be a partial height function associated to a pair (D,ω) on X , where D is an
open disc in B. Assume that ω is strictly positive on an open neighborhood of
the closure of π−1(D) in X . Let {xn}n≥1 be a sequence in X(K). Assume that
hL(xn) converges to infinity. Then h(D,ω)(xn) converges to infinity.

We will prove that the non-degeneracy conjecture holds for varieties finite
over abelian varieties (cf. Theorem 3.6).

The main theorem

The following theorem asserts that the non-degeneracy conjecture essentially
implies the hyperbolic case of the geometric Bombieri–Lang conjecture.

Theorem 1.5 (Theorem 2.5). Let K = C(B) be the function field of a smooth
projective curve B over C. Let X be a projective variety over K. Let π : X → B
be an integral model of X over B. Let h(D,ω) : X(K) → R be a partial height
function associated to a pair (D,ω) on X , where D is an open subset of B whose
closure D is contained in an open disc D′ of B. Assume that the fiber Xb is
Brody hyperbolic for every b ∈ D. Assume that the non-degeneracy conjecture
holds for h(D,ω). Then Conjecture 1.1 holds for X/K/C.

The hyperbolicity of Xb for every b ∈ D implies the algebraic hyperbolicity
of Xb for every b ∈ D, and thus implies the algebraic hyperbolicity of X.
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On the other hand, by a consequence of the Brody lemma (cf. [Lan87, III,
Prop. 3.1]), being hyperbolic is an open condition under the Euclidean topology.
Thus the assumptions of the theorem is satisfied if there is a closed point b ∈ B
such that Xb is hyperbolic and that the non-degeneracy conjecture holds for
h(D,ω) for all sufficiently small open neighborhoods of b in B.

Since the non-degeneracy conjecture holds for varieties finite over abelian
varieties (cf. Theorem 3.6), Theorem 1.2 is essentially a consequence of Theorem
1.5 (or its proof).

1.3 Ideas of proofs

Here we describe our ideas to prove Theorem 1.2 and Theorem 1.5. Our proofs
apply the classical Brody lemma crucially to construct entire curves from se-
quences of holomorphic sections on the integral model X → B. In the following,
we will review the Brody lemma, and then outline our idea. We will give a pre-
cise statement of the Brody lemma so that we can refer back from the main
body of this article.

The Brody Lemma

For compact complex analytic spaces, the equivalence between the Kobayashi
hyperbolicity and the Brody hyperbolicity can be established via the Brody
lemma. In fact, the Brody lemma is a general procedure to construct an entire
curve on an analytic variety by a limit process from a suitable sequence of
holomorphic maps from discs to the analytic variety.

Denote the standard disc Dr = {z ∈ C : |z| < r}, and write D = D1

for simplicity. Denote by vst =
d

dz
the tangent vector of Dr at 0 under the

standard coordinate z.
Let Y be a complex analytic variety. Let {φn : Un → Y }n≥1 be a sequence

of holomorphic maps from Riemann surfaces Un to Y . By a re-parametrization
of {φn : Un → Y }n≥1, we mean a sequence

{φn ◦ pn : Drn → Y }n≥1,

where {rn}n≥1 is a sequence of positive real numbers, and {pn : Drn → Un}n≥1

is a sequence of holomorphic maps.
Let Y be a complex analytic variety endowed with a metric. Let {φn : Drn →

Y }n≥1 be a sequence of holomorphic maps from discs to Y . We say that an
entire curve φ : C → Y is a limit of {φn}n if there is a subsequence {ni}i≥1 of
{n}n≥1, such that {rni}i≥1 converges to infinity, and such that {φni : Drni

→
Y }i≥1 converges to φ : C → Y uniformly on every compact subset of C. The
last convergence means that for every compact subset Ω of C, the restriction
{φni
|Ω : Ω → Y }i≥i0 converges to φ|Ω : Ω → Y uniformly on Ω, where i0 is a

positive integer such that Ω ⊆ Drni
for every i ≥ i0.

Then we have the following Brody lemma.
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Theorem 1.6 (Brody lemma). Let Y be a compact complex analytic variety
endowed with a Kähler metric. Let {φn : D → Y }n≥1 be a sequence of holo-
morphic maps. Assume that ‖(dφn)(vst)‖ converges to infinity. Then there
exists an entire curve φ : C → Y which is a limit of a re-parametrization of
{φn : D→ Y }n≥1.

Here dφn : T0D → Tφn(0)Y is the induced map on the tangent spaces. The
norm on Tφn(0)Y is the one induced by the Kähler metric. We refer to §4.1 for
these notations on singular complex analytic varieties. We refer to [Duv] for a
proof the Brody lemma, which also holds in the singular case.

Theorem 1.5

Let us first describe the idea to prove Theorem 1.5. By induction, one can
reduce it to the case that X(K) is Zariski dense in X. By a result of Noguchi,
it suffices to prove that X is dominated by the base change VK of a projective
variety V from C to K. Let hL : X(K)→ R be a Weil height function associated
to an ample line bundle L on X. If hL is bounded on X(K), then the sections
in X (B) form a bounded family in the setting of Hilbert schemes of subschemes
of X . By many geometric operations, the Hilbert scheme eventually gives the
variety V .

The hard part is to prove that the height function hL is bounded on X(K).
Assume the contrary that hL is unbounded on X(K). By the non-degeneracy
conjecture, h(D,ω) is also unbounded on X(K). Take an infinite sequence {xn}
in X (B) with h(D,ω) →∞. Then we get a sequence φn = xn|D : D → X of maps
from the disc to X . We plan to apply the Brody lemma to the sequence, by
suitably identifying D with the standard unit disc. The key is that the property
h(D,ω)(xn)→∞ guarantees the condition ‖(dφn)(vst)‖ → ∞, the key condition
in the Brody lemma. This can be done by a quick local computation. Therefore,
we obtain an entire curve φ : C → X , which is a limit of a re-parametrization
of {φn : D → X}n≥1. The entire curve is necessarily contained in a fiber of
XD → D. This contradicts the hyperbolicity assumption of the fibers, and
proves Theorem 1.5.

During a discussion, Boucksom told us that a similar idea of constructing
vertical entire curves from horizontal sections was previously used in Campana’s
work [Cam92]. More precisely, for a hyper-Kähler manifold M , Campana con-
structed an entire curve on some deformation of M , and concluded that this
deformation is not hyperbolic. The non-hyperbolicity of all hyper-Kähler man-
ifolds was proved by Verbitsky [Ver15], where Campana’s result plays a key
role.

Theorem 1.2

For Theorem 1.2, by the Lefschetz principle and some geometric arguments, we
can reduce it to the essential case that k = C and K = C(B) for a smooth
projective curve B over C. The key is that in this case the non-degeneracy con-
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jecture holds for X. Then Theorem 1.2 is essentially a consequence of Theorem
1.5 (or variants of its proofs).

Now we describe our proof of the non-degeneracy conjecture for X in The-
orem 3.6. By pull-back via the finite morphism f : X → A, it suffices to prove
the non-degeneracy conjecture for the abelian variety A over K = C(B). The
new ingredient here is the canonical partial height.

In fact, let U be an open subvariety of B such that A has a smooth integral
model AU → U over U . In the pair (D,ω) defining the partial height h(D,ω),
take D to be an open disc in U , and take ω to be the Betti form on AU associated
to a symmetric and ample line bundle L on A. The Betti form is a semipositive
(1, 1)-form on AU , which represents the cohomology classes of L on fibers of
AU → U and satisfies the nice dynamical property [m]∗ω = m2ω for m ∈ Z.
The partial height h(D,ω) : A(K) → R behaves like the Néron–Tate height. In
particular, its induces a positive definite quadratic form on the vector space
(A(K)/A(K/C)(C))⊗ZR, where A(K/C) is the K/C-trace of A. The vector space
is finite-dimensional by the Lang–Néron theorem. As a consequence, any two
positive definite quadratic forms on it can bound each other (up to positive
multiples). Take these two quadratic forms to be the partial canonical height

h(D,ω) and the canonical height ĥL associated to L.

1.4 Notations and terminology

For any abelian group M and any ring R containing Z, denote MR = M ⊗Z R.
This apply particularly to R = Q,R,C.

By a variety, we mean an integral scheme, separated of finite type over the
base field. A curve is a 1-dimensional variety.

By a function field of one variable over a field k, we mean a finitely generated
field K over k of transcendence degree 1 such that k is algebraically closed in
K. We usual denote by B a smooth quasi-projective curve over k with function
field K. For a projective variety X over K, an integral model of X over B is a
quasi-projective variety X over k together with a projective and flat morphism
X → B whose generic fiber is isomorphic to X.

Let K be a finitely generated field over a field k, and assume that k is
algebraically closed in K. Let A be an abelian variety over K. Denote by
A(K/k) Chow’s K/k-trace of A over k. Denote

V (A,K) := (A(K)/A(K/k)(k))⊗Z R,

which is a finite dimensional R-vector space. In our setting, k is usually C.
By a point of a variety over C, we mean a closed point. By the generic point

of an integral variety, we mean the generic point of the scheme.
All complex analytic varieties are assumed to be reduced and irreducible.

For a complex analytic variety X with a point x ∈ X, denote by TxX the
complex analytic tangent space of X at x defined by holomorphic derivations.
For a holomorphic map f : X → Y with f(x) = y, denote by df : TxX → TyY
the induced map between the tangent spaces.
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Let X be a complex analytic space, and S be a subset of X. Denote by S
the closure of S in X under the Euclidean topology. Assume that the smooth
locus Xsm is covered by countably many open balls {Uα}α∈I . We say that S is
measurable if S ∩Dα is measurable under the Lebesgue measure of the ball Dα

for all α. We say that S has measure zero if S ∩Dα has measurable zero for all
α.

For any positive real number r, denote by

Dr := {z ∈ C : |z| < r}, Dr := {z ∈ C : |z| ≤ r}

the discs of radius r. Write D = D1 and D = D1. Denote by vst =
d

dz
the

tangent vector of Dr at 0 under the standard coordinate z.
Let (Y, d) be a metric space. Let {rn}n≥1 be a sequence of positive real

numbers convergent to infinity. Let φn : Drn → Y be a sequence of continuous
maps. We say that {φn}n converges to a map φ : C → Y if it converges on
every compact subset Ω of C. Since Ω ⊆ Drn for n sufficiently large, the above
definition makes sense. If such φ exists, it is unique and continuous. Moreover,
if Y is further a complex analytic variety and φn are holomorphic, then φ is
holomorphic.
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2 Partial heights on projective varieties

In this section, we introduce partial heights on projective varieties over function
fields of one variable over C, and introduce its basic properties. Our key ingre-
dient is a non-degeneracy conjecture of partial heights (Conjecture 2.3), whose
truth implies a weaker version of the geometric Bombieri–Lang conjecture in the
hyperbolic case (cf. Theorem 1.5). Then in §2.4, we formulate more versions of
the geometric Bombieri–Lang conjecture (cf. Conjecture 1.1).

2.1 Partial heights

The goal of this subsection is to introduce partial heights on projective varieties
over function fields of one variable over C.
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Differential forms and metrics

We review the notion of differential forms on possibly singular complex analytic
varieties. Our exposition essentially follows [Kin71, §1.1].

Recall that a (p, q)-form α on a (reduced and irreducible) complex analytic
variety X is a (p, q)-form on the smooth locus Xreg of X such that for every
point x ∈ X, there exists an open neighborhood U of x and a closed embedding
U ↪→ V into a complex manifold V such that there exists a (p, q)-form αV on
V such that αV |U∩Xreg = α|U∩Xreg . Note that the condition is automatic for
x ∈ Xreg by taking U = V = Xreg, but it is essential at singular points of X.

A (1, 1)-form α on X is called Kähler (resp. positive, semipositive, real) if
for every point x ∈ X, the (1, 1)-form αV above can be chosen to be a Kähler
(resp. positive definite, positive semi-definite, real) form on a suitable V. To
emphasize, we may also write “positive” as “strictly positive”.

Let α be a (1, 1)-form α on X. The for every x ∈ X, α defines a hermitian
metric ‖ · ‖α on the tangent space TxX. This is automatic if X is smooth at x,
and extended to the singular case by definition. If α is only semipositive, then
we still get a semi-norm ‖ · ‖α on the tangent space TxX.

The following result is well-known, but we provide a proof for the lack of a
direct reference.

Lemma 2.1. Let X be a complex analytic variety, and W be an open subset of
X which is contained in a compact subset of X. Let α be a positive (1, 1)-form
on X and β be a real (1, 1)-form on X. Then there is a real constant c > 0 such
that α|W − cβ|W is a positive (1, 1)-form on W .

Proof. By compactness, it suffices to prove that for every x ∈ X, there is c > 0
such that α − cβ is positive on an open neighborhood of x. Let (U, V, αV )
be a triple as above representing α at x, and let (U ′, V ′, βV ′) be a triple as
above representing β at x. We can assume that αV is positive on V . By
definition of analytic varieties, replacing (U, V ) by their open subsets (containing
x) if necessary, there are compatible holomorphic maps U → U ′ and V → V ′.
Denote by βV the pull-back of βV ′ via V → V ′. Then (U, V, βV ) is also a triple
representing β at x. Now the existence of c is easy.

Partial heights

Now we are ready to introduce of partial heights. We first review the usual Weil
height.

Let K = C(B) be the function field of a smooth projective curve B over C.
Let X be a projective variety over K, and let L be a line bundle on X. There
is a Weil height function

hL : X(K) −→ R

associated to L, which is unique up to bounded functions.
Let π : X → B be an integral model of X over B, which is assumed to be

integral, projective and flat. Let L be a line bundle on X extending L. Then
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we have a height function

hL : X(K) −→ R, x 7−→ 1

deg(x)
deg(L|x̃),

where x̃ is the Zariski closure of x in X . The function hL is a Weil height
function for L.

Let ωL be a closed (1, 1)-form on X representing the cohomology class c1(L).
Note that if X is singular, this condition makes sense by pull-back via a desin-
gularization of X . Then we simply have

hL(x) =
1

deg(x)

∫
x̃

ωL, x ∈ X(K).

The integration is on the whole multi-section x̃, but partial heights are defined
by contracting the domain of the integration.

To define a partial height, we need a pair (D,ω). Let D ⊂ B be a measurable
subset. Here the measurability makes sense by taking a coordinate chart of B.
Denote by D the closure of D in B, which is compact. Denote XD = π−1(D)
and XD = π−1(D). Let ω be a real (1, 1)-form on an open neighborhood of XD
in X . Here “real” means the complex conjugate ω = ω. Define the partial height
of a section x ∈ X(K) with respect to (D,ω) to be

h(D,ω)(x) :=
1

deg(x)

∫
x̃∩XD

ω.

This gives a partial height function

h(D,ω) : X(K) −→ R.

For convenience, we say the pair (D,ω) is strictly positive (resp. semipositive)
if ω is strictly positive (resp. semipositive) on an open neighborhood of XD in
X .

If D = B and ω represents c1(L), then we recover the original height func-
tion. To emphasize, the original height is also called a full height. For appli-
cation of the partial height, we usually take D to be a disc in B under a local
coordinate.

For our interest, we will only consider the height functions on X(K). We
make an identification X (B) = X(K) via the canonical isomorphism, so a point
x ∈ X(K) also represents a section x : B → X . In this case, we have

hL(x) =

∫
B

x∗ωL

and

h(D,ω)(x) =

∫
D

x∗ω.

In general, we have the following easy properties.
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Lemma 2.2. Let h(D,ω) be a partial height function on X(K) defined by a pair
(D,ω) on X . Then the following hold:

(1) If h(D,ω′) is a partial height function on X(K) defined by a strictly positive
pair (D,ω′) on X , then there is a constant c > 0 such that

−c h(D,ω′) ≤ h(D,ω) ≤ c h(D,ω′)

on X(K).

(2) If hL is Weil height function on X(K) defined by an ample line bundle L
on X, then there are constants c1, c2 > 0 such that

−c1hL − c2 ≤ h(D,ω) ≤ c1hL + c2

on X(K).

Proof. For (1), note that Lemma 2.1 implies that there is a constant c such that
−cω′ ≤ ω ≤ cω′ on an open neighborhood of XD.

To prove (2), we can assume that hL = hL for an ample line bundle L on X
extending L, and by (1), we can further assume that ω is the restriction to XU
of a strictly positive (1, 1)-form on X representing c1(L).

2.2 Non-degeneracy

The goal of this subsection is to present a non-degeneracy conjecture of the par-
tial height, and prove that the conjecture almost settles the geometric Bombieri–
Lang conjecture in the hyperbolic case.

The non-degeneracy conjecture

Concerning the growth of the partial heights, we make the following non-degeneracy
conjecture. We will see in Theorem 1.5 that the conjecture almost settles the
geometric Bombieri–Lang conjecture in the hyperbolic case.

Conjecture 2.3 (non-degeneracy conjecture). Let K = C(B) be the function
field of a smooth projective curve B over C. Let X be a projective variety over
K. Assume that X does not contain any (possible singular) rational curve.
Let π : X → B be an integral model of X over B. Let hL : X(K) → R
be a Weil height function associated to an ample line bundle L on X. Let
h(D,ω) : X(K) → R be a partial height function associated to a strictly positive
pair (D,ω) on X , where D is an open disc in B. Let {xn}n≥1 be a sequence in
X(K). Assume that hL(xn) converges to infinity. Then h(D,ω)(xn) converges
to infinity.

By Lemma 2.2(1), the truth of the conjecture does not depend on the choice
of ω in the strictly positive pair (D,ω). We will see from Theorem 3.6 that the
conjecture holds for abelian varieties, and thus it also holds for varieties with
finite morphisms to abelian varieties.
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Note that the conjecture assumes that X does not contain any rational curve.
This is necessary by the following example, which shows that Conjecture 2.3 fails
for X = P1.

Example 2.4. SetB = P1
C andK = C(z). SetX = P1

K and X = P1
B = B×CP1

C.
Denote by π : X → B and f : X → P1

C the projection morphisms. Let z be the
standard affine coordinate function on B, and t be the standard affine coordinate
function on the fibers of π : X → B. So (z, t) is an affine coordinate of X . Take
xn ∈ X(K) to be the morphism

xn : B −→ P1
B , z 7−→ (z, anz

n).

Here an will be a positive constant converging to 0. For the line bundle L =
f∗O(1), we simply have hL(xn) = n converging to infinity. On the other hand,
take the Kähler form

ω = π∗
idz ∧ dz̄

(1 + |z|2)2
+ f∗

idt ∧ dt̄

(1 + |t|2)2

to be the sum of the Fubini-Study metrics. Now it is easy to have

x∗nω =
idz ∧ dz̄

(1 + |z|2)2
+
n2a2

n|z|2(n−1)idz ∧ dz̄

(1 + a2
n|z|2n)2

.

Take D = Dr to be the standard disc of radius r in B. A calculation in terms
of polar coordinates give

h(D,ω)(xn) =

∫
D

x∗nω =
2πr2

1 + r2
+

2πna2
nr

2n

1 + a2
nr

2n
.

Take an = n−n. Then the partial height is bounded as n→∞.

Consequence on the geometric Bombieri–Lang conjecture

The following main result of this subsection asserts that assuming Conjecture
2.3, we can prove a version of the geometric Bombieri–Lang conjecture in the
hyperbolic case.

Theorem 2.5 (Theorem 1.5). Let K = C(B) be the function field of a smooth
projective curve B over C. Let X be a projective variety over K. Let π : X → B
be an integral model of X over B. Let h(D,ω) : X(K) → R be a partial height
function associated to a pair (D,ω) on X , where D is an open subset of B whose
closure D is contained in an open disc D′ of B. Assume that the fiber Xb is
Brody hyperbolic for every b ∈ D. Assume that Conjecture 2.3 holds for h(D,ω).

Then Conjecture 1.1 holds for X/K/C. Namely, let Z be the Zariski clo-
sure of X(K) in X. Then there is a finite set {Z1, . . . , Zr} of distinct closed
subvarieties of Z containing all irreducible components of Z and satisfying the
following conditions:
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(1) For each i, the normalization Z ′i of Zi is constant in the sense that there is
a K-isomorphism ρi : Ti ×C K → Z ′i for a projective variety Ti over C.

(2) The set X(K) is the union over i = 1, . . . , r of the images of the composition

Ti(C) −→ (Ti ×C K)(K)
ρi−→ Z ′i(K) −→ Zi(K) −→ Z(K) −→ X(K).

The theorem is a consequence of its special case Z = X. For convenience,
we state this special case (in a weaker form) as follows.

Theorem 2.6. Let K = C(B) be the function field of a smooth projective
curve B over C. Let X be a projective variety over K. Let π : X → B be an
integral model of X over B. Let h(D,ω) : X(K)→ R be a partial height function
associated to a pair (D,ω) on X , where D is an open subset of B whose closure
D is contained in an open disc D′ of B. Assume that the fiber Xb is Brody
hyperbolic for every b ∈ D. Assume that Conjecture 2.3 holds for h(D,ω).

Assume that X(K) is Zariski dense in X. Then the normalization of X is
isomorphic to the base change TK = T ×k K for a projective variety T over k,
and the complement of the image of the composition T (k)→ (TK)(K)→ X(K)
in X(K) is not Zariski dense in X.

We will first prove Theorem 2.5 by Theorem 2.6, and then prove Theorem
2.6.

Proof of Theorem 2.5 by Theorem 2.6

Let (X,Z) be as in Theorem 2.5. Let Z1, . . . , Zr0 be the irreducible components
of Z. By assumption, Z is the Zariski closure of X(K) in X, so Zi(K) is
Zariski dense in Zi for i = 1, . . . , r0. Apply Theorem 2.6 to the variety Zi for
i = 1, . . . , r0. As in part (1) of Theorem 2.5, we obtain (Ti, ρi) for i = 1, . . . , r0.
Moreover, the complement of Im(Ti(C)→ Zi(K)) in Zi(K) is not Zariski dense
in Zi.

To get part (2) of Theorem 2.5, we might need to enhance the set {Z1, . . . , Zr0}.
In fact, if Σ := ∪1≤i≤r0Im(Ti(C)→ Z(K)) is not equal to Z(K), denote by Z(1)

the Zariski closure of Z(K) \Σ in X. Note that every irreducible component of
Z(1) is properly contained in an irreducible component of Z. Apply Theorem
2.6 to the irreducible components Zr0+1, Zr0+2, . . . , Zr1 (with r1 > r0) of Z(1).
Repeat the process. Eventually, we have closed subvarieties Zr0+1, Zr0+2, . . . , Zr
(with r ≥ r0) of Z, with a K-isomorphism ρi : Ti ×C K → Z ′i for a projective
variety Ti over C for i = r0 + 1, . . . , r, where Z ′i is the normalization of Zi, such
that

Z(K) = ∪1≤i≤rIm(Ti(C)→ Z(K)).

This proves Theorem 2.5 (and Theorem 1.5).

15



Constructing entire curves

The key to prove Theorem 2.6 is the following theorem. The idea is to use
sections xn ∈ X (B) to construct discs in X , and the discs gets larger and large
in X if the partial height h(D,ω)(xn) converges to infinity, so Brody’s lemma
produces an entire curve on a fiber of X → B.

Theorem 2.7. Let K = C(B) be the function field of a smooth projective
curve B over C. Let X be a projective variety over K. Let π : X → B be an
integral model of X over B. Let h(D,ω) : X(K)→ R be a partial height function
associated to a pair (D,ω) on X , where D is an open subset of B whose closure
D is contained in an open disc D′ of B. Assume that the fiber Xb is Brody
hyperbolic for every b ∈ D. Then the partial height h(D,ω) is bounded above on
X(K).

Proof. Assume that h(D,ω)(xn) converges to infinity for a sequence {xn}n≥1 in

X(K). We need to find a point b ∈ D such that the fiber Xb is not Brody
hyperbolic.

By Lemma 2.2(1), we can assume that ω is a Kähler metric on the whole
space X , which does not violate the assumption that h(D,ω)(xn)→∞.

Let vst =
d

dz
be the holomorphic vector field on D′ by the coordinate func-

tion z of D′. By the definition of the metric,

x∗nω = ‖(dxn)(vst)‖2ω · (idz ∧ dz̄)

on D′. By assumption,

h(D,ω)(xn) =

∫
D

x∗nω →∞.

Hence, there is a sequence {bn}n≥1 in D such that

‖(dxn)(vst)‖ω →∞.

There is a deceasing sequence {rn}n≥1 of positive real numbers such that
the following holds:

(1) for any b ∈ D, the open disc D(b, r1) of center b and radius r1 is contained
in D′;

(2) rn → 0;

(3) rn‖(dxn)(vst)‖ω →∞.

Finally, we are ready to apply the Brody lemma in Theorem 1.6 to the sequence
{φn : D → X}n≥1 defined by z 7→ xn(bn + rnz). As a result, there is an entire
curve φ : C→ X , as a limit of a re-parametrization of the sequence φn : D→ X .

As rn → 0, by construction, the image φ(C) lies in XD ⊂ XD′ . The map
π ◦φ : C→ D′ is a constant map by Liouville’s theorem. As a consequence, the
image of φ : C → X lies in the fiber Xb for some b ∈ D, and thus induces an
entire curve on Xb.
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Constancy 1: dominated by a constant family

Now we prove Theorem 2.6. Our proof follows a standard argument using
Chow varieties (or Hilbert schemes) with some extra efforts. For lack of an
exact reference, we include a detailed proof here.

Let (B/C, X/K,X/B, (D,ω)) be as in Theorem 2.6. We first prove that
X/K is dominated by a constant variety, and all the rational points come from
this process. Namely, there is a smooth projective scheme V over C (i.e. finite
disjoint union of smooth projective varieties over C), together with a dominant
K-morphism

ϕ : VK −→ X

such that composition

V (C) −→ VK(K) −→ X(K)

is surjective. Here we denote VK = V ×C K.
Let L be an ample line bundle on X . Every point x ∈ X(K) extends to

a section x̃ ⊂ X over B. Note that hL(x) = degL(x̃) corresponds to a Weil
height associated to the ample line bundle LK on X. Applying Theorem 2.7,
we see that the partial height h(D,ω)(x) is bounded above for x ∈ X(K). By
assumption, Conjecture 2.3 holds for h(D,ω)(x), so the height hL(x) is bounded
above for x ∈ X(K). In other words, there is a constant c > 0 such that
degL(x̃) < c for every x ∈ X(K).

The key is that there is a quasi-projective scheme S over C parametrizing the
set of sections Y of X → B with degL(Y ) < c. In fact, by the theory of Hilbert
schemes or Chow varieties (cf. [Gro95, Lem. 2.4]), there is a quasi-projective
scheme S′ over C parametrizing 1-dimensional reduced and equi-dimensional
subschemes Y ′ of X with degL(Y ′) < c. From S′ to S, the extra condition
that the composition Y ′ → X → B is an isomorphism is equivalent to that the
morphism Y ′ → B is finite and flat of degree 1. The “flat” condition is an open
condition on Y ′, and it implies the “finite” condition by a dimension reason.
Under this condition, the “degree 1” condition is an open and closed condition
on Y ′. Then S is quasi-projective over C.

By the moduli, we have a C-morphism S ×C B → X , which sends the fiber
s×CB for s ∈ S(C) to the section of X → B corresponding to s. It follows that
the composition

S(C) −→ (S ×C B)(B) −→ X (B) −→ X(K)

is surjective. By assumption, X(K) is Zariski dense in X, so the morphism
S ×C B → X is dominant. Taking a base change by SpecK → B, we obtain a
dominant K-morphism S ×C K → X.

It is easy to adjust the quasi-projective scheme S to a smooth projective
scheme over C. In fact, by taking the disjoint union of irreducible components,
we can assume that S is a disjoint union of quasi-projective varieties. Let V ′

be a disjoint union of projective varieties containing S as a dense and open
subscheme. Let V be a resolution of singularities of V ′ by Hironaka’s theorem.
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The morphism SK → X gives a dominant rational map VK 99K X. We claim
that the rational map extends to a morphism VK → X.

By assumption, the fiber Xb of X → B above any b ∈ D is hyperbolic.
Then Xb does not contain any rational curve. Consequently, the generic fiber
X does not contain any rational curve. By [JK20, Lem. 3.2, Lem. 3.5], which
originally follows from [GLL15, Prop. 6.2], the rational map VK 99K X extends
to a morphism.

By construction, the composition

V (C) −→ (V ×C B)(B) −→ X (B) −→ X(K)

is surjective. It follows that the morphism VK → X is surjective.

Constancy 2: constancy in the normal case

In the above, we have proved that X is dominated by a constant variety V ×CK.
The following result asserts that X itself is constant if it is normal.

Theorem 2.8. Let K = C(B) be the function field of a smooth projective curve
B over C. Let X be a normal projective variety over K. Let X → B be an
integral model of X over B. Assume that one of the following conditions holds:

(1) for some closed point b ∈ B, the fiber Xb is hyperbolic;

(2) X is a variety of general type over K.

Assume that there is a smooth projective variety V over C together with a sur-
jective K-morphism ϕ : V ×CK → X. Then X is isomorphic to the base change
T ×C K for a projective variety T over C.

We will only need case (2), which is essentially proved by [Nog85], but we
add case (1) here since it follows by a similar proof. For the sake of readers, we
will sketch a proof of the theorem in the next subsection. The main idea of our
proof still follows those of [Nog85, p. 37] and [Kob98, Thm. 6.9.5].

Return to the proof of Theorem 2.6. In the theorem, we can assume that X
is normal by passing to its normalization. In the above, we have already proved
that there is a smooth projective scheme V over C together with a dominant
K-morphism ϕ : VK → X such that the composition V (C)→ VK(K)→ X(K)
is surjective. By Theorem 2.8, X ' TK for a projective variety T over C. This
gives the first statement of the theorem.

It remains to prove that via the isomorphism X ' TK , the complement of
Im(T (C) → X(K)) in X(K) is not Zariski dense in X. We need the condition
that the map V (C)→ X(K) is surjective. For the purpose here, we are not able
to assume that V is connected. Let V1, . . . , Vr be all the connected components
of V such that Vi,K → X is surjective. Then it suffices to prove that Im(T (C)→
X(K)) contains Im(Vi(C) → X(K)) for every i. It suffices to prove that the
K-morphism Vi ×C K → X ' TK is equal to the base change of a C-morphism
Vi → T . This is given by the following result.
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Theorem 2.9. Let K/k be a field extension of characteristic 0 such that k is
algebraically closed in K. Let T, T ′ be projective varieties over k. Assume that
one of the following conditions:

(1) there exists an embedding k ↪→ C via which T ×k C is hyperbolic;

(2) T is of general type over k.

Then any surjective K-morphism T ′K → TK descends to a unique surjective
k-morphism T ′ → T ; any K-isomorphism T ′K → TK descends to a unique k-
isomorphism T ′ → T .

Proof. The first statement implies the second one. In fact, if a K-morphism
T ′K → TK descends to a k-morphism T ′ → T , then T ′K → TK is an isomorphism
if and only if T ′ → T is an isomorphism.

Now we prove the first statement. In case (2), by the Lefschetz principle, we
can assume that k is a finitely generated field over Q. Then we can also fix an
embedding k ↪→ C, as in case (1).

Denote by Homk(T ′, T ) the functor sending any noetherian k-scheme S to
the set of S-morphisms T ′S → TS . By Grothendieck [Gro95, §4], the functor is
represented by a scheme locally of finite type over k. Denote by Surk(T ′, T ) the
sub-functor of Homk(T ′, T ) corresponding to surjective S-morphisms T ′S → TS .
For any S-morphism T ′S → TS , the dimensions of the fibers of Im(T ′S → TS)
over S form an upper semi-continuous function on S (cf. [Gro67, IV-3, Thm.
13.1.5]). As a consequence, Surk(T ′, T ) is represented by a closed subscheme S
of Homk(T ′, T ).

The key is that the set S(C) of surjective morphisms T ′C → TC is finite.
This follows from Noguchi’s theorem (cf. [Nog92, Thm. A]) in case (1) and
Kobayashi–Ochiai’s theorem (cf. [Kob98, Thm. 7.6.1]) in case (2).

As the scheme S is locally of finite type over k, we conclude that it is actually
finite over k. By assumption, k is algebraically closed in K, so S(k) = S(K). It
follows that the K-morphism T ′K → TK descends to a k-morphism T ′ → T .

As a consequence, the constant structure (Ti, ρ) for Z ′i in in Theorem 2.5(1)
is unique up to isomorphism.

2.3 Constancy

The goal of this subsection is to sketch a proof of Theorem 2.8. As mentioned
above, the theorem is essentially due to Noguchi [Nog85]. The main idea of our
proof still follows those of [Nog85, p. 37] and [Kob98, Thm. 6.9.5].

Let (B/C, X/K, V/C,X/B) be as in the theorem. The K-morphism ϕ :
VK → X extends to a surjective U -morphism ϕ : VU → XU for some non-empty
open subvariety U of B, where we denote VU = V ×C U and XU = X ×B U .

The hard part of the proof is to prove that up to shrinking U , the family
XU → U is analytically locally trivial, i.e., there is an analytic open covering
{Ui}i∈I of U such that for every i ∈ I, the induced family XUi

→ Ui is biholo-
morphic to the trivial family Ti × Ui → Ui for some complex projective variety
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Ti. The main idea to use foliation to construction horizontal leaves of XU → U .
We first treat the case that X is smooth over K, and then modify the idea to
treat the normal case.

Isotriviality: smooth case

Assume that X is smooth over K. We can further assume that XU → U is
smooth by shrinking U . The goal here is to prove that XU → U is analytically
locally trivial.

Denote by TXU the tangent sheaf of XU over C (as a sheaf), denote by
T = Spec(Sym∗((TXU )∨)) the geometric tangent bundle of XU (as a variety).
Then a complex point of T is represented by a pair (t, x) with x ∈ XU a point
and t ∈ TxXU a tangent vector of XU at x. The structure morphism T → XU
maps (t, x) to x.

Fix a section t0 ∈ Γ(U, TU) which is non-zero at every point of U . Note that
t0 exists by shrinking U if necessary. Consider the map

Φ : V ×C U −→ T , (v, u) 7−→ ((dϕ)(t0,v,u), ϕ(v, u)).

Here dϕ : TVU → TXU is the morphism between tangent sheaves induced by
ϕ : VU → XU , and t0,v,u is the tangent vector of VU at (v, u) given by (0, t0) via
the natural decomposition T(v,u)(V ×C U) = TvV ⊕ TuU .

Note that Φ is an algebraic morphism over XU . As VU is projective over
XU , the image Φ(VU ) is also projective over XU . As T is affine over XU , its
closed subvariety Φ(VU ) is also affine over XU . As a consequence, the morphism
δ : Φ(VU )→ XU is finite. We are going to define a vector field t ∈ Γ(XU , TXU )
in terms of δ .

We will start with some extra notations due to singularity. Denote by γ :
W → Φ(VU ) the normalization of Φ(VU ). Then the morphism λ = δ ◦ γ :
W → XU is still finite. Denote by W sing the singular locus of W . Denote
X ◦U = XU \ λ(W sing) and W ◦ = W \ λ−1(λ(W sing)). Note that W is normal,
so W sing has at least codimension two in W , and thus XU \ X ◦U has at least
codimension two in XU . Note that λ◦ : W ◦ → X ◦U is a finite surjective morphism
of regular varieties, so it is flat by the miracle flatness (cf. [Mat89, Thm. 23.1]).

By the fiber product, the XU -morphism W → T induces a W -morphism
W → T ×XU

W . This gives a regular section s of Γ(W,λ∗TXU ) for the morphism
λ : W → XU . Define t◦ as the image of s under the trace map

Γ(W ◦, λ∗TXU ) −→ Γ(X ◦U , TXU ).

Here we recall the trace map briefly. In general, for a finite and flat morphism
f : A → B of noetherian schemes, and for a locally free sheaf E on B, there is
a canonical trace map f∗f

∗E → E of OB-modules, whose global section gives a
trace map Γ(A, f∗E)→ Γ(B,E). To define them, by the canonical isomorphism
f∗f
∗E → E⊗f∗OA, it suffices to introduce a trace map f∗OA → OB . Note that

f is finite and flat, and thus locally free, so we can assume that f is actually free
by taking affine open covers. Then the trace map comes from the usual trace of
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ring extensions. Namely, the trace of a section α of f∗OA is defined as the trace
of the multiplication map α : f∗OA → f∗OA, viewed as a linear endomorphism
of a free OB-module.

Hence, we have defined a section t◦ of TX ◦U over X ◦U . Since XU is regular
and XU \X ◦U has at least codimension two in XU , the section t◦ of TX ◦U extends
to a section t of TXU uniquely. This finishes the definition of t.

The key property of t is that (dπ)(t) = deg(λ)t0 holds for the morphism
dπ : TXU → TU . In particular, t is non-vanishing at every point of XU . To check
the equality, it suffices to check it for the morphism (dπ)x : TxXU → Tπ(x)U at
every point x ∈ XU over which δ : Φ(VU )→ XU is étale. For such an x, the fiber
δ−1(x) is reduced, the variety Φ(VU ) is smooth at δ−1(x), and W → Φ(VU ) is
isomorphic at δ−1(x). By the construction of the trace map, we see that the
fiber tx ∈ TxXU of t at x is given by

tx =
∑

(t,x)∈δ−1(x)

t.

Here elements of Φ(VU ) ⊂ T takes the form (t, x) as mentioned above. It follows
that

(dπ)x(tx) =
∑

(t,x)∈δ−1(x)

(dπ)x(t) =
∑

(t,x)∈δ−1(x)

t0 = deg(λ)t0.

This proves the equality.
In the complex analytic setting, consider the foliation associated to the vector

field t on XU . The equality (dπ)(t) = deg(δ)t0 implies that every leaf of t
is étale over U . By the foliation, for any point x ∈ XU , there is an open
neighborhood N of x ∈ XU , which gives an open neighborhood N1 = N ∩Xπ(x)

of x ∈ Xπ(x), and an open neighborhood N2 = π(N) of π(x) ∈ U , such that
there is a biholomorphic map N → N1×N2 satisfying the following conditions:

(1) the composition N → N1 ×N2
p2→ N2 is equal to π|N : N → N2;

(2) the composition N1 ↪→ N → N1 ×N2
p1→ N1 is the identity map;

(3) the fibers of the composition N → N1 ×N2
p1→ N1 are exactly the maximal

leaves of t in N .

For any point u ∈ U , apply the above decomposition to every x ∈ Xu. By
compactness, there is an open neighborhood N2 of u ∈ U , together with N =
π−1(N2) and N1 = Xu, such that there is a biholomorphic map N → N1 ×N2

satisfying the above three conditions. Therefore, we have finally proved that
the fibration π : XU → U is analytically locally trivial.

Isotriviality: normal case

Now we consider the case that X is normal. By shrinking U , we can assume
that XU is normal, and that all fibers of XU → U are normal. The goal here is
still to prove that π : XU → U is analytically locally trivial.
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The tangent sheaf TXU (defined by derivations) is generally not locally free,

so we will avoid using it. Denote by X sing
U and X ◦U the singular locus and the

smooth locus of XU over C. The tangent sheaf TX ◦U of X ◦U is locally free over
X ◦U .

As in the smooth case, fix a section t0 ∈ Γ(U, TU) which is non-zero at
every point of U (up to shrinking U). By modifying the proof of the smooth
case above, we can construct a section t of TX ◦U such that (dπ)x(t) = at0 holds
for every point x ∈ X ◦U and for some positive integer a.

Fix an (algebraic) closed immersion i : XU → PnU over U for some positive
integer n. Denote Y = PnU for simplicity. Then there is an injection (di)◦ :
TX ◦U → (TY)|X◦U . Here (TY)|X◦U denotes the pull-back of TY to X ◦U as a locally
free sheaf. Then we obtain a section t′ = (di)◦(t) of (TY)|X◦U over X ◦U . As XU
is normal, the singular locus X sing

U has codimension at least two in XU , and the
section t′ extends to a unique section of the locally free sheaf (TY)|XU

over XU .
We still denote it by t′. The original condition (dπ)x(t) = at0 transfers to a
similar condition for t′, so t′ is nonzero at any point of XU .

Let x ∈ XU be a closed point. Then there is an open neighborhood (under
the Euclidean topology) M of x in Y such that t′|M∩XU

extends to a section t̃
of (TY)|M = TM . As t′ is nonzero at any point of XU , we can assume that t̃ is
nonzero at any point of M by shrinking M .

Consider the foliation on M associated to the section t̃ of TM . Up to
shrinking M , we can assume that there is a biholomorphic map M →M1×M2

with M1 = M ∩ Yπ(x) and M2 = π(M) ⊂ U , such that the induced projection

p2 : M → M2 is compatible with π, the composition M1 ↪→ M
p1→ M1 is the

identity map, and that all fibers of p1 : M →M1 are maximal leaves of t̃ on M .
Moreover, after shrinking M , we may assume that M2 is a disk.

Denote N = M ∩ XU , N◦ = M ∩ X ◦U and N1 = M1 ∩ XU . Consider the
foliation on N◦ associated to the section t of TN◦. By compatibility, for any
point y ∈ N◦, any local leaf F(y, t) of t on N◦ through y is also a local leaf of
t̃ on M through y. The intersection N ∩ p−1

1 (p1(y)) is an analytic subvariety of
the disk p−1

1 (p1(y)) ' M2, and contains the open subset F (y, t) of p−1
1 (p1(y)).

So we must have N ∩ p−1
1 (p1(y)) = p−1

1 (p1(y)), and thus p−1
1 (p1(y)) ⊂ N . By

approximation, p−1
1 (p1(y)) is contained in N for any y ∈ N .

Hence, the image p1(N) = p1(N1) = N1, and the restriction of M → M1 ×
M2 induces a bijective map N → N1 ×M2. Note that N,N1,M2 are normal,
so N → N1 ×M2 is a biholomorphic map.

In the above, the fiber of the projection N → N1 through any y ∈ N◦ is the
Zariski closure of the leaf F(y, t). By approximation, we see that that the germ
of the map N → N1 at x is independent of the choice of the lifting t̃ of t to M .
The same result holds for the isomorphism N → N1 ×M2. Therefore, when
varying x, we can glue these maps N → N1 ×M2 together. As in the smooth
case, for any point u ∈ U , we can glue the maps along an open neighborhood of
Xu in XU . As a result, the fibration π : XU → U is analytically locally trivial.
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Constancy

Once the fibration π : XU → U is analytically locally trivial, it is easy to prove
that it is actually trivial (both analytically and algebraically).

In case (1) of Theorem 2.8, by assumption, X has a hyperbolic closed fiber
over B. By [Lan87, III, Prop. 3.1], being hyperbolic is an open condition
under the Euclidean topology. Then there is a point u0 ∈ U such that the fiber
X0 = Xu0

is hyperbolic. Then Aut(X0) is finite by Noguchi [Nog92, Thm. A].
In case (2) of Theorem 2.8, by assumption, X is of general type. Then there

is a closed point u0 ∈ U such that the fiber X0 = Xu0
is integral and of general

type. This simple fact can be proved by considering rational maps from X
to projective spaces via global sections of pluri-canonical bundles of X. Then
Aut(X0) is finite by Kobayashi–Ochiai’s theorem (cf. [Kob98, Thm. 7.6.1]).

In both cases, the monodromy action gives a homomorphism

ρ : π1(U, u0) −→ Aut(X0).

The quotient map π1(U, u0)→ Im(ρ) corresponds to a finite unramified covering
(U ′, u′0)→ (U, u0).

We still need the surjective U -morphism ϕ : V ×CU → XU . By base change,
we obtain a surjective U ′-morphism ϕ′ : V ×C U

′ → XU ′ . By the trivialization
ι : XU ′ → X0×CU

′, we obtain a surjective U ′-morphism ψ : V ×CU
′ → X0×CU

′.
By Theorem 2.9, ψ : V ×C U

′ → X0 ×C U
′ is equal to the base change of a

morphism ψ0 : V → X0.
Any point v ∈ V (C) transfers to horizontal sections ṽ ∈ (V ×C U)(U),

ṽ′ ∈ (V ×CU
′)(U ′), and ψ(ṽ′) ∈ XU ′(U ′). By compatibility, the image of ψ(ṽ′) ∈

XU ′(U ′) in XU gives a section of XU (U). As a consequence, the monodromy
action of Aut(U ′/U) on X0, depending on the choice of a point u′0 ∈ U ′ above
u0 ∈ U and an identification Xu′0 ' X0, fixes the point ψ0(v) ∈ X0. Since
ψ0 : V → X0 is surjective, Aut(U ′/U) actually acts trivially on X0. As a
consequence, π : XU → U is a trivial family.

Therefore, XU is biholomorphic to X0 ×C U over U . This proves that π :
XU → U is analytically trivial (or constant).

We can use a GAGA-type argument to prove that π : XU → U is actually
algebraically trivial. In fact, fix a point u0 ∈ U such that the fiber X0 = Xu0

is hyperbolic as above. The analytically locally trivial fibration π : XU → U is
classified by the Čech cohomology

H1(U,Aut(X0)) ' Hom(π1(U, u0),Aut(X0)).

As a consequence of Riemann’s existence theorem (cf. [Gro63, XII, Thm. 5.1,
Cor. 5.2]), the étale fundamental group πet

1 (U, u0) is canonically isomorphic to
the profinite completion of the topological fundamental group π1(U, u0). Then
by [Fu11, Prop. 5.7.19, Prop. 5.7.20], the finiteness of Aut(X0) implies

Hom(π1(U, u0),Aut(X0)) ' Hom(πet
1 (U, u0),Aut(X0)) ' H1

et(U,Aut(X0)).

The last term is the étale Čech cohomology, which is defined even if Aut(X0)
is non-abelian (cf. [Fu11, p. 229]). This establishes an equivalence between
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analytically locally trivial families and étale locally trivial algebraic families.
Moreover, the triviality is compatible in both cases. This finishes the proof of
Theorem 2.8.

Alternative approach

A large part of the above argument is to prove that the fibration π : XU → U is
analytically locally trivial using the foliation method. In the case that π : XU →
U is smooth, if we further assume that Xb is both hyperbolic and of general type
for all b in a disc of U , then we have an algebraic proof sketched as follows.

First, for the surjective morphism V ×U → XU , by taking successive generic
hyperplane sections of V , we can assume that V ×U → XU is generically finite
(and surjective). Here V is assumed to be connected, and it is of general type
since Xb is of general type.

Second, by the resolved Iitaka–Severi conjecture (cf. [GP09, Thm. 4.1]), the
set {Xb : b ∈ D} falls into finitely many birational equivalence classes. Then for
some fixed b0 ∈ D, the fiber Xb is birational to X0 = Xb0 for uncountably many
b ∈ D.

Third, the above Xb is actually isomorphic to X0. This follows from [Kob98,
Cor. 6.3.10] or the algebraic version [JK20, Lem. 3.2, Lem. 3.5] again.

Fourth, the functor F := IsomU (X0 × U,XU ) over U is representable by a
countable union of schemes of finite type over U , as a consequence of the theory
of Hilbert schemes (cf. [Gro95, §4]). Note that the third step implies that the
fiber Fb is non-empty for un-countably many b ∈ D. It follows that the generic
fiber FK is also non-empty. Any point of FK(K) implies that X is a twist of
X0, and thus π : XU → U is étale locally trivial up to shrinking U .

2.4 Geometric Bombieri–Lang conjectures

Recall that we have formulated the geometric Bombieri–Lang conjecture in Con-
jecture 1.1. The goal of this subsection is to present some examples related to
the conjecture, and more importantly formulate other versions of this conjec-
ture. We will see that Conjecture 1.1 essentially implies the other versions we
will present. For convenience, we duplicate Conjecture 1.1 as follows.

Conjecture 2.10 (Conjecture 1.1). Let K be a finitely generated field over a
field k of characteristic 0 such that k is algebraically closed in K. Let X be a
projective variety over K. Let Z be the Zariski closure of (X \ Spalg(X))(K)
in X. Then there is a finite set {Z1, . . . , Zr} of distinct closed subvarieties
of Z containing all irreducible components of Z and satisfying the following
conditions:

(1) For each i = 1, . . . , r, there is a birational K-map ρi : Ti,K 99K Zi, where
Ti,K = Ti ×k K is the base change for a projective variety Ti over k.

(2) Denote by Ui the maximal open K-subvariety of Ti,K such that ρi extends to
a K-morphism ρ◦i : Ui → Zi. Then the set (X \ Spalg(X))(K) is contained
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in the union over i = 1, . . . , r of the images of the composition

Ti(k) ∩ Ui(K)
ρ◦i−→ Zi(K) −→ Z(K) −→ X(K).

Here the intersection Ti(k)∩Ui(K) is taken in (Ti,K)(K) via the canonical
injection Ti(k)→ (Ti,K)(K).

Moreover, if XK does not contain any (possible singular) rational curve, then
we can take every birational K-map ρi : Ti,K 99K Zi to be a K-morphism under
which Ti,K is Zi-isomorphic to the normalization Z ′i of Zi.

The essential case of the conjecture is when the transcendence degree of K/k
is 1, which implies the general case by induction.

Examples

If XK does not contain any rational curve, then the rational maps ρi : Ti,K 99K
Zi in Conjecture 2.10 are claimed to be morphisms. The following simple ex-
ample implies that this fails in the general case.

Example 2.11. Let K be the function field of one variable over k = C. Set
Y = TK for a smooth hyperbolic surface T over k, and set X to be the blowing-
up of Y along a closed point of Y which is transcendental over k. Then the
birational map TK 99K X is not a morphism.

In the following, we present an example to show that in Conjecture 2.10
(and Theorem 2.5), the finite set {Z1, . . . , Zr} may contain more elements than
the irreducible components of Z to cover all but finitely many rational points.

Example 2.12. Let C0 be a connected, smooth, and projective curve of genus
greater than 1 over k = C. Let K = k(C0) be the function field, and denote by
C = C0 ×k K the base change.

The finiteness of non-constant endomorphisms of C implies that Σ = C(K)\
C0(k) is finite. Moreover, Σ is non-empty, since it contains the point SpecK →
C0×kK induced by the canonical morphism SpecK → C0 to the generic point
of C0. Let X = C ×K C and X0 = C0 ×k C0 be the products. Then X is
algebraically hyperbolic and constant over K. The set X(K) = C(K) × C(K)
is the union of the following four sets:

C0(k)× C0(k), C0(k)× Σ, Σ× C0(k), Σ× Σ.

Then X(K) contains infinitely many points which are not from X0(k). More-
over, for each P ∈ Σ, the subvariety P×KC ' C ofX is abstractly isomorphic to
T1(P )×k K for T1(P ) = C0, so it is a constant variety. Similarly, C ×K P ' C
is abstractly isomorphic to T2(P ) ×k K for T2(P ) = C0. By these relations,
X(K) \ (Σ× Σ) is covered by the k-points of the following varieties:

X0, T1(P ), T2(P ), P ∈ Σ.
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When rational points are Zariski dense

Here we present a weaker version of Conjecture 2.10. Conversely, this weaker
version (for varying X) also implies Conjecture 2.10, which is similar to the fact
that Theorem 2.6 implies Theorem 2.5.

Conjecture 2.13. Let K be a finitely generated field over a field k of charac-
teristic 0 such that k is algebraically closed in K. Let X be a projective variety
over K. Assume that (X \ Spalg(X))(K) is Zariski dense in X. Then there is
a birational K-map ρ : TK 99K X, where TK = T ×k K is the base change for a
projective variety T over k.

Denote by U a non-empty open K-subvariety of TK such that ρ extends to a

K-morphism ρ◦ : U → X. Then the complement of Im(T (k) ∩ U(K)
ρ◦→ X(K))

in X(K) is not Zariski dense in X. Here the intersection T (k)∩U(K) is taken
in (TK)(K) via the canonical injection T (k)→ (TK)(K).

Moreover, if XK does not contain any (possible singular) rational curve,
then we can take the birational K-map ρ : TK 99K X to be a K-morphism under
which TK is X-isomorphic to the normalization X ′ of X.

If we do not state where the rational points come from, then Conjecture
2.10 has the following clean consequence (by combining the Green–Griffiths–
Lang conjecture).

Conjecture 2.14. Let K be a finitely generated field over a field k of charac-
teristic 0 such that k is algebraically closed in K. Let X be a projective variety
over K. Assume that X is of general type, and that X is not birational constant
over K. Then X(K) is not Zariski dense in X.

Here a constant variety over K is the base change of a projective variety
from k to K. A birationally constant variety over K is a variety over K which
is birational to a constant variety over K.

Enhanced special set

The spirit of Conjecture 2.10 is that most rational points come from either
abelian varieties or constant varieties. The contribution of abelian varieties is
encoded in the special subset Spalg(X), while the following conjecture asserts
that we can enhance Spalg(X) to contain the contribution of the constant vari-
eties.

Conjecture 2.15. Let K be a finitely generated field over an algebraically closed
field k of characteristic 0. Let X be a projective variety over K. Then there
is a unique Zariski closed subset Spalg+const(X) of X satisfying the following
properties:

(1) Spalg+const(X) contains Spalg(X);

(2) Every positive-dimensional birationally constant closed subvariety of X is
contained in Spalg+const(X);
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(3) Every irreducible component of Spalg+const(X) is positive-dimensional, and
it is either birationally constant or an irreducible component of Spalg(X).

In other words, Spalg+const(X) is the unique maximal closed subset of X
whose irreducible components are either contained in Spalg(X) or positive-
dimensional birationally constant projective varieties over K. Alternatively,
Spalg+const(X) is the union of Spalg(X) with all positive-dimensional birationally
constant closed subvarieties of X.

It is interesting that Conjecture 2.10 implies Conjecture 2.15 by taking
Spalg+const(X) to be the union of Spalg(X) with all positive-dimensional ir-
reducible components of the Zariski closure of (X \ Spalg(X))(K) in X.

Based on the definition in Conjecture 2.15, we see that Conjecture 2.10 also
implies the following conjecture.

Conjecture 2.16. Let K be a finitely generated field over an algebraically closed
field k of characteristic 0. Let X be a projective variety over K. Then the set
(X \ Spalg+const(X))(K) is finite.

3 Canonical partial heights on abelian varieties

The goal of this section is to use Betti maps to introduce canonical partial
heights on abelian varieties, and prove the non-degeneracy of the canonical
partial heights.

3.1 Betti maps and Betti forms

Let us first review and set notations for Betti maps and Betti forms. These
objects were introduced by Mok [Mok91, p. 374] to study Mordell–Weil groups
of abelian varieties over complex function fields. Our exposition mostly follows
from [CGHX21, §2], and we refer to the loc. cit. for more details.

Betti maps

Let B be a Riemann surface. Let π : A → B be a holomorphic family of abelian
varieties over B; that is, A is a complex manifold, π is a smooth holomorphic
map endowed with a holomorphic section e : B → A, and every fiber of π is
an abelian variety with the identity point induced by e. Denote by A(B)h the
group of holomorphic sections s : B → A.

If B,A, π, e are algebraic, we will denote by A(B) the group of algebraic
sections s : B → A. Then we have a natural injectionA(B)→ A(B)h. However,
in this subsection, we take the more general analytic setting.

Let U ⊂ B be a connected and simply connected open subset of b in B. Let
b ∈ B be a point. Denote by πU : AU → U the base change of π, and by Ab the
fiber of A above b. The Betti map is a canonical real analytic map

β = βb,U : AU −→ Ab,

which satisfies the following properties:
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(1) The composition Ab ↪→ AU
β→ Ab is the identity map.

(2) For any point b′ ∈ U , the composition Ab′ ↪→ AU
β→ Ab is an isomorphism

of real Lie groups.

(3) The induced map
β̃ = (β, π) : AU −→ Ab × U

is a real analytic diffeomorphism of manifolds.

(4) For any x ∈ AU , the fiber β−1(β(x)) is a complex analytic subset of AU ,
which is biholomorphic to U .

The construction of the Betti map is as follows. The local system R1π∗Z is
trivial on U by the assumption that U is simply connected. As a consequence,
there are canonical isomorphisms H1(Ab′ ,Z) → H1(Ab,Z) and H1(Ab′ ,Z) →
H1(Ab,Z) for any b′ ∈ U . They induce real analytic isomorphisms

Ab′ −→ H1(Ab′ ,R)/H1(Ab′ ,Z) −→ H1(Ab,R)/H1(Ab,Z) −→ Ab.

This gives the map in (2), which actually determine β.
The fiber Fx,U = β−1

b,U (βb,U (x)) is called the local Betti leaf at x over U . It
is independent of the choice of b ∈ U (for fixed x, U), and its germ Fx at x is
independent of the choice of U . A Betti leaf of A is a connected subset F0 of
A such that for any x ∈ F0, the germ of F0 at x is equal to Fx. Note that any
connected component of a torsion multi-section of A → B is a Betti leaf. The
set of all Betti leaves forms a Betti foliation.

If A is a trivial family over B in that A = A0 × B for a complex abelian
variety, then the Betti map is just the first projection from AU = A0 × U to
Ab ' A0. Then the maximal Betti leaves are just the horizontal sections, i.e.
the fibers of the projection A0 ×B → A0.

Betti forms

Let L be a line bundle on A. For any b ∈ B, there is a unique translation-
invariant closed (1, 1)-form ωb on Ab representing the Chern class c1(Lb) on Ab.
The Betti form ω = ω(L) on A associated to L is the unique (1, 1)-form ω on
A satisfying the following properties:

(1) For any b ∈ B, the pull-back of ω via Ab → A is equal to the translation-
invariant Kähler form ωb.

(2) The pull-back of ω via the identity section e : B → A is 0.

These two properties determines ω uniquely. For the existence, let (U, b) be
a pair as above, and define the Betti form on AU associated to L to be the
differential form ωU = (β, π)∗ωb. It turns out that ωU is a closed (1, 1)-form on
AU . Moreover, ωU is independent of the choice of b ∈ U for fixed U , so we can
glue ωU for different U to form the Betti form ω on A.
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The Betti form ω is a closed (1, 1)-form on A satisfying the invariance prop-
erty [m]∗ω = m2ω. Because of this, one can also construct it by Tate’s limiting
argument. Moreover, ω is semipositive if L is ample on fibers of π : A → B.

3.2 Canonical partial heights

The goal of this subsection is to introduce partial heights in terms of the Betti
form. We will start with a review of the case of the Néron–Tate height.

Let K = C(B) be the function field of a smooth quasi-projective curve B
over C. Let A be an abelian variety over K and let L be a symmetric and ample
line bundle over A. Denote by

ĥL : A(K) −→ R

the Néron–Tate height function defined by Tate’s limiting argument.
Replacing B by an open subvariety if necessary, we assume that A→ SpecK

extends to an abelian scheme π : A → B. Note that we have assumed that B
is quasi-projective (instead of projective) in this section to get this flexibility.
We make an identification A(B) = A(K) via the canonical isomorphism. In

particular, we have the Néron–Tate height function ĥL : A(B)→ R.
Let L be a line bundle on A extending L. Let ω be the Betti form on A

associated to L. Note that ω is independent of the choice of L, since different
choices of L differ by a vertical divisor of A and give isomorphic L|Ab

for fixed
b ∈ B.

We have the following interpretation of the canonical height in terms of Betti
forms proved by Gauthier–Vigny [GV, Thm. B].

Theorem 3.1. For any section s : B → A,

ĥL(s) =

∫
B

s∗ω.

Canonical partial height

Let ω be the Betti form on A depending on a symmetric and ample line bundle
L as above. Let D ⊂ B be a measurable subset. We will eventually take D
to be a disc under some local coordinate. Recall that the partial height of a
section s ∈ A(B) with respect to (D,ω) is

h(D,ω)(s) :=

∫
D

s∗ω.

To emphasize the use of the Betti form, we may also call h(D,ω)(s) a canonical
partial height of s.

This gives a canonical partial height function h(D,ω) : A(B) → R, and thus
a canonical partial height function h(D,ω) : A(K)→ R.
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If D = B, then we recover the original Néron–Tate height by Theorem 3.1.
In general, we always have

0 ≤ h(D,ω)(s) ≤ h(ω,B)(s) = ĥL(s).

Similar to the Néron–Tate height, the canonical partial height is quadratic
in the following sense.

Proposition 3.2 (quadraticity). (1) For any points s ∈ A(B) and m ∈ Z,

h(D,ω)([m]s) = m2h(D,ω)(s),

(2) For any points s, t ∈ A(B),

h(D,ω)(s+ t) + h(D,ω)(s− t) = 2h(D,ω)(s) + 2h(D,ω)(t).

Proof. We refer to [Ser89, §3] for the quadraticity of the classical Néron–Tate

height ĥL. The proof for the canonical partial height is similar.
We first prove (1). By the compatibility of the Betti maps and the Betti

forms via the homomorphism [m] : A → A, the symmetry condition [m]∗L =

L⊗m
2

implies [m]∗ω = m2ω. The pull-back via s : B → A gives

(ms)∗ω = m2(s∗ω).

Integrating over D, we obtain (1).
For (2), start with the theorem of the cube, which asserts that

m∗123L⊗ (m∗12L)∨ ⊗ (m∗23L)∨ ⊗ (m∗13L)∨ ⊗m∗1L⊗m∗2L⊗m∗3L = 0

in Pic(A3). Here for any subset I ⊂ {1, 2, 3}, we have

mI : A3 −→ A, (x1, x2, x3) 7−→
∑
i∈I

xi.

By the compatibility of the Betti maps and the Betti forms, the relation implies

m∗123ω −m∗12ω −m∗23ω −m∗13ω +m∗1ω +m∗2ω +m∗3ω = 0

as a differential form on A×BA×BA. For sections s, t, u ∈ A(B), the pull-back
via (s, t, u) : B → A×B A×B A of the relation becomes

(s+ t+ u)∗ω − (s+ t)∗ω − (t+ u)∗ω − (s+ u)∗ω + s∗ω + t∗ω + u∗ω = 0

Setting u = −t = [−1] ◦ t in the above relation, we obtain

(s+ t)∗ω + (s− t)∗ω = 2(s∗ω + t∗ω).

Integrating over D, we obtain (2).
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By the proposition, the canonical partial height defines a positive semi-
definite quadratic form on A(B). This induces a bilinear pairing on A(B) by

〈s, t〉(D,ω) :=
1

2

(
h(D,ω)(s+ t)− h(D,ω)(s)− h(D,ω)(t)

)
, s, t ∈ A(B).

By linearity, this extends to a bilinear pairing

〈·, ·〉(D,ω) : A(B)R ×A(B)R −→ R

and a quadratic form

h(D,ω) : A(B)R −→ R, s 7−→ 〈s, s〉(D,ω).

Based on the Betti form, we have the following result.

Lemma 3.3. For any s, t ∈ A(B)R, there is a unique (1, 1)-form ω(s, t) on B
such that for any measurable subset D of B,

〈s, t〉(D,ω) =

∫
D

ω(s, t).

The (1, 1)-form satisfies the following extra properties:

(1) For any s ∈ A(B), ω(s, s) = s∗ω.

(2) For any s ∈ A(B)R, ω(s, s) is semipositive on B.

(3) The assignment (s, t) 7→ ω(s, t) is R-bilinear in s, t ∈ A(B)R.

(4) For any s, t ∈ A(B)R, ω(s, t) is real analytic on B in the sense that under
any complex analytic local coordinate z on B, α = if(z)dz ∧ dz̄ for a real
analytic function f(z) = f(Rez, Imz) (defined locally).

Proof. The uniqueness of ω(s, t) is obtained by varying D as discs in B. Now
we prove the existence. If s, t ∈ A(B), by the quadraticity in Proposition 3.2,
we can simply take

ω(s, t) =
1

2

(
(s+ t)∗ω − s∗ω − t∗ω

)
.

If s, t ∈ A(K)R are general elements, write s = a1s1 + · · · + arsr and t =
b1t1 + · · ·+ br′tr′ for si, tj ∈ A(K) and ai, . . . , bj ∈ R. Then we set

ω(s, t) =
∑
i,j

aibjω(si, sj).

This satisfies the requirement by the quadraticity in Proposition 3.2,
For the extra properties, (1) and (3) follow from the uniqueness, and (4)

follows from the construction since ω is real analytic. For (2), it holds for
s ∈ A(K) by (1) and the semipositivity of ω, it holds for s ∈ A(K)Q by passing
to a multiple of s in A(K), and thus it holds for s ∈ A(K)R by approximation.
This finishes the proof.
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Non-degeneracy 1

Resume the above notations for (B,K,A,L,A,L, ω). In particular, we have
assumed that L is symmetric and ample.

Denote by (A(K/C), tr) Chow’s (K/C)-trace of A. Then A(K/C) is an abelian
variety over C together with a K-homomorphism tr : A(K/C) ×C K → A, and
A(K/C) is the unique final object with such property. Since we are in character-
istic 0, the trace map tr : A(K/C)×CK → A is actually a closed immersion. We
refer to [Con06] for more details on Chow’s trace. The following Lang–Néron
theorem is a combination of [Con06, Thm. 2.1, Lem. 9.13, Thm. 9.15].

Theorem 3.4 (Lang–Néron). The abelian group A(K)/A(K/C)(C) is finitely

generated. The Néron–Tate height function ĥL : A(K) → R is invariant under
the translation action of A(K/C)(C) on A(K), and induces a positive definite
quadratic form

ĥL : (A(K)/A(K/C)(C))⊗Z R −→ R.

The main result of this section is the following non-degeneracy theorem,
which is a “partial” version of the Lang–Néron theorem.

Theorem 3.5 (non-degeneracy). Let D be an open disc in B. Then the canon-
ical partial height function h(D,ω) : A(K)→ R is invariant under the translation

action of A(K/C)(C) on A(K), and induces a positive definite quadratic form

h(D,ω) : (A(K)/A(K/C)(C))⊗Z R −→ R.

As a consequence, there is a constant ε > 0 such that

h(D,ω)(s) ≥ εĥL(s), ∀s ∈ A(K).

Proof. The last statement follows from the abstract situation that both h(D,ω)

and ĥL are positive definite quadratic forms on the finite-dimensional vector
space (A(K)/A(K/C)(C))⊗Z R.

Now we prove that ĥ(D,ω) : A(K) → R is invariant under the translation

action of A(K/C)(C) on A(K). The key is that ĥ(D,ω)(s) = 0 for any s ∈
A(K/C)(C). This is a consequence of the inequality ĥ(D,ω)(s) ≤ ĥL(s) and
Theorem 3.4; alternatively, by functoriality, we can reduce it to the case A =
A(K/C) ×CK, and in this case the Betti form ω is the pull-back of a differential
form from A(K/C).

Once ĥ(D,ω) is zero on A(K/C)(C), it is invariant under the translation action

of A(K/C)(C) on A(K) by some abstract properties of quadratic forms. In fact,

since ω is semipositive, the values of ĥ(D,ω) : A(K) → R are non-negative,

so ĥ(D,ω) : A(K)R → R is positive semi-definite (on any finite-dimensional
subspace). Then the pairing 〈·, ·〉(D,ω) satisfies the Cauchy–Schwartz inequality
〈s, t〉2(D,ω) ≤ 〈s, s〉(D,ω)〈t, t〉(D,ω) for s, t ∈ A(K). Then 〈s, t〉(D,ω) = 0 for any

s ∈ A(K/C)(C) and any t ∈ A(K), and thus ĥ(D,ω)(s + t) = ĥ(D,ω)(t) = 0 by
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the quadraticity. This proves that ĥ(D,ω) : A(K) → R is invariant under the

translation action of A(K/C)(C) on A(K).
It remains to prove that h(D,ω) is positive definite on (A(K)/A(K/C)(C))⊗ZR.

Let s ∈ A(K)R be an element with h(D,ω)(s) = 0. We need to prove s ∈
A(K/C)(C)R. By Lemma 3.3, there is a semi-positive and real analytic (1, 1)-
form α = ω(s, s) on B such that

h(D,ω)(s) =

∫
D

α.

As α is semipositive, α|D = 0 on D. As α is real analytic, α|D = 0 on D forces
α = 0 on B. In fact, a basic result asserts that the zero locus of a nonzero real
analytic function on a connected real analytic manifold has measure 0. We refer
to [Mit] for this basic fact for connected open sets of Rn, which can be extended
to connected real analytic manifolds by taking a cover by open balls.

By Lemma 3.3 again,

ĥL(s) = h(ω,B)(s) =

∫
B

α = 0.

Then s ∈ A(K/C)(C)R by Theorem 3.4. This finishes the proof.

Non-degeneracy 2

Theorem 3.5 confirms the non-degeneracy conjecture (Conjecture 2.3) for abelian
varieties, and implies the conjecture for varieties finite over abelian varieties. For
convenience, we state and prove the result in the following.

Theorem 3.6. Let K = C(B) be the function field of a smooth projective
curve B over C. Let X be a projective variety over K with a finite morphism
f : X → A for an abelian variety A over K. Then Conjecture 2.3 holds for X.

Proof. Resume the notations (B,K,X,L, hL, D, ω, {xn}) of the conjecture. Note
that the curve B is assumed to be projective.

We first confirm the conjecture for the case that X is an abelian variety.
Denote by U a non-empty open subvariety of B over which X is smooth. By
Theorem 3.5, the conjecture holds for the pair (D,ω), where D is an open disc
in U , and ω is a Betti form on XU . By Lemma 2.2(1), the conjecture holds for
any strictly positive pair (D,ω) on X such that D is an open disc in U . The
restriction that D is an open disc contained in U is easy to remove. In fact,
we can also shrink D to make it contained in U , and this process decreases the
partial height. This confirms the conjecture for abelian varieties.

For the general case f : X → A, let A → B be an integral model of A over
B. The morphism f : X → A extends to a morphism f̃ : AU → XU for some
non-empty open subvariety U of B. To prove the conjecture, we can assume
L = f∗L0 for an ample line bundle L0 on A. Let (D0, ω0) be a strictly positive
pair on A, where D0 is an open disc in U . We have

hL(xn) = hL0
(f(xn)) +O(1)
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and
h(D0,f̃∗ω0)(xn) = h(D0,ω0)(f(xn)).

Then the conjecture holds for (D0, f̃
∗ω0). We can adjust this to any strictly

positive pair (D,ω) on X , as in the case of abelian varieties.

4 Hyperbolic covers of abelian varieties

The goal of this section is to review some preliminary results on special sets and
then prove Theorem 1.2. The strategy is a variant of the proof of Theorem 2.5,
and the key is the non-degeneracy of partial heights in Theorem 3.6.

4.1 Some preliminary results

In this section, we first review some preliminary results on hyperbolicity and
generic sequences.

Equality of special sets

The hyperbolicity theory for varieties finite over abelian varieties is very com-
plete due to the work of Ueno, Kawamata, Noguchi, Winkelmann and Yamanoi.
We summarize the relevant result as follows.

Theorem 4.1. Let X be a projective variety over C which has a finite morphism
to an abelian variety. Then the following hold:

(1) Spalg(X) = Span(X).

(2) X is of general type if and only if Span(X) 6= X.

Proof. We first see that if X is not of general type, then Spalg(X) = Span(X) =
X. This is a direct consequence of the structure theorem in [Kaw81, Thm. 13],
which asserts that the normalization of X has an étale cover of the form X0×A0

for a projective variety X0 and an abelian variety A0 of positive dimension.
This proves the “if” part of (2). The “only if” part of (2) follows from

Yamanoi [Yam15, Cor. 1] (see [NWY07] for some previous results). The loc.
cit. assumes that X is smooth, but it is extended to the singular case by
Hironaka’s resolution of singularities.

Now we prove (1). By definition, Spalg(X) ⊆ Span(X). To prove the inverse
inclusion, by definition, Span(Y ) = Y for every irreducible component Y of
Span(X). Then (2) implies that Y is not of general type, so Spalg(Y ) = Y by
(2). It follows that Y = Spalg(Y ) ⊆ Spalg(X), and the union of Y gives This
proves that Span(X) ⊆ Spalg(X).

The following basic result asserts that taking the special subset of a pro-
jective variety is stable under base change, see [JX22, Proposition 3.7] for a
variant.
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Lemma 4.2. Let K ′ be a field extension of a field K. Let X be a projective
variety over K. Then Spalg(XK′) = Spalg(X)K′ as closed subsets of XK′ .

Proof. By definition, Spalg(X)K′ ⊆ Spalg(XK′). We need to prove the opposite
direction. Let G be an abelian variety over a finite extension K ′′ of K ′ together
with a non-constant rational map λ : G 99K XK′′ . We need to prove that the
image of G in XK′ is contained in Spalg(X)K′ , or equivalently, the image of G
in XK′′ is contained in Spalg(X)K′′ . By the Lefschetz principle, we can assume
that K ′′ is finitely generated extension of K.

Let S be a variety over K with function field K ′′. Replacing S by an open
subvariety if necessary, we can assume that G→ SpecK ′′ extends to an abelian
scheme G → S, and λ : G 99K XK′′ extends to a rational map λ̄ : G 99K X ×K S
whose indeterminacy locus does not contain any fiber of G → S. By definition,
for any closed point s ∈ S, the image of the composition Gs → G 99K X×K S →
X is contained in Spalg(X). Note that the Zariski closure of ∪sGs in G is G.
It follows that Spalg(X) actually contains the image of the composition G 99K
X ×K S → X. In particular, Spalg(X) contains the image of the composition

G −→ G λ̄
99K X ×K S −→ X,

which is isomorphic to the composition

G
λ

99K XK′′ −→ X.

After base change, Spalg(X)K′′ contains the image of λ : G 99K XK′′ . This
finishes the proof.

Now we have the following consequence of the above results.

Corollary 4.3. Let X be a projective variety over a field K of characteristic 0
which has a finite morphism to an abelian variety over K. Then X is of general
type if and only if Spalg(X) 6= X.

Proof. Let f : X → A be a finite morphism to an abelian variety A over K. By
the Lefschetz principle, we can descend (X,A, f) to a finitely generated subfield
K0 of K and take a base change by an embedding K0 → C. Then the result
follows from Theorem 4.1 and Lemma 4.2.

Transcendental closed points

We first introduce the notion of transcendental closed points on complex curves,
which have “functorial” specialization properties.

Let B be a smooth curve over C, and denote by K = C(B) the function
field. By the Lefschetz principle, there is a finitely generated subfield k0 of C
and a smooth curve B0 over k0 such that B ' B0 ×k C. Denote K0 = k0(B0).

A point b ∈ B(C) is called a transcendental closed point with respect to B0/k0

if the image of the composition

SpecC b−→ B −→ B0
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is the generic point of B0. Note that we have canonical bijections

B(C) ' HomSpecC(SpecC, B) ' HomSpec k0(SpecC, B0).

Under the bijections, b ∈ B(C) is transcendental if it is given by a composition

SpecC λb−→ SpecK0
η0−→ B0,

where η0 : SpecK0 → B0 is the generic point, and λb : SpecC → SpecK0 is
induced by an embedding K0 → C of fields over k0. The basic result is that
“almost all” points of B(C) are transcendental.

Lemma 4.4. There are only countably many points b ∈ B(C) which are not
transcendental with respect to B0/k0.

Proof. Let b ∈ B(C) be a point which is not transcendental. Then the image of
the corresponding map SpecC → B0 is a closed point of B0. Each such closed
point gives rise to finitely many b, and there are only countably many closed
points of B0. This finishes the proof.

As above, let B be a smooth curve over C, and denote by K = C(B) the
function field. Now let X be a variety over C with a flat projective morphism
π : X → B over C. Denote by X = XK the generic fiber of X → B. We will
see that for “almost all” b ∈ B(C), the fiber Xb is related to X in a convenient
functorial manner.

Now we choose the model B0/k0 to accommodate X . Namely, let k0 be a
finitely generated subfield of C such that (B,X , π) is the base change of a triple
(B0,X0, π0) from k0 to C. Denote K0 = k0(B0) and X0 = X0,K0

.
Let b ∈ B(C) be a transcendental closed point with respect to B0/k0 given

by the composition

SpecC λb−→ SpecK0
η0−→ B0.

Then the fiber of X above b is given by

Xb = X ×B (SpecC, b) ' (X0 ×B0 SpecK0)×SpecK0 (SpecC, λb),

so we have a canonical isomorphism

Xb ' X0 ×SpecK0
(SpecC, λb).

In summary, the construction from X to Xb can be re-interpreted as the process
X → X0 ← Xb, i.e., a descent from K to K0 followed by a base change from
K0 to C. This process brings many good properties, and the following is one of
them.

Lemma 4.5. (1) For any transcendental closed point b ∈ B(C) with respect to
B0/k0, the special set Spalg(Xb) is isomorphic to some base change of some
descent of Spalg(X).
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(2) Denote by Spalg(X) the Zariski closure of Spalg(X) in X . Assume fur-

thermore that Spalg(X) ↪→ X can also be descended to B0. Then for any
transcendental closed point b ∈ B(C) with respect to B0/k0, Spalg(Xb) is

equal to the fiber of Spalg(X) above b.

Proof. These are consequences of the construction and Lemma 4.2.

The concept of transcendental closed points applies to finitely many varieties
and morphisms. Namely, let B be a smooth curve over C, and Xi for i = 1, . . . , r
be a variety over C with a morphism πi : Xi → B over C, and let fj : Xa(j) →
Xa′(j) for j = 1, . . . ,m and a(j), a′(j) ∈ {1, . . . , r} be a B-morphism among
them. By the Lefschetz principle, there is a finitely generated subfield k0 of C
such that (B, πi : Xi → B, fj : Xa(j) → Xa′(j)) is the base change of (B0, πi,0 :
Xi,0 → B0, fj,0 : Xa(j),0 → Xa′(j),0) from k0 to C. Then for any transcendental
closed points of b ∈ B(C) with respect to B0/k0, the specializations Xi,b and
fj,b : Xa(j),b → Xa′(j),b are base changes of descents of Xi and fj,K : Xa(j) →
Xa′(j). Here K = C(B) and Xi = Xi,K as usual.

4.2 Rational points

In this subsection, we prove Theorem 1.2. For convenience, it is duplicated in
the following with a detailed statement.

Theorem 4.6 (Theorem 1.2). Let K be a finitely generated field over a field k
of characteristic 0 such that k is algebraically closed in K. Let X be a projective
variety over K with a finite morphism f : X → A for an abelian variety A over
K. Assume that X is algebraically hyperbolic in that Spalg(X) = ∅. Let Z be
the Zariski closure of X(K) in X.

Then Conjecture 1.1 holds for X/K/k. Namely, let Z be the Zariski clo-
sure of X(K) in X. Then there is a finite set {Z1, . . . , Zr} of distinct closed
subvarieties of Z containing all irreducible components of Z and satisfying the
following conditions:

(1) For each i, the normalization Z ′i of Zi is constant in the sense that there is
a K-isomorphism ρi : Ti ×k K → Z ′i for a projective variety Ti over k.

(2) The set X(K) is equal to the union over i = 1, . . . , r of the images of the
composition

Ti(k) −→ (Ti ×k K)(K)
ρi−→ Z ′i(K) −→ Zi(K) −→ Z(K) −→ X(K).

The theorem is essentially (but not directly) implied by Theorem 2.5, with-
out some extra arguments to convert the different setting. First, Theorem 4.6
is still a consequence of its special case Z = X as follows.

Theorem 4.7. Let K be a finitely generated field over a field k of characteristic
0 such that k is algebraically closed in K. Let X be a projective variety over K
with a finite morphism f : X → A for an abelian variety A over K. Assume that
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X is algebraically hyperbolic in that Spalg(X) = ∅. Assume that X(K) is Zariski
dense in X. Then the normalization of X is isomorphic to the base change
TK = T ×k K for a normal projective variety T over k, and the complement in
X(K) of the image of the composition T (k)→ (TK)(K)→ X(K) is not Zariski
dense in X.

The implication of Theorem 4.6 by Theorem 4.7 is the same as the implica-
tion of Theorem 2.5 by Theorem 2.6. So we omit it here.

Reduce the transcendence degree

The remaining part of this subsection is devoted to prove Theorem 4.7. Since
the case K = k is trivial, we assume that trdeg(K/k) ≥ 1. We first reduce
trdeg(K/k) to 1 in the theorem. The key is the following lemma, a well-known
consequence of Chow’s K/k-trace.

Lemma 4.8. Let K/k be an extension fields of characteristic 0 such that k is
algebraically closed in K. Let f : T ×k K → A be a K-morphism, where T is a
projective variety over k and A is an abelian variety over K. Assume that there
is a k-point t0 ∈ T (k) contained in the regular locus of T . Then the image of f
is contained in the translation (AK/k)K + a of (AK/k)K by a = f(t0) ∈ A(K).
Moreover, the composition

T ×k K −→ (AK/k)K + a
−a−→ (AK/k)K

is equal to the base change of a k-morphism T → AK/k.

Proof. We first reduce to the case that T is smooth over k. Let T ′ → T be a
resolution of singularities, which exists by Hironaka’s theorem. We can further
assume that T ′ → T is an isomorphism above the regular point t0 ∈ T (k),
and thus t0 has a unique preimage t′0 ∈ T ′(k). Denote by f ′ : T ′K → A the
composition of T ′K → TK → A. Replacing (T, t0, f) by (T ′, t′0, f

′), we can
assume that T is smooth over k.

Now we assume that T is smooth over k. Replacing f : TK → A by f−f(t0),
we can assume that a = f(t0) = 0. Let Alb(T ) be the Albanese variety of
(T, t0) over k, endowed with the k-morphism T → Alb(T ) sending t0 to 0.
Then f : TK → A factorizes through a K-homomorphism Alb(T )K → A.
The latter further factorizes through the base change of a k-homomorphism
Alb(T )→ AK/k. This gives the result.

Now it is easy to reduce Theorem 4.7 to the case trdeg(K/k) = 1. In fact,
assume that trdeg(K/k) > 1, and we need to prove that the conclusion holds for
the datum (K/k,X,A). Assume that X is normal by taking a normalization.

Let k1 be an intermediate field of K/k such that K/k1 has transcendence
degree 1 and that k1 is algebraically closed in K. Assume that the theorem
holds for (K/k1, X,A). Then there is a K-isomorphism T1 ×k1 K → X for a
projective variety T1 over k1, and the complement of Im(T1(k1) → X(K)) in
X(K) is not Zariski dense in X.
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By Lemma 4.8, the finite K-morphism T1 ×k1 K → A induces a finite k1-
morphism T1 → AK/k1 . This reduces the problem to (k1/k, T1, A

K/k1). Repeat
the process on k1/k, we eventually get the case trdeg(K/k) = 1. This finishes
the reduction process.

In the following, we assume trdeg(K/k) = 1 in the proof of Theorem 4.7.
Then the case of k = C of the theorem is a special case of Theorem 2.6. For
general k, the statement that the normalization of X is isomorphic to the base
change TK can be deduced from Theorem 2.6 by the Lefschetz principle and a
descent argument. However, the statement about the image of T (k) → X(K)
does not seem a direct consequence of Theorem 2.6. Due to this, we will sketch
a full path of the proof of Theorem 4.7 (assuming trdeg(K/k) = 1).

Dominated by a constant family

We want to apply the proof of Theorem 2.6 to conclude that X is dominated
by a constant family, but the problem is that the base field k is more general
than C. To remedy the problem, we will alter the proof to the current setting.

Let X/A/K/k be as in Theorem 4.7, and assume trdeg(K/k) = 1. Let
hL : X(K)→ R be a Weil height function with respect to an ample line bundle
L on X. We claim that hL is bounded on X(K).

If k = C, the claim is obtained in the proof of Theorem 2.6. For that, we
need to fulfill the conditions of Theorem 2.6. First, Conjecture 2.3 for the non-
degeneracy of partial heights holds for the current X by Theorem 3.6. Second,
for any integral model X → B of X over B, there is an open disc D in B such
that all fibers of X above D are hyperbolic. In fact, by assumption, Spalg(X) =
∅, so Lemma 4.4 and Lemma 4.5 imply that there is a point b ∈ B(C) with
Spalg(Xb) = ∅. By Theorem 4.1, Span(Xb) = ∅. By a consequence of the Brody
lemma (cf. [Lan87, III, Prop. 3.1]), being hyperbolic is an open condition under
the Euclidean topology. Then we can find a disc D with center b satisfying the
requirement.

For general k, we can easily deduce the claim by the Lefschetz principle. In
fact, it suffices to prove that for any infinite sequence {xn}n≥1 of X(K), the
sequence {hL(xn)}n≥1 is bounded. The datum (K,X,A, f : X → A) is defined
over a finitely generated subfield of k over Q, and so is every xn ∈ X(K). Then
all these data with all n ≥ 1 are defined over a countably generated subfield k0

of k over Q. Fix an inclusion k0 ↪→ C. By descent from k to k0 and base change
from k0 to C, we achieve the case that the base field is C. The process does
not change the heights of points, so we conclude that {hL(xn)}n≥1 is bounded.
This proves the claim in the general case.

Once the height is bounded, the argument applying Hilbert schemes holds
over k (instead of C), so the first step in the proof of Theorem 2.6 holds in the
current situation. Namely, there is a disjoint union V of finitely many smooth
projective varieties over k together with a surjective K-morphism V ×kK → X
such that the composition

V (k) −→ (V ×k K)(K) −→ X(K)
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is surjective. Note that in the current situation, the morphism V ×k K → X
is also extended from a rational map VK 99K X. This is possible still because
X does not contain any rational curve, as a consequence of the finite morphism
f : X → A.

Constancy

Here we continue to prove that the normalization of X is isomorphic to TK for
some projective variety T over k. We can assume that X is normal, since the
general case can be solved by a normalization process.

As mentioned above, this can be proved by Theorem 2.8 by applying the
Lefschetz principle. Note that Theorem 2.8 is proved by a rather involved
foliation method. However, in the current situation, taking advantage of the
finite morphism f : X → A, we have an algebraic proof in this case, which is
significantly easier than the original proof. Due to this merit, we will provide it
in the following.

Replacing V by a connected component of V , we assume that V is connected.
Thus we have a smooth projective variety V over k together with a surjective
K-morphism ϕ : VK → X such that ϕ(V (k)) is Zariski dense in X. Consider
the composition

VK
ϕ−→ X

f−→ A.

Take a point v0 ∈ V (k), which exists since ϕ(V (k)) is Zariski dense in X. By
Lemma 4.8, up to replacing f : X → A by a translation by an element of A(K),
the morphism VK → A factorizes through the base change of a k-morphism
V → AK/k. Denote by W the image of the finite morphism V → AK/k. Then
WK (as a closed subvariety of A) is the image of VK → A, and also the image
of X → A. In summary, we have a composition

VK
ϕ−→ X −→WK −→ (AK/k)K −→ A

of K-morphisms, where the first two arrows are surjective, the last three arrow
are finite, and the composition VK → WK is the base change of a k-morphism
V →W .

Denote by V ′ the normalization of V → W . Then V ′K is still normal, and
thus the normalization of VK →WK . Moreover, V ′K still dominates X, since X
is finite over WK . Replacing V by V ′, we can assume that VK → X is finite
(and surjective). Here we might lose the smoothness of V , but this will not be
used below. Denote by k(V )c the Galois closure of k(V )/k(W ). Replacing V
by the normalization of W in k(V )c, we can assume that k(V )/k(W ) is Galois.

By uniqueness of normalization, the action of Gal(k(V )/k(W )) on k(V )
extends to an action on V/W . Via the natural isomorphism

Gal(k(V )/k(W )) −→ Gal(K(VK)/K(WK)),

the action of Gal(K(VK)/K(WK)) on VK is through the action of Gal(k(V )/k(W ))
on V . The subgroup Gal(K(VK)/K(X)) of Gal(K(VK)/K(WK)) corresponds
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to a subgroup G of Gal(k(V )/k(X)), and the action of Gal(K(VK)/K(X)) on
VK is through the action of G on V . Taking quotient, we have a composition

(V/G)×k K −→ VK/Gal(K(VK)/K(X)) −→ X.

Here the first arrow is a canonical isomorphism, and the second arrow is a bira-
tional and finite morphism. Note that V is normal, and the quotient varieties are
normal by construction, so the second arrow is isomorphic to the normalization
of X. This prove that X ' TK with T = V/G.

Constancy of the points

It remains to prove that via X ' TK , the complement of Im(T (k)→ X(K)) in
X(K) is not Zariski dense in X. Similar to the proof of Theorem 2.6, this is a
consequence of Theorem 2.9.
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Néron theorem. Enseign. Math. (2), 52(1-2):37–108, 2006.

[Dem97] Jean-Pierre Demailly. Algebraic criteria for Kobayashi hyperbolic
projective varieties and jet differentials. In Algebraic geometry—
Santa Cruz 1995, volume 62 of Proc. Sympos. Pure Math., pages
285–360. Amer. Math. Soc., Providence, RI, 1997.

41



[Duv] Julien Duval. Around brody lemma. arXiv:1703.01850.

[Fal83] G. Faltings. Endlichkeitssätze für abelsche Varietäten über
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