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1 Introduction

The far-reaching Bombieri–Lang conjecture is a high-dimensional generalization
of the celebrated Mordell conjecture proved by Faltings [Fal83]. Beyond the
Mordell conjecture, the only known case of the Bombieri–Lang conjecture is the
case of subvarieties of abelian varieties by Faltings [Fal91, Fal94].

The geometric Bombieri–Lang conjecture is an analogue of the Bombieri–
Lang conjecture over function fields. We refer to [XY23, §1.1, §2.4] for some
precise versions of the geometric Bombieri–Lang conjecture in characteristic 0,
and we will restrict to characteristic 0 throughout this paper. The conjecture (or
its suitable versions) is proved for curves by [Man63, Gra65], for subvarieties
of abelian varieties by [Ray83, Bui92, Hru96], for smooth projective varieties
with ample cotangent bundles by [Nog81, MD84], and for constant hyperbolic
varieties by [Nog92, Cor. 4.2].

In [XY23], we have proposed an approach to the geometric Bombieri–Lang
conjecture for hyperbolic varieties in characteristic 0, which applies the classical
Brody lemma to construct entire curves from rational points. The approach is
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conditional on a non-degeneracy conjecture about partial heights. This non-
degeneracy conjecture is confirmed in the case that the variety is finite over an
abelian variety, and as a consequence, [XY23, Thm. 1.2] confirms the geometric
Bombieri–Lang conjecture for hyperbolic varieties finite over abelian varieties.

In this paper, we move from “hyperbolic” to “general type”. The following
main theorem confirms the geometric Bombieri–Lang conjecture (cf. [XY23,
Conj. 1.1]) for varieties finite over abelian varieties of trivial trace.

Theorem 1.1 (ramified covers of abelian varieties). Let K be a finitely gener-
ated field over a field k of characteristic 0. Let X be a projective variety over
K with a finite morphism f : X → A for an abelian variety A over K. Assume
that the K/k̄-trace of AK is 0. Then (X \ Spalg(X))(K ′) is finite for any finite
extension K ′ of K.

Note that we do not assume that X is smooth over K or that f is surjective
in the theorem. In particular, X is allowed to be a closed subvariety of A, and
in this case, versions of the geometric Bombieri–Lang conjecture were proved
by [Ray83, Bui92].

We refer to [Con06] for more details on Chow’s trace of abelian varieties.
The above assumption of trivial K/k̄-trace excludes the complication caused
by constant varieties (coming from a base change from k to K), so the result
becomes very clean.

Recall that the algebraic special set Spalg(X) of X is the Zariski closure in
X of the union of the images of all non-constant rational maps from abelian
varieties over K to XK .

The Green–Griffiths–Lang conjecture holds for suchX in the theorem; i.e., X
is of general type if and only if Spalg(X) 6= X. Moreover, for any complex variety
Y finite over a complex abelian variety, Lang’s conjecture that Spalg(Y ) =
Span(Y ) is also confirmed, where the analytic special set Span(Y ) of Y is the
Zariski closure in Y of the union of all entire curves in Y . These two results are
consequences of works of Ueno, Kawamata and Yamanoi. We refer to [XY23,
Thm. 4.1, Cor. 4.3] for more details.

The theorem has the following variant, which also confirms a weak version
of [XY23, Conj. 1.1].

Corollary 1.2 (maximal Albanese dimension). Let K be a finitely generated
field over a field k of characteristic 0. Let X be a normal projective variety of
general type over K. Assume that X has a maximal Albanese dimension, and
that the K/k̄-trace of its Albanese variety is 0. Then there is a proper Zariski
closed subset Z ( X such that (X \Z)(K ′) is finite for any finite extension K ′

of K.

We refer to [Moc12, Prop. A.6] for the basics of Albanese varieties. The
normal projective variety X is said to have a maximal Albanese dimension if the
Albanese morphism XK → Alb(XK) (via a base point of X(K)) is generically
finite onto its image. To prove the corollary, we only need to treat that case
k = k. After a suitable base change, we may assume that X(K) 6= ∅ to have
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an Albanese morphism X → Alb(X). Take X0 to be the normalization of
Im(X → Alb(X)) in X. This gives a birational morphism ψ : X → X0. Apply
Theorem 1.1 to X0. Take Z to be the union of ψ−1(Spalg(X0)) with the minimal
Zariski closed subset W of X such that X \W → X0 \ψ(W ) is an isomorphism.

In the end, we describe our proof of Theorem 1.1. It is still based on the idea
of constructing entire curves in [XY23], but the situation is much more delicate.
In fact, we first use the Lefschetz principle to reduce the problem to the essential
case k = C and K = C(B) where B is a smooth projective curve over C. Take
an integral model X → B of X over B. For the sake of contradiction, assume
that there is an infinite sequence {xn}n≥1 in (X \Spalg(X))(K). As in the proof
of [XY23, Thm. 1.2], we can apply Brody’s lemma to obtain an entire curve
in a smooth fiber Xb for some closed point b ∈ B, but this is not sufficient for
our purpose, unless the entire curve is not contained in Spalg(Xb). We need
to control the location of the entire curve, and this is usually very hard in the
abstract situation of the Brody lemma. Our solution of the problem is to use
more explicit methods to construct entire curves on fibers of integral models of
A over B, and “lift” the entire curves to fibers of X over B by the Brody lemma.

Let us first introduce a general situation for the abelian variety A over K.
Let Z be a Zariski closed subset of A. Let {sn}n≥1 be an infinite sequence in
(A \ Z)(K). Take an integral model A → B of A over B, and denote by Z the
Zariski closure of Z in A. The goal is to take a limit of a reparametrization
of {sn : B → A} to construct an entire curve φ : C → Ab in a smooth fiber
Ab for some closed point b ∈ B, and ensure that φ(C) is not contained in Zb.
This will be done by explicit construction of entire curves. In fact, by careful
and precise choices of reparametrization, our limit entire curves are linear entire
curves in Ab in the sense that the inverse images of the entire curves in the
universal covering Lie(Ab) of Ab are translations of complex lines in Lie(Ab).
Note that this directly implies the theorem in the case that f : X → A is a
closed immersion.

Now we go back to the original situation. By the finite morphism f : X →
A, the sequence {xn}n≥1 in (X \ Spalg(X))(K) gives a sequence {sn}n≥1 in
A(K). Set Z = f(Spalg(X)). Assume that f−1(Z) = Spalg(X), so that {sn}n≥1
actually lies in (A \Z)(K). This assumption is not automatic, but it is actually
a minor one. Take the integral models A → B and the Zariski closure Z as
above. Assume that f extends to a morphism f̃ : XU → AU for a non-empty
open subvariety U of B. From the above, we have constructed an entire curve
φ : C→ Ab which is not contained in Zb. Note that φ : C→ Ab is obtained as a
limit of a reparametrization {s′n : D→ A} of {sn : U → A}, and thus we can lift
the reparametrization {s′n : D → A} to a reparametrization {x′n : D → X} of
{xn : U → X} by the same style, and apply the Brody lemma to {x′n : D→ X}
to obtain an entire curve φ̃ : C → Xb. Because of the limit process, the entire
curve φ̃ : C → Xb is not necessarily a lifting of the entire curve φ : C → Ab,
but by some explicit consideration, we can prove that f̃(φ̃(C)) = φ(C) under

the Euclidean topology. Then f̃(φ̃(C)) 6⊆ Zb. By some choice of b, we have

Spalg(Xb) = f̃−1(Zb). Then we conclude that φ̃(C) 6⊆ Spalg(Xb). This finishes
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the idea of the proof.
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2 Transfer maps and linear entire curves

In this section, we introduce our notations and prove some preliminary results
as preparation for the proof of the main theorem in the next section. In §2.2,
we introduce the transfer map between tangent spaces in the setting of the
Betti map, and prove a non-degeneracy result on the transfer map. In §2.3, we
introduce the notion of linear entire curves, and prove a result on the Zariski
closures of linear leaves.

2.1 Notations and terminology

In this paper, we resume all the notations and terminology in [XY23]. For
convenience, we repeat them here.

For any abelian group M and any ring R containing Z, denote MR = M⊗ZR.
This apply particularly to R = Q,R,C.

By a variety, we mean an integral scheme, separated of finite type over the
base field. A curve is a 1-dimensional variety.

By a function field of one variable over a field k, we mean a finitely generated
field K over k of transcendence degree 1 such that k is algebraically closed in
K. We usual denote by B a smooth quasi-projective curve over k with function
field K. For a projective variety X over K, an integral model of X over B is a
quasi-projective variety X over k together with a projective and flat morphism
X → B whose generic fiber is isomorphic to X.

Let K be a finitely generated field over a field k, and assume that k is
algebraically closed in K. Let A be an abelian variety over K. Denote by
A(K/k) Chow’s K/k-trace of A over k. Denote

V (A,K) := (A(K)/A(K/k)(k))⊗Z R,

which is a finite dimensional R-vector space. In our setting, k is usually C.
By a point of a variety over C, we mean a closed point. By the generic point

of an integral variety, we mean the generic point of the scheme.
All complex analytic varieties are assumed to be reduced and irreducible.

For a complex analytic variety X with a point x ∈ X, denote by TxX the
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complex analytic tangent space of X at x defined by holomorphic derivations.
For a holomorphic map f : X → Y with f(x) = y, denote by df : TxX → TyY
the induced map between the tangent spaces.

For a complex abelian variety A, the complex Lie algebra Lie(A) is defined
to be the group of translation-invariant holomorphic derivations on OA. By
restriction, we have canonical isomorphisms Lie(A) ' TxA for any x ∈ A.

Let X be a complex analytic space, and S be a subset of X. Denote by S
the closure of S in X under the Euclidean topology. Assume that the smooth
locus Xsm is covered by countably many open balls {Uα}α∈I . We say that S is
measurable if S ∩Dα is measurable under the Lebesgue measure of the ball Dα

for all α. We say that S has measure zero if S ∩Dα has measurable zero for all
α.

For any positive real number r, denote by

Dr := {z ∈ C : |z| < r}, Dr := {z ∈ C : |z| ≤ r}

the discs of radius r. Write D = D1 and D = D1. Denote by vst =
d

dz
the

tangent vector of Dr at 0 under the standard coordinate z.
Let (Y, d) be a metric space. Let {rn}n≥1 be a sequence of positive real

numbers convergent to infinity. Let φn : Drn → Y be a sequence of continuous
maps. We say that {φn}n converges to a map φ : C → Y if it converges on
every compact subset Ω of C. Since Ω ⊆ Drn for n sufficiently large, the above
definition makes sense. If such φ exists, it is unique and continuous. Moreover,
if Y is further a complex analytic variety and φn are holomorphic, then φ is
holomorphic. We say that φn uniformly converges to φ : C → Y if for every
ε > 0, there is N ≥ 1 such that for every n ≥ N and z ∈ Drn , d(φ(z), φn(z)) ≤ ε.
If φn uniformly converges to φ, then it converges to φ.

2.2 Betti maps and transfer maps

The Betti maps for complex abelian schemes were first introduced by Mok
[Mok91, p. 374]. They were reviewed in [CGHX21, §2] and [XY23, §3.1]. We
will recall some related notations in [XY23, §3.1], and introduce a new term
called the transfer map.

Betti maps

Let B be a Riemann surface. Let π : A → B be a holomorphic family of abelian
varieties over B; that is, A is a complex manifold, π is a smooth holomorphic
map endowed with a holomorphic section e : B → A, and every fiber of π is
an abelian variety with the identity point induced by e. Denote by A(B)h the
group of holomorphic sections s : B → A.

If B,A, π, e are algebraic, we will denote by A(B) the group of algebraic
sections s : B → A. Then we have a natural injectionA(B)→ A(B)h. However,
in this subsection, we take the more general analytic setting.
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Let U ⊂ B be a connected and simply connected open neighbourhood of b
in B. Let b ∈ B be a point. Denote by πU : AU → U the base change of π, and
by Ab the fiber of A above b. The Betti map is a canonical real analytic map

β = βb,U : AU −→ Ab,

which satisfies the following properties:

(1) The composition Ab ↪→ AU
β→ Ab is the identity map.

(2) For any point b′ ∈ U , the composition Ab′ ↪→ AU
β→ Ab is an isomorphism

of real Lie groups.

(3) The induced map
β̃ = (β, π) : AU −→ Ab × U

is a real analytic diffeomorphism of manifolds.

(4) For any x ∈ AU , the fiber β−1(β(x)) is a complex analytic subset of AU ,
which is biholomorphic to U .

The fiber Fx,U = β−1b,U (βb,U (x)) is called the local Betti leaf at x over U . It
is independent of the choice of b ∈ U (for fixed x, U), and its germ Fx at x is
independent of the choice of U . A Betti leaf of A is a connected subset F0 of
A such that for any x ∈ F0, the germ of F0 at x is equal to Fx. Note that any
connected component of a torsion multi-section of A → B is a Betti leaf. The
set of all Betti leaves forms a Betti foliation.

Transfer maps between tangent spaces

For any x ∈ A, there is a direct sum decomposition

TxA = TxAπ(x) ⊕ TxFx

of complex analytic tangent spaces at x. Here Fx is the germ of a local Betti
leaf through x. We call the induced homomorphism p1 : TxA → TxAπ(x) the
Betti projection.

The map p1 : TxA → TxAπ(x) is equal to the map dβ : TxA → TxAπ(x)
induced by a Betti map β : AU → Aπ(x). Then dβ is a C-linear map, which is
a priori only R-linear.

Let s : B → A be a section of π : A → B. For any point b ∈ B, define the
transfer map

δ(s, ·) = δb(s, ·) : TbB −→ Lie(Ab)

to be the composition

TbB
ds−→ Ts(b)(A)

p1−→ Ts(b)(Ab) −→ Lie(Ab).

Here the last map is the canonical isomorphism via translation-invariant vector
fields. We have the following basic properties.
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Lemma 2.1. (1) The transfer map δ(s, ·) : TbB → Lie(Ab) is additive in s ∈
A(B)h.

(2) Let A0 be a complex abelian variety with a homomorphism i : A0 ×B → A
over B. Then δ(i(s), ·) : TbB → Lie(Ab) is 0 for any s ∈ A0. Here i(s)
denotes the image of the natural map A0 → A(B)h induced by i.

Proof. For (1), it suffices to check it in the setting of differentiable manifolds
and real Lie groups. Take an open disc U of B containing x. Then δ(s, ·) is the
map between the tangent spaces induced by β ◦ s, i.e. the composition

U
s−→ AU

β−→ Ab.

Note that β is additive. Then the additivity follows from the classical statement
that for two smooth maps f1, f2 : M → G from a manifold M to a Lie group G,
the induced maps dfi : TmM → Lie(G) at a point m ∈ M are additive in that
d(f1 + f2) = df1 + df2.

For (2), it suffices to note that the image of the composition β◦i(s) : U → Ab
is a point of Ab. This follows from the fact that the composition factors through
a similar map for the trivial family A0 ×B → B.

In the setting of the lemma, by continuity, the transfer map induces a canon-
ical map

δ(s, ·) : TbB −→ Lie(Ab)

for any s in (A(B)h/A0)R = (A(B)h/A0) ⊗Z R. This can also be written as a
bilinear map

δ(·, ·) : (A(B)h/A0)R × TbB −→ Lie(Ab).

Non-degeneracy of the transfer maps

Now we restrict to the algebraic situation. The treatment of the non-degeneracy
result in [XY23, §3.2] has the following important consequence, which will be
crucially used in the proof of Theorem 1.1.

Theorem 2.2 (non-degeneracy). Let B be a complex smooth quasi-projective
curve, and let π : A → B be an abelian scheme. Let K = C(B) be the function
field, and let A = AK be the generic fiber of A. Let s ∈ (A(K)/A(K/C)(C))⊗ZR
be a nonzero element. Let Σ(s) be the set of b ∈ B such that the transfer map

δ(s, ·) : TbB −→ Lie(Ab)

is zero. Then Σ(s) has measure 0 in B with respect to any Kähler form on B.

Proof. Let us first introduce some extra notations as in [XY23, §3.2]. Take a
symmetric and ample line bundle L on A, and extend it to a line bundle L on
A. Let ω = ω(L) be the Betti form on A associated to L as introduced in
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[XY23, §3.1]. By Gauthier–Vigny [GV, Thm. B] (cf. [XY23, Thm. 3.1]), for
any section s ∈ A(B) ' A(K), the canonical height

ĥL(s) =

∫
B

s∗ω.

Now we are ready to prove the current theorem. To illustrate the idea, we
first consider the case s ∈ A(K) with ĥL(s) 6= 0. Denote by Σ(s)′ the set of

b ∈ B such that the fiber (s∗ω)(b) in (TbB)∨ ⊗C (TbB)
∨

is 0. The result is the
consequence of the following two properties:

(a) Σ(s) ⊂ Σ(s)′;

(b) Σ(s)′ has measure zero in B.

We first prove (b). By ĥL(s) > 0, we see that s∗ω is not identically zero on
B. As in the proof of [XY23, Thm. 3.5], Σ(s)′ ( B is the zero locus of a real
analytic function on B, so Σ(s)′ has measure zero in B.

Now we prove (a). Recall the Betti map β : A → Ab and the Betti form ω =
β∗ωb. Here ωb is a translation-invariant positive (1, 1)-form on Ab representing
c1(Lb). By translation, we can write ωb as a finite sum

ωb =

d∑
j=1

γj ∧ γ̄′j ,

where γj and γ′j are translation-invariant holomorphic 1-forms on Ab. We fur-
ther have

s∗ω = (β ◦ s)∗ωb =

d∑
j=1

(β ◦ s)∗γj ∧ (β ◦ s)∗γ̄′j .

Recall that
δ(s, b) : TbB −→ Lie(Ab)

is exactly the push-forward via the composition β ◦s : B → Ab. Then this push-
forward is zero for any b ∈ Σ(s). Take a dual, we see that ((β ◦ s)∗γj)(b) = 0
for any j. It follows that (s∗ω)(b) = 0, and thus b ∈ Σ(s)′.

Now we extend the above proof to any nonzero s ∈ (A(K)/A(K/C)(C))⊗ZR.

Note that ĥL(s) > 0 by the Lang–Néron theorem (cf. [XY23, Thm. 3.4]). We
only need to explain the term “s∗ω” and the term “(β ◦ s)∗γj” satisfying the
above properties. The term s∗ω is given by the (1, 1)-form ω(s, s) constructed
in [XY23, Lem. 3.3]. For the term (β ◦ s)∗γj , it suffices to define (β ◦ s)∗ :
Lie(Ab)∨ → (TbB)∨ as the dual of δ(s, b) : TbB → Lie(Ab). The relation
between s∗ω and (β ◦ s)∗γj is extended from A(K) to (A(K)/A(K/C)(C))⊗Z R
by linearity and a limit process. This finishes the proof.

2.3 Linear entire curves

The goal of this section is to introduce linear entire curves and study some basic
properties.
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Linear entire curves

Let A be a complex abelian variety. Let x ∈ A be a point, and v ∈ Lie(A) be a
nonzero vector in the Lie algebra. By definition, v defines a translation-invariant
vector field on A, and thus it is a foliation F(v) on A. The leaf F(v)x = F(x, v)
of this foliation through x is called the linear leaf through x in the direction v.
By translation, we have

F(x, v) = F(0, v) + x.

Alternatively, write A = Lie(A)/H1(A,Z). Denote by x̃ a lifting of x in
Lie(A). In the complex vector space Lie(A), there is a linear subset given by

φ̃(x̃,v) : C −→ Lie(A), z 7−→ x̃+ zv.

Composing with Lie(A)→ A, we obtain an entire curve

φ(x,v) : C −→ A.

The entire curve is independent of the choice of x̃, and its image is exactly the
linear leaf F(x, v). We call φ(x,v) : C → A the linear entire curve through x in
the direction v.

The linear leaf F(x, v) is generally not algebraic in A. Its Zariski closure is
equal to A(v) +x for an abelian subvariety A(v) of A. In fact, by translation, it
suffices to assume x = 0. Then φ(0,v) is a homomorphism, so its image F(0, v) is
actually a complex Lie group, and thus its Zariski closure A(v) inherits a group
structure. Moreover, A(v) is irreducible as an analytic variety, since the image
of C (under φ(0,v)) is irreducible. Then A(v) is an abelian subvariety of A.

Specialization of endomorphism ring

The following result will be used later. It is well-known, but we include a quick
proof in terms of the concept of transcendental closed points in [XY23, §4.1].

Lemma 2.3. Let B be a smooth curve over C, and π : A → B be an abelian
scheme over B. Denote K = C(B), so A = AK is an abelian variety over K.
Assume that the natural map EndK(A)→ EndK(AK) is an isomorphism. Then
there are only countably many closed points b ∈ B(C) such that the canonical
map EndK(A)→ EndC(Ab) induced by specialization is not an isomorphism.

Proof. There is a finitely generated subfield k0 of C such that (B,A, π) is the
base change of a triple (B0,A0, π0) from k0 to C such that the natural map
EndK0

(A0)→ EndK(AK) is an isomorphism. Here we denote K0 = k0(B0) and
A0 = A0,K0 as before. In fact, it suffices to note that EndB(A) = EndK(AK)
is a finitely generated abelian group, so we only need to descend finitely many
morphisms of EndB(A) to EndB0

(A0) to have EndB0
(A0) ' EndB(A).

We claim that for any transcendental closed point b ∈ B(C) with respect to
B0/k0, the canonical map EndK(X)→ EndC(Xb) is an isomorphism. If so, the
result follows from [XY23, Lemma 4.4].
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For the claim, it suffices to check that the map EndK0(A0) → EndC(A0,C)
induced by any injection ι : K0 → C is an isomorphism. By assumption,
the composition EndK0

(A0) → EndK(A) → EndK(AK) is an isomorphism, so
EndK0

(A0)→ EndK0
(A0,K0

) is an isomorphism. Then it suffices to check that

the map EndK0
(A0,K0

) → EndC(A0,C) induced by any injection K0 → C is
an isomorphism. This follows a well-known theorem due to Chow (cf. [Con06,
Thm. 3.19]).

Zariski closures of linear leaves

The main result of this subsection is to give a clear description of Zariski closures
of linear leaves in fibers of abelian schemes.

Let B be a smooth quasi-projective curve over C, and let π : A → B be an
abelian scheme. Let K = C(B) be the function field of B, and let A be the
generic fiber of π : A → B. By the Lang–Néron theorem (cf. [XY23, Thm.
3.4]),

V (A,K) = (A(K)/A(K/C)(C))R

is a finite dimensional R-vector space. Note that an isogeny A→ A′ induces an
isomorphism V (A,K)→ V (A′,K). For an abelian subvariety H of A, we may
check that

V (H,K) = (H(K)/H(K/C)(C))R = (H(K)/(H(K) ∩A(K/C))(C))R.

The natural map V (H,K) ⊆ V (A,K) is injective, as a consequence of the fact
that A is isogenous to H ×H ′ for an abelian variety H ′ over K.

Lemma 2.4. Let H1, H2 be two abelian subvarieties of A, and let H be the
identity component of H1 ∩H2. Then V (H1,K) ∩ V (H2,K) = V (H,K).

Proof. We may assume that A = H1+H2. The up to isogeny, we can decompose

H1 ∼ H ×H ′1, H2 ∼ H ×H ′2, A ∼ H ×H ′1 ×H ′2.

Then the result is easy.

As a consequence, for every s ∈ V (A,K), there exists a unique minimal
abelian subvariety G(s) of A with s ∈ V (G(s),K). A basic property of G(s) is
that it is compatible with homomorphisms.

Lemma 2.5. Let f : A → A′ be a homomorphism of abelian varieties over
K. Denote by f̄ : V (A,K) → V (A′,K) the map induced by f . Then for every
s ∈ V (A,K), we have G(f̄(s)) = f(G(s)) in A′.

Proof. Replacing A′ by f(A) if necessary, we can assume that f is surjective.
As s ∈ V (G(s),K), we have f̄(s) ∈ V (f(G(s)),K), so G(f̄(s)) ⊆ f(G(s)) by
the minimality of G(f̄(s)). It remain to prove f(G(s)) ⊆ G(f̄(s)).

As we have assumed that f is surjective, A is isogenous to A′ × A′′ for
an abelian subvariety A′′ of A. Via V (A,K) = V (A′,K) ⊕ V (A′′,K), write
s = s′ ⊕ s′′. Then we have G(s) ⊆ G(s′) × G(s′′) by the minimality of G(s).
Apply f to this inclusion, we have f(G(s)) ⊆ G(s′). This finishes the proof.
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Recall that the transfer map δ(s, ·) : TbB → Lie(Ab) is defined in §2.2. The
following is the main result of this subsection.

Proposition 2.6. Let B be a smooth quasi-projective curve over C, and let
π : A → B be an abelian scheme. Let K = C(B) be the function field of B,
and let A be the generic fiber of π : A → B. Assume that the natural map
EndK(A) → EndK(AK) is an isomorphism. Let s be a nonzero element of
V (A,K). Denote by G the Zariski closure of G(s) in A. Then there is a subset
S(A) of B(C) of measure 0 such that for any b ∈ B(C) \ S(A), the Zariski
closure of the linear leaf F(0, δ(s, vb)) in Ab is equal to Gb. Here vb ∈ TbB is a
nonzero vector.

Proof. For any b ∈ B(C), denote by H(A)b the Zariski closure of F(0, δ(s, vb))
in Ab. As s lies in V (G,K), δ(s, vb) lies in Lie(Gb) ⊆ Lie(Ab). It follows
that H(A)b ⊆ Gb. Therefore, we can replace A by G(s) in the lemma. As a
consequence, we can assume that A = G(s). The goal is to prove H(A)b = Ab
for b /∈ S in this case.

We prove the lemma for by induction on the number of simple isogeny factors
of A. If A is simple, the result is automatic by Lemma 2.3 and Theorem 2.2.
In general, denote by S0 the subset of b ∈ B(C) such that the canonical map
EndK(A)→ EndC(Ab) is not an isomorphism. By Lemma 2.3, S0 has measure
0.

Let b ∈ B(C) \ S0 be an element such that H(A)b 6= Ab. Then H(A)b/N 6=
Ab/N for some simple abelian subvarietyN ofH(A)b. As EndK(A) ' EndC(Ab),
there is a simple abelian subschemeA′ ofA such thatN = A′b. ThusH(A)b/A′b 6=
Ab/A′b for some simple abelian subvariety A′ of A, where A′ denotes the Zariski
closure of A′ in A. By Lemma 2.5, A/A′ = G(s′) where s′ is the image of s in
V (A/A′,K). Note that H(A/A′)b is the image of H(A)b in (A/A′)b. It follows
that H(A/A′)b 6= (A/A′)b, and thus b ∈ S(A/A′). By induction, the subset
S(A/A′) of B(C) has measure 0. As EndK(A) is a free abelian group of finite
rank, there are only countably many simple abelian subvarieties A′ of A. Taking
the union of S(A/A′) over all such A′, we still get a subset of B(C) of measure
0. This finishes the proof.

3 Construction of linear entire curves

In this section, we prove our main theorem (Theorem 1.1). We will first prove
some technical results on linear entire curves as limits of re-parametrizations
of sections of abelian schemes in §3.1 and §3.2, and then prove Theorem 1.1 in
§3.3.

3.1 Linear entire curves as limits

The major goal of this subsection is to prove the following technical theorem.
It gives a concrete construction and a precise description of linear entire curves
obtained from sections of abelian schemes by a Brody-type convergence.
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Theorem 3.1. Let B be a smooth quasi-projective curve over C, and let π : A →
B be an abelian scheme. Endow A with a Kähler metric αA. Let K = C(B) be
the function field of B, and A be the generic fiber of π : A → B. Let {sn}n≥1
be a sequence in A(B) and {bn}n≥1 be a sequence in B satisfying the following
properties:

(1) bn converges to a point b ∈ B, and sn(bn) converges to a point x ∈ Ab.

(2) There is a sequence `n of positive real numbers converging to infinity such
that the image of `−1n sn in V (A,K) converges to a nonzero element s∞ in
V (A,K).

(3) The transfer map δ(s∞, ·) : TbB → Lie(Ab) is nonzero.

Define a re-parametrization {φn : Drn → A}n≥1 of {sn : B → A}n≥1 as follows.
Take an open unit disc D in B with center b, and assume that bn ∈ D for all
n ≥ 1. Let z be the standard coordinate of D. Take the tangent vector vb ∈ TbB
to be the one represented by vst =

d

dz
∈ T0D. Define the re-parametrization

map
φn : Drn −→ A, z 7−→ sn(bn + `−1n z)

Here the sum bn + `−1n z is taken in D, and {rn}n≥1 is a sequence of positive
numbers satisfying

rn/`n < 1− |bn|, rn −→∞.

Then {φn : Drn → A}n≥1 satisfies the following properties:

(a) The linear entire curve φ(x,δ(s∞,vb)) of Ab through x in the direction of
δ(s∞, vb) , viewed as an entire curve of A via the embedding Ab → A, is
the unique limit of {φn}n.

(b) With the Kähler metric αA on A,

inf
n
‖(dφn)0(vst)‖αA > 0.

(c) There exists a choice of the sequence {rn}n≥1 (to define {φn}n≥1), depend-
ing on {sn}n≥1 and {bn}n≥1, such that for every entire curve ψ : C → A
which is a limit of a re-parametrization of {φn : Drn → A}n≥1, the image

ψ(C) is contained in F(y, δ(s∞, vb)) for some y ∈ F(x, δ(s∞, vb)) ⊆ Ab,
and the complement F(y, δ(s∞, vb)) \ ψ(C) has at most one element. Here
Ω denotes the closure of a set Ω under the Euclidean topology. As a conse-
quence,

ψ(C) = F(y, δ(s∞, vb)) = F(x, δ(s∞, vb)).

For the conditions of the theorem, note that (2) implies that ĥL(sn) con-
verges to infinity (for a symmetric and ample line bundle L). Conversely, if

ĥL(sn) converges to infinity, then (1) and (2) can be satisfied by passing to a
subsequence of {sn}n≥1, and (3) can be satisfied for b ∈ B outside a set of
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measure 0 by Theorem 2.2. This is easy for (1) by the compactness of Ab. For
(2), it comes from the Lang–Néron theorem (cf. [XY23, Thm. 3.4]). Moreover,

we can actually take `n = ĥL(sn)1/2 in (2).
The proof of Theorem 3.1 will take up the rest of this subsection. We first

introduce some extra notations related to the construction.
Recall the open disc D in B with center b. By abuse of notations, we identify

points of D with the corresponding one in B. In particular, we identify b ∈ B
with 0 ∈ D and thus Ab with A0. Define a map

pn : Drn −→ D, z 7−→ bn + `−1n z.

Then the re-parametrization map can be written as

φn = sn|D ◦ pn : Drn −→ AD, z 7−→ sn(bn + `−1n z)

Proof of Theorem 3.1(b)

Denote by vbn ∈ TbnB the tangent vector
d

dz
with respect to the coordinate

z of D. Take the Betti form ω on A associated to a symmetric and relative
ample line bundle L on A. By compactness, there is a constant c > 0 such that
αA − c · ω is positive definite everywhere on an neighborhood of Ab. To prove
property (b), it suffices to prove

inf
n
‖(dφn)0(vst)‖ω > 0.

Note that the Betti map β : AD → Ab does not change the semi-norm of tangent
vectors with respect to ω. It follows that

‖(dφn)0(vst)‖ω = `−1n ‖(dsn)bn(vbn)‖ω = `−1n ‖δbn(sn, vbn)‖ω.

We claim that the last term converges to ‖δ(s∞, vb)‖ω, and thus is strictly
positive.

Now we prove the claim. For the case bn = b for every n, we simply have
`−1n δ(sn, vb) converges to δ(s∞, vb) by the R-linearity of δ(s, ·) in s. In gen-
eral, the Betti map induces an isomorphism (dβ)bn,b : Lie(Abn) → Lie(Ab).
Then it suffices to prove that (dβ)bn,b(δbn(`−1n sn, vbn)) converges to δ(s∞, vb)
in Lie(Ab). By the R-linearity of δ(s, ·) of s in the finite-dimensional R-space
(A(K)/A(K/C)(C))R, it is reduced to prove the case that sn = s∞ ∈ A(B) for
every n. This case is proved following the definitions. This proves Theorem
3.1(b).

Estimation of errors

Here we introduce a basic estimate which will be used in the proof of Theorem
3.1(a)(c). The idea of the estimate is simply a Taylor expansion, but its writing
is rather involved due to various notations of the situation.
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Recall that the Betti map gives a real analytic isomorphism

β̃ = (β, π) : AD −→ A0 × D.

We fix an euclidean norm | · | on Lie(A0). The covering map Lie(A0) → A0

induces a distance function dA0(·, ·) on A0 by

dA0
(x, y) := min{|x† − y†|}

where x†, y† are taken over all liftings of x and y in Lie(A0) respectively. It
induces a distance function d(·, ·) on A0 × D by

d((x1, t1), (x2, t2)) := dA0
(x1, x2) + |t1 − t2|.

Via the real analytic isomorphism β̃, it induces a distance function on AD. We
still denote the induced distance function by d(·, ·).

Now we have the following estimate.

Lemma 3.2. There is a positive integer n0, a positive constant C0, and a
sequence {εn}n≥1 of positive real numbers converging to 0 such that for any
n ≥ n0 and any z ∈ D0.8rn , we have

d(φn(z), φ(x,δ(s∞,vb))(z)) ≤ d(sn(bn), x) + εn|z|+ C0`
−1
n |z|2.

Proof. We are going to consider suitable liftings of the sections via the covering
map Lie(A0) → A0. For every element a ∈ Lie(A0), we still write a for the
constant map D→ Lie(A0) of value a.

Let CR-an(D,Lie(A0)) be the real vector space of real analytic maps h : D→
Lie(A0), whose vector space structure is induced by that of Lie(A0). Now we
define an R-linear homomorphism

b : V (A,K) −→ CR-an(D,Lie(A0)), s 7−→ s[.

First, for every element s ∈ A(K), let s∗ : D→ Lie(A0) be a (continuous) lifting
of β ◦ s : D→ A0 and set s[ := s∗ − s∗(0). This definition does not depend on
the choice of the lifting s∗. Second, the map s 7→ s[ is a group homomorphism
for s ∈ A(K), whose kernel contains AK/C(C), so it induces the homomorphism
b on V (A,K).

By Theorem 2.2, the homomorphism b is injective. By definition, for every
s ∈ V (A,K), the differential map

(ds[)t : TtD −→ Lie(A0),

at t ∈ D is the composition

TtD
δt(s,·)−→ Lie(At) −→ T(t,0)(A)

dβ−→ Lie(A0).

Here the second arrow is induced by the immersionAt → A, and (t, 0) represents
the image of 0 under this immersion. We view (ds[)t as an R-linear morphism
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from C = TtD to Lie(A0), which is the linear part of s[ at t. Define the total
differential map

(s[)′ : D −→ HomR(C,Lie(A0)), t 7−→ (ds[)t.

Similarly, define

(s[)′′ : D −→ HomR(C,HomR(C,Lie(A0))), t 7−→ (d(s[)′)t.

Both (s[)′ and (s[)′′ are real analytic and thus continuous.
Fix an euclidean norm | · | on V (A,K). Still denote by | · | the norms on

HomR(C,Lie(A0)) and HomR(C,HomR(C,Lie(A0))) induced by the standard
norm on C and the norm | · | on Lie(A0). Since V (A,K) is a finite-dimensional
R-space, there is a constant C > 0 such that

max{|(s[)′′(t)|, |(s[)′(t)|} ≤ C|s|

for every s ∈ V (A,K) and |t| ≤ 0.9. Then both s[ and (s[)′ are C|s|-Lipschitz
on D(0, 0.9) for every s ∈ V (A,K).

Set xn := β(sn(bn)) ∈ A0. Let x† be a lifting of x in Lie(A0), and x†n be a
lifting of xn in Lie(A0) for every n ≥ 1. Since xn → x, we may assume x†n → x†.
Set

s†n := x†n + s[n − s[n(bn), s†∞ := x† + s[∞.

Then s†n is a lifting of β ◦ sn by s†n(bn) = x†n. By condition (2), `−1n sn converges
to s∞. We may write

sn = `ns∞ + un, |un|/`n → 0.

Denote
φ†n := s†n ◦ pn : Drn −→ Lie(A0).

It is a lifting of φn. Then for every z ∈ Drn , we have

φ†n(z) = s†n(bn + `−1n z)

=x†n + s[n(bn + `−1n z)− s[n(bn)

=x†n + `n(s[∞(bn + `−1n z)− s[∞(bn)) + (u[n(bn + `−1n z)− u[n(bn)).

It follows that

|φ†n(z)− (x† + δ(s∞, vb)z)| ≤|x†n − x†|+ |u[n(bn + `−1n z)− u[n(bn)|+
|`n(s[∞(bn + `−1n z)− s[∞(bn))− δ(s∞, vb)z|.

(1)

Since bn → 0, there exists a positive integer n0 such that |bn| < 0.1 for every
n ≥ n0. Then for n ≥ n0 and for z ∈ D0.8rn ,

|bn + `−1n z| < 0.1 + 0.8rn/`n < 0.9.
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Thus the above Lipschitz condition holds for bn + `−1n z and bn. It follows that

|u[n(bn + `−1n z)− u[n(bn)| ≤ C|un| · |`−1n z|. (2)

On the other hand, since

s[∞(bn + `−1n z)− s[∞(bn) = ((s[∞)′(bn))(`−1n z) +O(|`−1n z|2),

there is C0 > 0 such that

|(s[∞(bn + `−1n z)− s[∞(bn))− ((s[∞)′(bn))(`−1n z)| ≤ C0|`−1n z|2. (3)

Since (s[∞)′ is C|s∞|-Lipschitz and δ(s∞, ·) = ((s[∞)′(0))(·),

|(s[∞)′(bn)− δ(s∞, ·)| ≤ C|s∞||bn|. (4)

Note that on the C-vector space LieA0, we have δ(s∞, z) = δ(s∞, vb)z. Com-
bining inequalities (1), (2),(3) and (4), we have

|φ†n(z)−(x†+δ(s∞, vb)z)| ≤ |x†n−x†|+C|z|·|un|/ln+C0`
−1
n |z|2+C|s∞||bnz|. (5)

By definition,

d(φn(z), φ(x,δ(s∞,vb))(z)) ≤ |φ
†
n(z)− (x† + δ(s∞, vb)z)|+ |bn|.

Moreover,
d(sn(bn), x) = |x†n − x†|+ |bn|,

which holds for sufficiently large n as x†n → x†. Then the lemma is a consequence
of (5) by the two distance relations.

Proof of Theorem 3.1(a)

Since the on AD0.9
induced by the distance function d is exactly the one induced

by the Kähler metric αA, Part (a) is a consequence of Lemma 3.2.

Proof of Theorem 3.1(c)

Let {r′n}n≥1 be a sequence in the setting of Theorem 3.1(a). Recall that Lemma
3.2 asserts that for any n ≥ n0 and any z ∈ D0.8r′n

,

d(φn(z), φ(x,δ(s∞,vb))(z)) ≤ d(sn(bn), x) + εn|z|+ C0`
−1
n |z|2.

Let {rn}n≥1 be a sequence of positive integers such that

rn < 0.8r′n, rn −→∞, εnrn −→ 0, `−1n r2n −→ 0.

Since max{εn, `−1/2n } → 0, such {rn}n≥1 exists. By this choice, for any n ≥ n0
and for any z ∈ Drn ,

d(φn(z), φ(x,δ(s∞,vb))(z)) −→ 0. (6)
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The convergence is uniform in z. By this key property, we will prove that part
(c) is satisfied by the sequence {rn}n≥1.

For the sake of part (c), let ψ : C → A be a limit of a re-parametrization
{ψn}n≥1 of {φn}n≥1. One may write ψn = φn ◦ qn : DRn

→ A, where {Rn}n≥1
is a sequence of positive real numbers converging to infinity and {qn : DRn

→
Drn}n≥1 is a sequence of holomorphic maps. After taking a subsequence, we
may assume that ψn converges to ψ uniformly on every disk DR for R > 0. By
(6), for every z ∈ DR, we have

d(φn(qn(z)), φ(x,δ(s∞,vb))(qn(z))) −→ 0.

As a consequence, φ(x,δ(s∞,vb)) ◦ qn converges to ψ uniformly.
Set

y := ψ(0) ∈ A0.

Then φ(x,δ(s∞,vb))(qn(0)) → y. It follows that y ∈ φ(x,δ(s∞,vb))(C). This gives
the point y in the theorem.

For further properties, set

hn(z) := qn(z)− qn(0).

Then hn(0) = 0. For sufficiently large n and for z ∈ DRn , we have

φ(y,δ(s∞,vb)) ◦ hn = y + φ(0,δ(s∞,vb))(hn)

= (y − φ(x,δ(s∞,vb))(qn(0))) + φ(x,δ(s∞,vb)) ◦ qn.

Since (y − φ(x,δ(s∞,vb))(qn(0)))→ 0, we have φ(y,δ(s∞,vb)) ◦ hn → ψ uniformly.
We claim that hn uniformly converges to a morphism h : C→ C. In particu-

lar, we have ψ = φ(y,δ(s∞,vb)) ◦ h. It implies that ψ(C) ⊆ φ(y,δ(s∞,vb))(C). Since
ψ is non-constant, h is non-constant. Since C \ h(C) has at most 1 element,
φ(y,δ(s∞,vb))(C) \ ψ(C) has at most 1 element. We then get property (c).

It remains to prove the claim. Denote by ỹ a lifting of y in Lie(A0). Let

φ̃ : C → Lie(A) be the unique lifting of φ(y,δ(s∞,vb)) satisfying φ̃(0) = ỹ. There
is c > 0 such that the restriction of the map Lie(A0) → A0 is injective on the
closed ball {u ∈ Lie(A0)| |u| ≤ c}. So for every u ∈ Lie(A0) and v ∈ A0, there
is at most one lifting ṽ of v satisfying |u− ṽ| ≤ c.

Since φ(y,δ(s∞,vb)) ◦ hn → φ(y,δ(s∞,vb)) ◦ h uniformly, for every ε ∈ (0, c/2)
there is N ≥ 1, such that for every n ≥ N and z ∈ Drn ,

dA0(φ(y,δ(s∞,vb)) ◦ hn, φ(y,δ(s∞,vb)) ◦ h) < ε.

So for every z ∈ Drn ,

|φ̃ ◦ h(z)− φ̃ ◦ hn(z)| ∈ [0, ε) ∪ (c,+∞).

Since Drn is connected and |φ̃◦h(0)−φ̃◦hn(0)| = 0, we have |φ̃◦h(z)−φ̃◦hn(z)| <
ε for every z ∈ Drn . Hence |h(z)−hn(z)| < ε/|δ(s∞, vb)| for every z ∈ Drn , which
proves the claim.

17



3.2 Locations of limit points

Another key result to prove Theorem 1.1 is the following theorem about loca-
tions of limit points, which is closely related to locations of entire curves by
combining Theorem 3.1.

Theorem 3.3. Let B be a smooth quasi-projective curve over C, and π : A → B
be an abelian scheme. Let K = C(B) be the function field of B, and A be the
generic fiber of π : A → B. Assume that the K/C-trace of A is 0, and that
the natural map EndK(A) → EndK(AK) is an isomorphism. Let Z ( A be a
Zariski closed subset of A, and Z be the Zariski closure of Z in A. Let {sn}n≥1
be an infinite sequence of distinct elements in (A\Z)(K). Then there is a subset
S of B(C) of measure 0 such that for every b ∈ B(C) \ S, there exists a point
y ∈ Ab\Zb which is a limit point of {sn(B)}n≥1, i.e. there is a sequence {bn}n≥1
in B(C) such that the sequence {sn(bn)}n≥1 has a subsequence converging to y
in A.

Proof. By the Lang–Néron theorem (cf. [XY23, Thm. 3.4]), the abelian group
A(K) is finitely generated. By replacing {sn}n≥1 by a subsequence, we can
assume that there is a sequence `n of positive real numbers converging to infinity
such that `−1n sn converges to a nonzero element s∞ in A(K)R. In other words,
Theorem 3.1(2) is satisfied. By Theorem 2.2, up to removing a subset of B(C)
of measure 0, we can assume that Theorem 3.1(3) is satisfied for b ∈ B(C).

Our guiding principle is that once Theorem 3.1(2)(3) is satisfied for fixed
{sn}n≥1 and fixed b ∈ B(C) (as assumed by us), the following are equivalent:

(i) There exists y ∈ Ab \ Zb which is a limit point of {sn(B)}n≥1.

(ii) There exists x ∈ Ab which is a limit point of {sn(B)}n≥1 such that the
linear leaf F(x, δ(s∞, vb)) is not contained in Zb. Here vb ∈ TbB is any
nonzero vector.

Note that (i) implies (ii) by setting x = y. Conversely, (ii) implies (i) by taking a
point y ∈ F(x, δ(s∞, vb))\Zb. In fact, by Theorem 3.1(a), φ(x,δ(s∞,vb)) : C→ A
is a limit of a re-parametrization of {sn}n≥1, so the definition implies that every
point of F(x, δ(s∞, vb)) = φ(x,δ(s∞,vb))(C) is a limit point of {sn(B)}n≥1.

Denote by G the smallest abelian subvariety of A such that s∞ lies in G(K)R.
Denote by G the Zariski closure of G in A. By Proposition 2.6, up to remov-
ing a subset of B(C) of measure 0, we can assume that the Zariski closure of
F(0, δ(s∞, vb)) in Ab is equal to Gb.

If G = A, the result is easy. In fact, take x ∈ Ab to be any limit point of
{sn(b)}n≥1, which exists by compactness. Then the Zariski closure of F(x, δ(s∞, vb))
in Ab is equal to Gb + x = Ab. It follows that F(x, δ(s∞, vb)) is not contained
in Zb. This proves the result by the equivalence of (i) and (ii).

Now we prove the theorem for the general case by induction on the number
of simple isogeny factors of A. If A is simple, this is included in the case G = A.
Assume that A is not simple and that G 6= A.
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For b ∈ B(C) as above, denote by Eb the union of all subvarieties of Zb
which are of the form Gb + a for some a ∈ Ab(C). If Eb is empty, the result
holds by the equivalence of (i) and (ii). In the following, we assume that Eb is
non-empty.

We can realize Eb(C) as the closed points of a subscheme Eb of Zb, and lift
it to a subscheme E of Z over B. In fact, consider the composition

Z −→ A −→ A/G.

By semicontinuity of dimensions of fibers, there is a maximal closed subset E of
Z such that every non-empty fiber of E → A/G has a dimension equal to dimG.
Then the closed points Eb(C) of the fiber Eb is exactly Eb(C).

Now we take the quotient (A′,Z ′) = (A/G, E/G) overB. Denote by (A′, Z ′) =
(A′K ,Z ′K) the generic fibers. By removing finitely many b ∈ B(C), we can as-
sume that E is flat at b ∈ B(C), and that Eb → Z ′b is a quotient by Gb.

We plan to apply the induction hypothesis to (A′, Z ′). Denote by s′n ∈ A′(B)
the image of sn ∈ A(B). The following discussion is based on whether {s′n}n≥1
has infinitely many distinct terms.

If {s′n}n≥1 has infinitely many distinct terms, by induction, there is a closed
point x′ ∈ A′b \Z ′b which is a limit point of {s′n(bn)}n≥1 for a sequence {bn}n≥1
of B. By compactness, {sn(bn)}n≥1 has a limit point x ∈ Ab whose image in A′b
is x′. Recall that the Zariski closure of F(x, δ(s∞, vb)) in Ab is just Gb + x. By
x′ ∈ A′b \ Z ′b, we have x ∈ Ab \ Eb. Then Gb + x is not contained in Eb, and thus
not contained in Zb. Then F(x, δ(s∞, vb)) is not contained in Zb. This proves
the result by the equivalence of (i) and (ii).

If {s′n}n≥1 has only finitely many distinct terms, then by passing to a sub-
sequence, we can assume that all s′n are equal in A′(B). Then {sn}n≥1, viewed
as a sequence in A(K), lies in a fiber of A → A′. This fiber is equal to the
translate G+ s1 of G in A. As s1 is not contained in Z by assumption, we see
that G+ s1 is not contained in Z. By removing finitely many b ∈ B(C), we can
assume that the specialization Gb+s1(b) is not contained in Zb. Then Gb+s1(b)
does not intersect Eb, since Eb is a union of cosets of Gb. Take an arbitrary limit
point x of {sn(b)}n≥1 in Gb + s1(b). Then F(x, δ(s∞, vb)) is not contained in
Zb, as its Zariski closure is Gb + s1(b). The result follows by the equivalence of
(i) and (ii). This finishes the proof.

3.3 Proof of the main theorem

In this subsection, we prove Theorem 1.1. The theorem is restated as follows.

Theorem 3.4 (Theorem 1.1). Let K be a finitely generated field over a field k
of characteristic 0. Let X be a projective variety over K with a finite morphism
f : X → A for an abelian variety A over K. Assume that the K/k̄-trace of AK
is 0. Then (X \ Spalg(X))(K ′) is finite for any finite extension K ′ of K.
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Base fields

Recall that Theorem 3.4 is stated for a finite generated extension K/k of charac-
teristic 0. As in [XY23, §4.2], we can reduce it to the case that trdeg(K/k) = 1
and k = C.

We first reduce the theorem from trdeg(K/k) > 1 to trdeg(K/k) = 1.
Assume trdeg(K/k) > 1. Let k1 be an intermediate field of K/k such that
trdeg(K/k) = 1. We hope that the result for (K/k,X,A) is implied by that for
(K/k1, X,A). For that, it suffices to find such k1 such that the K/k̄1-trace of
A is 0, under the condition that the K/k̄-trace of A is 0. The existence of k1 is
a consequence of [XY22, Cor. 3.5(1)]. In fact, denote by A1, . . . , Ar the simple
isogeny components of A over K. We only need to find k1 such that every Ai is
not defined over k1, but this means that k1 is not contained in any kAi obtained
by the loc. cit..

Now we reduce the theorem to k = C (assuming trdeg(K/k) = 1). We can
assume that k is algebraically closed in K. For the sake of contradiction, assume
that (X \Spalg(X))(K) is infinite. Then it contains a countable subset Σ. As in
[XY23, §4.2], by the Lefschetz principle, we can descend (K, f : X → A,Σ) to
a finitely generated field k0 over Q, and then take the base change to C via an
embedding k0 → C. In this process, the truth of the theorem does not change
due to two properties. First, taking special set of projective varieties is stable
under base change by [XY23, Lem. 4.2]. Second, taking the K̄/k̄-trace of A is
stable under base change by [Con06, Thm. 6.8].

By replacing K by a finite extension if necessary, we can further assume that
the natural map EndK(A) → EndK(AK) is an isomorphism. We can further
assume that K ′ = K. Then we have reduced the theorem to the following
special case.

Theorem 3.5. Let K be a function field of one variable over C. Let X be
a projective variety with a finite morphism f : X → A for an abelian variety
A over K. Assume that the K/C-trace of A is 0, and that the natural map
EndK(A)→ EndK(AK) is an isomorphism. Then (X \ Spalg(X))(K) is finite.

Subvarieties of abelian varieties

We first prove Theorem 3.5 assuming that f : X → A is a closed immersion.
This is an easy consequence of Theorem 3.3 and Theorem 3.1.

In fact, let B be a smooth curve over C with function field K, and let
π : A → B be an abelian scheme extending the abelian variety A → SpecK.
Let X be the Zariski closure of X in A. Assume that (X \ Spalg(X))(K) is
infinite, so it has an infinite sequence {sn}n≥1 of distinct terms. Apply Theorem
3.3 to Z = Spalg(X) and {sn}n≥1. We obtain a point b ∈ B(C) together with a
limit point x ∈ Ab \Spalg(Xb) of {sn(B)}n≥1. Here we assume that Spalg(Xb) is
the specialization of the Zariski closure of Spalg(X) by [XY23, Lem. 4.4, Lem.
4.5]. Apply Theorem 3.1 to {sn}n≥1 and the limit point x ∈ Ab \ Spalg(Xb).
We obtain a linear entire curve φ(x,δ(s∞,vb)) : C → Ab. As sn(B) lies in X , the
entire curve actually lies in Xb. As x /∈ Spalg(Xb), we see that φ(x,δ(s∞,vb))(C)
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is not contained in Spalg(Xb). By [XY23, Thm. 4.1], which is essentially due to
Kawamata [Kaw81] and Yamanoi [Yam15], Spalg(Xb) = Span(Xb). It contradicts
to the definition of Span(Xb). This finishes the proof assuming that f : X → A
is a closed immersion.

Weaker statement

In Theorem 3.5, consider the weaker statement that (X \ f−1(f(Spalg(X)))(K)
is finite. Here we prove that the weaker statement for all pairs (X, f) (with
fixed (A,K)) as in the theorem implies the original stronger statement.

Induct on dim Spalg(X). The results are equivalent if Spalg(X) is empty, and
note that dim Spalg(X) 6= 0 by definition. If dim Spalg(X) ≥ 1, let Y1, . . . , Yr
be the irreducible components of f−1(f(Spalg(X)) which are not contained in
Spalg(X). Note that Spalg(Yi) ⊆ Spalg(X) ∩ Yi has a dimension strictly smaller
than Spalg(X). By induction, (Yi \Spalg(Yi))(K) is finite, so (Yi \Spalg(X))(K)
is finite. It follows that

(X \ Spalg(X))(K) = (X \ f−1(f(Spalg(X)))(K) ∪
(
∪ri=1 (Yi \ Spalg(X))(K)

)
is finite.

Proof of Theorem 3.5: entire curves

Now we prove Theorem 3.5. The proof is based on Theorem 3.3 and Theorem
3.1, and also uses ideas of the proof of Theorem 3.3.

As above, it suffices to prove that (X\f−1(f(Spalg(X)))(K) is finite. Assume
that this does not hold. So there is an infinite sequence {xn}n≥1 of distinct
elements of (X \ f−1(f(Spalg(X)))(K). Denote sn = f(xn). Then we have an
infinite sequence {sn}n≥1 in (A\f(Spalg(X))(K). By passing to a subsequence,
we can assume that {sn}n≥1 has distinct terms.

Let B be a smooth curve over C with function field K. Let π : A → B be an
abelian scheme extending the abelian variety A → SpecK, and let τ : X → B
be a (projective and flat) integral model of X over B. Assume that f : X → A
extends to a finite morphism f : X → A. All these exist by replacing B by an
open subscheme if necessary. Denote Z = f(Spalg(X)), which is a Zariski closed

subset of A. Denote by Spalg(X)
zar

the Zariski closure of Spalg(X) in X , and

thus Z = f(Spalg(X)
zar

) is the Zariski closure of Z in A.
Up to replacing {sn}n≥1 by a subsequence, we can assume that there is

a sequence {`n}n≥1 of positive real numbers converging to infinity such that
the image of `−1n sn in A(K)R converges to a nonzero element s∞ ∈ A(K)R.
Apply Theorem 3.3 to Z = f(Spalg(X)) and {sn}n≥1. We obtain a point b ∈
B(C) together with a limit point x ∈ Ab \ Zb of {sn(bn)}n≥1 for a sequence
{bn}n≥1 of B(C). By Theorem 2.2, we can further assume that the transfer
map δ(s∞, ·) : TbB → Lie(Ab) is nonzero. Apply Theorem 3.1 to {sn}n≥1 and
the limit point x ∈ Ab \ Zb of {sn(bn)}n≥1. We obtain a linear entire curve
φ(x,δ(s∞,vb)) : C → Ab, which is the unique limit of the re-parametrization
{φn : Drn → A}n≥1 of {sn : B → A}n.
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Now we want to “lift” the entire curve φ(x,δ(s∞,vb)) : C → A to an entire
curve on X . Recall from Theorem 3.1 that {φn : Drn → A}n≥1 is defined by

φn : Drn −→ A, z 7−→ sn(bn + `−1n z).

We may assume further that {rn}n≥1 satisfies the condition in Theorem 3.1(c).

Then we define a sequence {φ̃n : Drn → X}n≥1 by

φ̃n : Drn −→ X , z 7−→ xn(bn + `−1n z)

By definition, φn = f ◦ φ̃n. We plan to apply the Brody lemma (cf. [XY23,
Thm. 1.6]) to the sequence {φ̃n : Drn → X}n≥1 to produce an entire curve on

Xb. Note that the domain of φ̃n is Drn , so we modify it to D by multiplying by
rn. More precisely, we define a sequence {φ̃◦n : D→ X}n≥1 by φ̃◦n(z) = φ̃n(rnz).

We first check that {φ̃◦n : D → X}n≥1 satisfies the growth condition in the

Brody lemma. Namely, we claim that ‖(dφ̃◦n)0(vst)‖αX converges to infinity,
where αX is a Kähler metric on a compactification of X . In fact, by Theorem
3.1(b), infn ‖(dφn)0(vst)‖αA > 0 for some Kähler metric αA on A. By [XY23,
Lem. 2.1], there is a real constant c > 0 such that αX |XD − cf∗αA|XD is positive
on XD. Then infn ‖(dφ̃n)0(vst)‖αX > 0. By (dφ̃◦n)0 = rn(dφ̃n)0, the growth
condition is satisfied.

Finally, we can apply the Brody lemma (cf. [XY23, Thm. 1.6]) to the
sequence {φ̃◦n : D→ X}n≥1. Then some subsequence of some re-parametrization

of {φ̃◦n : D → X}n≥1 converges to an entire curve φ̃ : C → X . By the map

f : X → A, we have an entire curve ψ = f ◦ φ̃ : C → A. Note that any re-
parametrization of {φ̃◦n : D→ X}n≥1 is also a re-parametrization of {φ̃n : Drn →
X}n≥1, and f : X → A maps it to a re-parametrization of {φn : Drn → A}n≥1.
It follows that ψ : C → A is a limit of a re-parametrization of {φn : Drn →
X}n≥1.

It is not reasonable to expect ψ(C) = φ(x,δ(s∞,vb))(C) in general. However,

by Theorem 3.1(c), x ∈ F(x, δ(s∞, vb))) = ψ(C). Since x ∈ Ab \Zb, ψ(C) 6⊆ Zb.
Thus φ̃(C) 6⊆ f−1(Zb). By definition, Z = f(Spalg(X)

zar
). We can assume

that Zb = f(Spalg(X)
zar

b
) by removing finitely many b ∈ B(C). By [XY23,

Lem. 4.4, Lem. 4.5], we can assume that Spalg(X)
zar

b
= Spalg(Xb) by choosing

b ∈ B(C) suitably. It follows that f−1(Zb) = f−1(f(Spalg(Xb))) ⊇ Spalg(Xb). It

follows that φ̃(C) 6⊆ Spalg(Xb). By [XY23, Thm. 4.1], which is essentially due
to Kawamata [Kaw81] and Yamanoi [Yam15], Spalg(Xb) = Span(Xb). This is a
contradiction.
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Zahlkörpern. Invent. Math., 73(3):349–366, 1983.

[Fal91] Gerd Faltings. Diophantine approximation on abelian varieties.
Ann. of Math. (2), 133(3):549–576, 1991.

[Fal94] Gerd Faltings. The general case of S. Lang’s conjecture. In Barsotti
Symposium in Algebraic Geometry (Abano Terme, 1991), volume 15
of Perspect. Math., pages 175–182. Academic Press, San Diego, CA,
1994.

[Fu11] Lei Fu. Etale cohomology theory, volume 13 of Nankai Tracts in
Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack,
NJ, 2011.

[GLL15] Ofer Gabber, Qing Liu, and Dino Lorenzini. Hypersurfaces in pro-
jective schemes and a moving lemma. Duke Math. J., 164(7):1187–
1270, 2015.

[GP09] Lucio Guerra and Gian Pietro Pirola. On the finiteness theorem for
rational maps on a variety of general type. Collect. Math., 60(3):261–
276, 2009.
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fibré cotangent ample. Ann. Inst. Fourier (Grenoble), 34(3):39–64,
1984.

[Mit] Boris Mityagin. The zero set of a real analytic function.
arXiv:1512.07276.

[Moc12] Shinichi Mochizuki. Topics in absolute anabelian geometry I: gen-
eralities. J. Math. Sci. Univ. Tokyo, 19(2):139–242, 2012.

[Mok91] Ngaiming Mok. Aspects of Kähler geometry on arithmetic varieties.
In Several complex variables and complex geometry, Part 2 (Santa
Cruz, CA, 1989), volume 52 of Proc. Sympos. Pure Math., pages
335–396. Amer. Math. Soc., Providence, RI, 1991.

[Nog81] Junjiro Noguchi. A higher-dimensional analogue of Mordell’s con-
jecture over function fields. Math. Ann., 258(2):207–212, 1981.

[Nog85] Junjiro Noguchi. Hyperbolic fibre spaces and Mordell’s conjecture
over function fields. Publ. Res. Inst. Math. Sci., 21(1):27–46, 1985.

[Nog92] Junjiro Noguchi. Meromorphic mappings into compact hyperbolic
complex spaces and geometric Diophantine problems. Internat. J.
Math., 3(2):277–289, 1992.

[NWY07] Junjiro Noguchi, Jörg Winkelmann, and Katsutoshi Yamanoi. De-
generacy of holomorphic curves into algebraic varieties. J. Math.
Pures Appl. (9), 88(3):293–306, 2007.

[Ray83] M. Raynaud. Around the Mordell conjecture for function fields and
a conjecture of Serge Lang. In Algebraic geometry (Tokyo/Kyoto,
1982), volume 1016 of Lecture Notes in Math., pages 1–19. Springer,
Berlin, 1983.

25
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