
Research Overview

Wenyuan Yang

January 2, 2020

My research interests lie in the area of Geometric group theory. I’m primarily interested
in the class of relatively hyperbolic groups and their generalizations called acylindrically hy-
perbolic groups, with emphasis on a subclass of the latter with strongly contracting elements.

First of all, I give an outline of the results to be discussed in detail:

Boundary of relatively hyperbolic groups (§1):

1. (§§1.1) In [47], we studied a class of quasi-conformal measures called Patterson-
Sullivan measures on the Bowditch boundary with applications towards the growth of
relatively hyperbolic groups. We proved that there exists no uniform gap between the
growth rates of the group and all proper quotient groups. This result is motivated by
the growth tightness property [48] and resolves a question of Dal’bo-Peigné-Picaud-
Sambusetti [14] in Kleinian groups.

2. (§§1.2) In joint work with L. Potyagailo [39], we computed the Hausdorff dimension
of Floyd boundary of a relatively hyperbolic group. We are able to identify the
Hausdorff dimension with the growth rate of the group, a relation conjectured by
M. Bourdon. This suggests Floyd metric as an alternative metric structure on the
Bowditch boundary, which deserves to be further explored in greater depth.

3. (§§1.3) In a different but related direction, I made progress with I. Gekhtman, V.
Gerasimov and L. Potyagailo in [29] to understand the Martin boundary associated
with a random walk on any relatively hyperbolic group by establishing a surjective
map from Martin boundary to Floyd boundary. The map fails to be injective only
on non-conical points in Floyd boundary, so in a sense, Floyd boundary captures the
substantial part of Martin boundary.

Counting in groups with contracting elements (§2): Motivated by counting results
in relatively hyperbolic groups through quasi-conformal measures, I developed an elemen-
tary approach without using ergodic theory to the following counting results.

1. (§§2.2, 2.4) Coarse asymptotic formula for lattice points [49] and conjugacy classes
[22] are obtained in a class of statistical convex-cocompact actions (SCC action).

2. (§§2.1, 2.3) The set of contracting elements is exponentially generic in any SCC action
[46]. One of the tools in the proof is the study of growth tight subsets, which also
yields the growth tightness of convex-cocompact subgroups in mapping class groups
and cubical convex subgroups in cubical groups, etc.
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3. Specializing in the following classes of groups, we obtain the following new results:

(a) Purely exponential growth and prime conjugacy growth formulae in the class of
CAT(0) groups with rank-1 elements;

(b) Conjugacy growth series for non-elementary relatively hyperbolic groups is tran-
scendental for every finite generating set;

(c) pseudo-Anosov elements in mapping class groups are exponentially generic in
Teichmüller metric. Moreover, the axis of generic pseudo-Anosov elements is
contained in the principal stratum of quadratic differentials, answering a question
of J. Maher [15].

For brevity, we will not discuss the statistical hyperbolicity of SCC actions [27] and of
relatively hyperbolic groups [36].

1 Boundaries of relatively hyperbolic groups

Gromov boundary provides a useful and often efficient way to study hyperbolic groups.
Bowditch [8] showed that the existence of local cut-points in the boundary of a one-ended
hyperbolic group detects group splittings over two-ended groups, which thus produces a
canonical JSJ splitting invariant under quasi-isometry.

In some further applications, finer information such as metric and measurable structures
on Gromov boundaries are indispensable. This is in particular featured in the proof of the
famous Mostow rigidity theorem, in which quasi-conformal mappings, ergodic theory of con-
formal measures plays a crucial role. This circle of ideas admits further development in the
study of Patterson-Sullivan measures, and Hausdorff dimension, and conformal dimensions,
and quasi-isomeric rigidity, just to name a few in our context.

Motivated by these studies, we wish to establish a useful analytic theory on the bound-
ary of relatively hyperbolic groups, which sets the stage for further applications. Before
describing our results of this direction in [47] and [39], let us introduce the central objects
in our study.

Relatively hyperbolic group. The notion of relative hyperbolicity could be defined
in a number of equivalent ways. For our purpose, a group G is called relatively hyperbolic if
it admits a cusp-uniform action on a Gromov-hyperbolic space so that the quotient space
is a union of a compact set with finitely many cusps [9, 28]. In terms of boundaries, this is
equivalent to say that G acts as a geometrically finite action on the Gromov boundary so
that every limit point is either conical or bounded parabolic. The set of bounded parabolic
points is at most countable, and their stabilizers comprises a peripheral structure P of
G. Hence, the relative hyperbolicity only makes sense for a pair (G,P), even though the
peripheral structure P is often explicitly mentioned.

Bowditch boundary. Once a peripheral structure is chosen, the Gromov boundary is
independent of the choice of the geometrically finite action [9], and thus is a well-defined
boundary for a relatively hyperbolic group. We call it the Bowditch boundary ΛG of (G,P).

Floyd boundary. By the work of V. Gerasimov [23], the Bowditch boundary could
be obtained as quotient of the Floyd boundary of G, which is a sort of absolute boundary
defined for any locally finite graph (Γ, dΓ) without involving peripheral structures.
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Definition. [19, 30] Let Γ be a Cayley graph of G. Upon fixing a summable series f(n)
with bounded decay

∃λ : 1 ≥ f(n+ 1)/f(n) > λ > 0,

we can then re-scale each edge e in the graph Γ by the length f(dΓ(e, 1)). The induced

length metric ρf1 is called the Floyd metric, whose metric completion is a compact space
by the summability of f(n). This defines the so-called Floyd boundary ∂fG of the group G
(depending on Γ and f).

The Floyd boundary is called nontrivial if ]∂fG ≥ 3. In [30], A. Karlsson proved that
the action of the group G on a nontrivial Floyd boundary is a convergence action.

1.1 Patterson-Sullivan measures on Bowditch and Floyd boundaries

Recall that the critical exponent of a discrete group action of G on a metric space (X, d) is
defined as follows:

ω(G) := lim sup
n→∞

log ]N(o, n)

n
(1)

where N(o, n) := {g ∈ G : d(o, go) ≤ n} counts the number of elements in a ball of radius
n at a basepoint o ∈ X.

If G acts on its Cayley graph with respect to a finite generating set S, the critical
exponent ω(G) is usually called growth rate denoted by δG,S . This setup is our motivating
example in this section and main applications we have in mind.

In [47], I developed a theory of Patterson-Sullivan measure on Bowditch boundary and
Floyd boundary of a relatively hyperbolic group. Previously, M. Coornaert [10] has gener-
alized much of work of Patterson and Sullivan to any discrete group action on a Gromov-
hyperbolic space with finite critical exponent.

The novelty of our Patterson-Sullivan theory lies in the consideration of the action of
a relatively hyperbolic group G on the Cayley graph X, which is not Gromov hyperbolic
anymore. On one hand, several new ingredients are indeed required to handle the non-
hyperbolicity, and on the other hand, the theory in this setup turns out to be particularly
tight and useful: the PS-measures have no atoms, and thus, the set of conical points admits
full PS-measures. The atom-less property is deduced from the convergence at the growth
rate s = ω(G) of the following Poincare series ΘP (s) associated with parabolic subgroups
P ∈ P :

∀s ≥ 0, ΘP (s) :=
∑
p∈P

exp(−s · d(o, po)). (2)

This property fails for certain geometrically finite actions on negatively pinched Riemannian
manifolds by Dal’bo-Otal-Peigné [13].

The next important consequence is the Sullivan shadow lemma which allows to derive
the purely exponential growth functions of balls

∀n > 1, ]N(o, n) � exp(n · ω(G)). (3)

The main application of Patterson-Sullivan measures in [47] is to study the growth rate
of quotients of a relatively hyperbolic group.

In [26], R. Grigorchuk and P. de la Harpe introduced the growth tightness property of a
group which characterizes the group by its growth rate among all of its quotients. Namely,
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Definition. A group G is called growth tight if given any finite generating set S, the strict
inequality

δG,S > δḠ,S̄

holds for all proper quotients Ḡ, with S̄ denoting the canonical image of S in Ḡ.

In [48], we obtain the following result using the growth tightness criterion in [14]:

Theorem 1. [48, Theorem 1.4] Any group with nontrivial Floyd boundary is growth tight for
every generating set. In particular, this holds for any non-elementary relatively hyperbolic
group.

Motivated by growth tightness, it is natural to ask whether there exists a uniform gap
between the growth rates of the group and all quotient groups. With help of rotating family
theory in [12], we give a negative answer to this question using our counting results.

Theorem 2. Let G be a relatively hyperbolic group with a finite generating set S. Then
there exists a sequence of proper quotients Ḡn such that

δḠn,S → δG,S

as n→∞.

This theorem admits an analogue in the setting of cusp-uniform actions with parabolic
gap property, which actually resolves a question posed in [14].

Some idea in proof of Theorem 2 In fact, Ḡn is constructed as small cancellation
quotients G/〈〈hn〉〉 for any hyperbolic element h. Using the partial cones, a sequence of
geodesic trees Tn rooted at 1 ∈ G is constructed in the Cayley graph X so that

1. Each branch of Tn issuing at 1 contains uniformly spaced transitional points;

2. The growth rate of Tn tends δG,S , as n→∞.

We call a rooted tree satisfying (1) and (2) by large transitional tree. The proof of Theorem
is completed by showing that Tn injects into Ḡn.

The Patterson-Sullivan theory here on word metrics is further used in studying the
random walk on relatively hyperbolic groups (e.g. see [16][17][21]).

1.2 Hausdorff dimension of Floyd and Bowditch boundary

In joint work with L. Potyagailo [39], we investigate the relation between the Hausdorff
dimension of the boundary and growth rate.

In geometrically finite Kleinian groups, the identification of these two quantities began
in the work of Patterson [38], Sullivan [45] and after many efforts of different authors, it
eventually lead to a very general result proved by Bishop-Jones [7] for any Kleinian groups.
In a coarse context of hyperbolic groups, Coornaert [10] showed that there exists a family of
visual metric on Gromov boundary such that the Hausdorff dimension is a constant multiple
of the critical exponent of the action.

Bowditch boundary of a relatively hyperbolic group can be realized as the Gromov
boundary of a proper hyperbolic space. Thus, it might be tempting to calculate the Haus-
dorff dimension of Bowditch boundary endowed with visual metric.
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However, its value may be infinite by an example of Gaboriau-Paulin [20]. Even in case
that the Hausdorff dimension is finite, it has little to do with the geometry of Cayley graph.
From a group theoretical point of view, we would like to find a boundary with Hausdorff
dimension directly related to the intrinsic geometry of the group.

An important observation of Marc Bourdon is that the Hausdorff dimension of Floyd
boundary with Floyd metric is always bounded above by the growth rate. He then conjec-
tured that it is the exact value of Hausdorff dimension.

Conjecture. The Hausdorff dimension of Floyd boundary of a relatively hyperbolic group
equals a constant times of the growth rate.

In [39], the conjecture is confirmed for f(n) = λn. We can in fact prove more. The
Floyd metric can be push-forward to get a “shortcut metric” on the Bowditch boundary
ΛG, with respect to which the same relation can also be established.

Theorem 3. [39, Theorem 1.1] Let G be a relatively hyperbolic group with a finite generating
set S. There exists a constant 0 < λ0 < 1 such that

dimH(∂fG) = dimH(ΛG) = −δG,S/ log λ

for any λ ∈ [λ0, 1).

Some idea in proof of Theorem 3 In Bishop-Jones [7], a very general strategy of getting
the lower bound of Hausdorff dimension is exhausting the visual boundary by geodesic rays
of bounded type. However, their argument uses crucially the hyperbolic geometry and is
hard to apply in our setup: either the Cayley graph is not Gromov-hyperbolic or the action
on hyperbolic coned-off graphs is not proper.

Our proof of Theorem 3 consists in constructing a sequence of periodic large transitional
trees satisfying 1.1 (1) and (2), where periodicity means some semi-group structure. More-
over, the ends space of those trees consists of uniformly conical points and admits a family
of quasi-conformal measures thanks to the periodicity of those large trees. We are then
able obtain a formula of Floyd metric akin to visual metric on the ends space. Given these
ingredients, the proof of theorem is completed by standard arguments.

1.3 Martin boundary covers Floyd boundary

Let µ be a finitely supported irreducible probability measure on a group G so that the sup-
port of µ generates G as a semi-group. A random walk with step distribution µ on the group
G is a time homogeneous Markov chain on the states G with transition probability given by
p(x, y) := µ(x−1y). Through the potential theory, one can define a natural compactification
of the states G called Martin boundary ∂µG which gives an integral representation of all
positive µ-harmonic functions.

In joint work with I. Gekhtman, V. Gerasimov and L. Potyagailo [29], we aim to get a
concrete description of the Martin boundary of a relatively hyperbolic group G by geometric
boundaries. We now briefly explain the construction of Martin boundary.

Definition. Define the Green’s function as follows

G(x, y) =
∑
n≥0

pn(x, y)
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where, as the n-th convolution of µ, pn(x, y) is the probability of random trajectories of
length n from x to y. It is straightforward that h(·) := G(·, y) is super µ-harmonic: h(g) ≥∑

x∈G h(gx) for any g ∈ G. The normalized Green functions called Martin kernels

K(·, y) :=
G(·, y)

G(1, y)

live in the compact base B of the positive cone H+(G,µ) of all super µ-harmonic functions.
The boundary of Martin kernels y ∈ G 7→ K(·, y) ∈ B is called Martin boundary ∂µG.

The Martin boundary is in contrast with the Poisson boundary, which is a measurable
space with a family of harmonic measures and represents all bounded harmonic functions
via Poisson formula. In this sense, Martin boundary is “larger” than Poisson boundary.

The identification of Poisson boundary has obtained significant progress in last 30 years.
Only few of Martin boundary is computed, among which we wish to mention hyperbolic
groups and virtually Abelian groups of rank n. The former is homeomorphic to Gromov
boundary [1] and the latter is either a point or a sphere of rank n− 1 [35].

In [29], we compare Martin boundary with the geometric boundaries, Floyd and Bowditch
boundary, of relatively hyperbolic groups:

Theorem 4. [29] Fix a Floyd function f and a probability measure µ as above. There exists
a continuous surjective G-equivariant map π from ∂µG to ∂fG. Moreover, the pre-image of
a conical point under π in ∂fG is a singleton.

This statement is analogous to the existence of a continuous and surjective map called
Floyd map from Floyd boundary to Bowditch boundary, firstly established in Kleinian
groups by W. Floyd [19] and then in the general class of relatively hyperbolic groups by V.
Gerasimov [23].

The main ingredient in the proof of Theorem 4 is the following relative version of Ancona
inequality :

Lemma. For any triple (x, y, z) in G, there exists a constant C > 0 depending only on the

Floyd distance ρfy(x, z) (and the measure µ) such that the following holds,

G(x, z) ≤ C ·G(x, y)G(y, z)

where ρfy is the Floyd metric with respect to y.

Remark. By Karlsson’s lemma in [30], the distance d(x, [y, z]) is bounded above by a con-

stant depending only on ρfy(x, z). The relative Ancona inequality gives a quantitative sense
of the fact that the Green function is multiplicative along a quasi-geodesic if it is Floyd
visible. When the group G is Gromov-hyperbolic, then C is a uniform constant so the
corresponding inequality is proved by Ancona [1].

These results are further developed to characterize the full Martin boundary of toral
relatively hyperbolic groups [32], to obtain the strict fundamental inequality of random
walks [16], to investigate stability of Martin boundary up to spectral radius [17].

2 Groups with contracting elements

In a series of work [49, 46, 22, 27], we studied several counting problems in a class of proper
group actions called statistically convex-cocompact actions for a countable group G on a
proper geodesic metric space (X, d) with a contracting element.
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Contracting elements Roughly speaking, the notion of a contracting element repre-
sents a certain negatively curved direction along periodic geodesics. A subset S is called
C-contracting for C > 0 if the shortest point projection to S of any metric ball has diameter
bounded by C. An element g ∈ G of infinite order is contracting if admits a cocompact
action on a contracting subset. In literature, this definition is often called strongly contract-
ing.

The prototype of a contracting element is a hyperbolic isometry on Gromov hyperbolic
spaces. Beyond the negatively curved spaces, the following examples of contracting elements
are known:

• hyperbolic elements in relatively hyperbolic groups [25], [24];

• rank-1 elements in CAT(0) groups [6];

• pseudo-Anosov elements in mapping class groups [34].

Although a group with a contracting element is acylindrically hyperbolic in the sense of
Osin [37], our study focuses on the asymptotic geometry of the following class of actions.

Statistically convex-cocompact actions This is a generalization of the geometric no-
tion of convex-cocompact actions in a statistical sense. This will be made precise by using
the critical exponent of a subset Γ ⊂ G as follows:

ω(Γ) := lim sup
n→∞

log ]N(o, n) ∩ Γ

n
(4)

where N(o, n) := {g ∈ G : d(o, go) ≤ n}.
Fix constants 0 ≤ M1 ≤ M2. Denote by OM1,M2 the set of elements g ∈ G such that

there exists some geodesic γ between B(o,M2) and B(go,M2) with the property that the
interior of γ lies outside NM1(Go).

Definition (SCC action). If there exist two positive constants M1,M2 > 0 such that
ω(OM1,M2) < ω(G), then the action of G on a proper geodesic metric space X is called
statistically convex-cocompact.

b

b

o

go
γ

B(o,M2)

B(go,M2)

NM1(Go)

Figure 1: Definition of OM1,M2

Among others, the SCC actions with contracting elements include relatively hyperbolic
groups, geometrically finite actions with parabolic gap property, and mapping class groups
on Teichmüller spaces [18].

Remark. The SCC action (or complementary growth gap in [3]) is motivated by a parabolic
gap condition introduced by Dal’bo-Otal-Peigné [13] for a geometrically finite Hadamard
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manifold. In any Hadamard manifold this notion is studied under the term strongly positive
recurrent independently by Shapira-Tapie [44], and further in [41] on the amenability prob-
lem. Our definition and technics apply to non-Riemannian manifolds and coarse geometric
spaces, such as Teichmüller spaces etc.

2.1 Exponential genericity of contracting elements

The statistical properties of random walks on geometric groups have been investigated by
many authors. The analogue of the study in counting measure is significantly different
and is receiving a great deal of recent interests. Our study is motivated by the following
long-standing conjecture.

Conjecture (Farb). The set of pseudo-Anosov elements is generic in counting measure on
the mapping class group of an orientable surface with negative Euler characteristic.

We actually look at a general form of this conjecture. Let G be a group acting properly
on a proper geodesic metric space (X, d) with a contracting element.

Question. Whether the set of contracting elements is generic in counting measure? i.e.

lim
n→∞

]{g ∈ N(o, n) : g is contracting}
]N(o, n)

= 1.

The set is called exponentially generic if the rate of convergence is exponentially rapid.

In [46], we showed that the question admits a clean answer when the action is SCC.

Theorem 5. [46, Theorem A] Suppose that a non-elementary group G admits a SCC action
on a geodesic metric space (X, d) with a contracting element. Then the set of contracting
elements is exponentially generic.

We now explain a consequence of this theorem in mapping class groups. Note that
the action on Cayley graph is always cocompact, and thus is a SCC action. The Farb’s
conjecture would follow from the following conjecture:

Conjecture. The mapping class groups of orientable surfaces with negative Euler charac-
teristic contain a contracting element.

The current knowledge of word geodesics in mapping class groups seems insufficient
to prove/disprove this conjecture (but note the recent work [40]). On the other hand,
the action of mapping class group on Teichmüller space contains contracting elements and
satisfies the SCC property. We can thus strengthen an earlier result of J. Maher [33] with
exponential convergence speed.

Theorem 6. [46, Theorem 1.3] The set of pseudo-Anosov elements is exponentially generic
with respect to the Teichmüller metric.

Theorem 5 admits many other consequences, among which we have the exponential
genericty of hyperbolic elements in relatively hyperbolic groups, and rank-1 elements in
CAT(0) groups. A corollary of the latter is that the set of rank-1 elements is exponentially
generic in a right-angled Artin group which are not direct product.

In the next two subsections, we explain the basic idea in the proof of Theorem 5 and
some of further applications.
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2.2 Lattice point counting: purely exponential growth

For a proper action of G on X and a basepoint o ∈ X, it has been a long history to study
the growth of lattice points in Go. The simplest exponential growth function is given by

∀n ≥ 1, ]N(o, n) � exp(ω(G)n),

for which we shall call purely exponential growth (PEG).
There are two approaches in literature to establish purely exponential growth: ergodic

theory on geodesic flow spaces and geodesic automatic structures on groups. The
first method has been employed to get a precise asymptotic formulae for discrete groups
on negatively curved Riemannian manifolds, CAT(-1) spaces [43] and Teichmüller spaces
with Teichmüller metric [4]. The second one uses the Perron-Frobenius theorem [21]. These
methods are powerful and efficient in counting. However, it is not easy to implement them
in concrete examples, if it is not impossible. In [49], an elementary approach via contracting
elements is developed to study counting problems, such as PEG and conjugacy class growth
etc.

Theorem 7. [49, Theorem B] Suppose that a non-elementary group G admits a SCC action
on a geodesic metric space (X, d) with a contracting element. Then G has purely exponential
growth.

This is new in the class of CAT(0) groups with rank-1 elements in this generality.
For rank-1 compact Riemiannian manifolds, the corresponding result was obtained in [31]
through the conformal measure on boundary. This also gives a simplified way to obtain
(coarse) Teichmüller lattice counting in [4].

2.3 Growth tight subsets and exponential genericty

The growth tightness for a group (Definition 1.1) first introduced in [26] has raised many
interests in recent years [14, 11, 3]. In [49], we found out that it is also very fruitful to look
at growth tight subsets of a group: a subset S ⊂ G is called growth tight if ω(S) < ω(G).

In view of Genericity Question 2.1, one notes the following connection when the group
action has purely exponential growth: A set of elements is exponentially generic if and only
if its complement is growth tight.

In [49], we prove the growth tightness of a class of barrier-free sets. Its definition is a bit
technical, but is line with the situation that a word does not contain a particular sub-word.
Roughly speaking, an element g is called (ε, f)-barrier-free if the ε-neighborhood of [o, go]
does not contain any entire segment labeled by f .

Lemma. [49, Theorem C] Suppose G admits a SCC actions and contains a contracting
element. Then there exists ε > 0 such that for any f ∈ G, the set of (ε, f)-barrier-free
elements is growth tight.

The result admits many consequences. Generalizing Theorem 1, the following corollary
recovers a theorem of Arzhantseva-Cashen-Tao [3].

Corollary 8. Suppose that G admits a SCC action on X and contains a contracting ele-
ment. Then the action of G is growth tight:

ω(Ḡ) < ω(G)
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where ω(Ḡ) is the critical exponent of any proper action of a proper quotient Ḡ = G/N on
the quotient space X/N .

Other consequences include also that convex-cocompact subgroups in mapping class
groups, quasi-convex subgroups in cubical groups are growth tight. The latter resolves a
question posed by Dahmani-Futer-Wise [11]

Some idea in proof of Theorem 5 By purely exponential growth of SCC actions, the
exponential genericity of contracting elements follows from the following

Theorem 9. Suppose G admits a SCC action and contains a contracting element. Then
non-contracting elements is growth tight.

In order to prove this result, we make a crucial use of the recent work of Bestvina-
Bromberg-Fujiwara [5] on the projection complex. The projection complex P(X) is con-
structed out of the set X of all the axis of a contracting element f . Then there exists a
natural projection map π from the group action of G on X to the quasi-tree P(X). This
map should be compared with the shadowing map from Teichmüller space to the curve
graph in the work of Masur-Minsky.

The projection complex is a quasi-tree so the hyperbolicity via the map π entails to
prove that almost every non-contracting element g admits a conjugation g = tht−1 so that
it labels a quasi-geodesic in the space. This is enough by computation to conclude the proof
of Theorem 9.

2.4 Applications: counting conjugacy classes

We fix a basepoint o ∈ Y. The algebraic length of a conjugacy class [g] is defined as
`o[g] := infg′∈[g] d(o, g′o). In joint work with I. Gekhtman [22], we count the number C(o, n)
of conjugacy classes [g] in a SCC action with algebraic length less than n.

The starting point of our study is Theorem 9 that the non-contracting ones are expo-
nentially negligible. Thus, we only need to count conjugacy classes of contracting elements.
We then go ahead to analyze the generic properties of contracting elements, some of which
are collected into the following.

Proposition. There exist constants M = M(o) > 0 and θ = θ(o) ∈ (0, 1) and an exponen-
tially generic set of contracting elements g ∈ G with the following properties:

1. The stable length coincides with algebraic length up to an additive constant M ;

2. The axis of each element g spends at least θ-percent time in the thick part NM (Go);

3. The cyclic group 〈g〉 has finite index at most M in its maximal elementary group.

Remark. One consequence in Teichmüller spaces is that the Teichmüller axis of a generic
pseudo-Anosov element is contained in the principal stratum of quadratic differentials. This
gives a positive answer to the (first part of) question posed by J. Maher [15, Question 6.4].

With those generic properties at hand, we are able to count conjugacy classes of con-
tracting elements in any SCC action. The growth formulae is the same as that of prime
numbers in integers, so we refer to as prime conjugacy growth formulae below.
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Theorem 10. [22, Main Theorem] Suppose that a non-elementary group G admits a SCC
action on a geodesic metric space (X, d) with a contracting element and ω(G) <∞. There
exists a constant D = D(o) > 0 such that the following hold:

C(o, n) �D
exp(ω(G)n)

n
.

We also count the number of conjugacy classes using stable length defined by

τ([g]) := lim
n→∞

d(o, gno)

n

which does not depend on the basepoint. Even though the number of conjugacy classes with
bounded stable length could be infinite, we can obtain a satisfactory formula with stable
length in many interesting examples. One of them is the following.

Theorem 11. [22, Corollary 1.4] Let G be a relatively hyperbolic group. Then for the action
on the Cayley graph, the prime conjugacy growth formulae holds for conjugacy classes of
hyperbolic elements with stable length.

Conjugacy growth series. Consider the counting with respect to the action on Cayley
graph. An application of prime conjugacy growth formulae is to the formal conjugacy growth
series:

P(z) =
∑

[g]⊂G

z`1[g] ∈ Z[[z]],

whether it is rational, algebraic, or transcendental over Q(z). By computation, I. Rivin [42]
computed the irrational conjugacy growth series for free group, and then conjectured that
this series of a hyperbolic group is rational if and only if it is virtually cyclic. This is in
contrast with the well-known result that, if counting N(1, n) instead of C(1, n), the growth
series

∑
g∈G z

d(1,g) is rational for any hyperbolic group.
The Rivin’s conjecture in hyperbolic groups is confirmed by Antoĺın-Ciobanu [2]. By

Theorem 10, the Rivin’s conjecture holds for a large subclass of acylindircally hyperbolic
groups with a contracting element in word metric. In particular, this includes relatively
hyperbolic groups, and non-direct product right-angled Artin groups.

Theorem 12. [22, Theorem 1.8] The conjugacy growth series of a non-elementary relatively
hyperbolic group is transcendental for every finite generating set.
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