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A Customized Augmented Lagrangian Method
for Block-Structured Integer Programming

Rui Wang, Chuwen Zhang, Shanwen Pu, Jianjun Gao, Zaiwen Wen

Abstract—Integer programming with block structures has received considerable attention recently and is widely used in many practical
applications such as train timetabling and vehicle routing problems. It is known to be NP-hard due to the presence of integer variables.
We define a novel augmented Lagrangian function by directly penalizing the inequality constraints and establish the strong duality
between the primal problem and the augmented Lagrangian dual problem. Then, a customized augmented Lagrangian method is
proposed to address the block-structures. In particular, the minimization of the augmented Lagrangian function is decomposed into
multiple subproblems by decoupling the linking constraints and these subproblems can be efficiently solved using the block coordinate
descent method. We also establish the convergence property of the proposed method. To make the algorithm more practical, we
further introduce several refinement techniques to identify high-quality feasible solutions. Numerical experiments on a few interesting
scenarios show that our proposed algorithm often achieves a satisfactory solution and is quite effective.

Index Terms—Integer programming, augmented Lagrangian method, block coordinate descent, convergence
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1 INTRODUCTION

IN this paper, we consider a block-structured integer pro-
gramming problem:

min c⊤x (1a)
s.t. Ax ≤ b, (1b)

xj ∈ Xj , j = 1, 2, ..., p, (1c)

where xj ∈ Rnj is the j-th block variable of x ∈ Rn, i.e.,
x = (x1; ...; xp) for p ≥ 1 with n =

∑p
j=1 nj . In (1), A ∈

Rm×n, b ∈ Rm, c ∈ Rn and the constraint Xj is the set of
0, 1 vectors in a polyhedron, i.e.,

Xj := {xj ∈ {0, 1}nj : Bjxj ≤ dj}, j = 1, 2, ..., p.

The constraints (1c) can be reformulated as x ∈ X := {x ∈
{0, 1}n : Bx ≤ d} where the block diagonal matrix B ∈
Rq×n is formed by the small submatrices Bj as the main
diagonal and d = (d1; ...;dp). Correspondingly, c and A
can be rewritten as c = (c1; c2; ...; cp) with cj ∈ Rnj and
A = (A1 A2 ... Ap) with Aj ∈ Rm×nj .

Assume that these constraints (1c) are “nice” in the sense
that an integer program with just these constraints is easy.
Therefore, if the coupling constraints (1b) are ignored, the
remaining problem which is only composed of the con-
straints (1c) is easier to solve than the original problem
(1). For convenience, we assume X is not empty and (1)
is feasible. Denote by f IP the optimal value of the problem
(1). This block structure is closely related to an important
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model known as “n-fold integer programming (IP)” studied
extensively in computer vision [1], [2], machine learning
[3], [4] and theoretical computer science [5], [6], etc. The
theoretical foundations of n-fold IPs have significant im-
plications for efficient algorithm development in various
fields. For example, an algorithmic theory of integer pro-
gramming based on n-fold IP was proposed in [5]. Recent
advancements have been provided in [6]. Furthermore, the
progress in theory and application of integer programming
with a block structure was summarized in [7], [8]. While
existing works on n-fold IP mainly focus on asymptotic
analyses, this work aims to develop an efficient augmented
Lagrangian approach tailored to the block structure for
practical efficiency with a convergence guarantee.

1.1 Related Work

The branch and bound algorithm for general integer pro-
gramming (IP) was first introduced by Land and Doig [9].
Gomory [10] developed a cutting plane algorithm for inte-
ger programming problems. These two approaches are at
the heart of current state-of-the-art software for integer pro-
gramming. Unfortunately, these methods often suffer from
high computational burdens due to the discrete constraint,
thus they are not good choices for solving some large-scale
practical problems. Therefore, it is necessary to develop effi-
cient approaches to obtain feasible and desirable solutions,
even if they may not be globally optimal. Considering the
block structure of the integer linear programming (1), a
natural idea is to decompose a large global problem into
smaller local subproblems. There are three typical decom-
position methods for solving such problem: Benders [11],
Dantzig-Wolfe (DW) [12] and Lagrangian decompositions
[13]. The Benders decomposition method is used to deal
with mixed integer programming problems by decompos-
ing them into a master problem and a primal subproblem.
It generates cuts that are added to the master problem by
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solving the dual of the primal subproblem. This method
is not suitable for (1), since our primal subproblem is an
integer programming problem, which is still NP-hard. The
DW decomposition method can solve block structured inte-
ger programming problem (1) based on resolution theorem.
To improve the tractability of large-scale problems, the DW
decomposition relies on column generation. However, it
might be harder or even intractable to solve the master prob-
lem by column generation if further constraints are applied
to Xj [14, Chapter 8.2]. The Lagrangian decomposition
introduces Lagrange multipliers and constructs a sequence
of simpler subproblems. Although the method itself has a
limitation due to its inherent solution symmetry for certain
practical problems, the Lagrangian duality bound is useful
in the branch-and-bound procedure. A Lagrangian heuristic
algorithm has also been proposed in [15] for solving a
real-world train timetabling problem, which decomposed
the problem into smaller subproblems using Lagrangian
relaxation and developed a heuristic algorithm based on
subgradient optimization to generate feasible solutions.

Many techniques from continuous optimization includ-
ing the alternating direction method of multipliers (ADMM)
have been applied to solve integer programming recently.
The authors in [16] proposed an ℓp-box ADMM for solv-
ing a binary integer programming, where the binary con-
straint is replaced by the intersection of a box and an
ℓp-norm sphere. The authors in [17] proposed augmented
Lagrangian method (ALM) and ADMM based on the ℓ1
augmented Lagrangian function for two-block mixed inte-
ger linear programming (MILP). For the multi-block MILP
problem, an extended ADMM was proposed in [18] to em-
ploy a release-and-fix approach to solve the subproblems.
There are also some heuristic methods based on ADMM
[19], [20], [21], [22] that have been successfully applied to
various practical integer programming problems.

There are some other widespread approaches on the
relaxation of the binary constraint including linear pro-
gramming (LP) relaxation [23], [24] and semidefinite re-
laxation [25], [26]. For the multi-block MILP problem, sev-
eral inexact methods have been proposed including a dis-
tributed algorithm relying on primal decomposition [27],
a dual decomposition method [28], and a decomposition-
based outer approximation method [29]. By introducing
continuous variables to replace the discrete variables, the
exact penalty methods [30], [31], [32] have been studied
for solving the nonlinear IP problems. Then the problem
is transformed into an equivalent nonlinear continuous op-
timization problem.

1.2 Contributions
In this paper, we propose a customized ALM for solving (1).
Our main contributions are listed below.

(i) We define a novel augmented Lagrangian (AL) func-
tion that differs from the classical AL function and
establish strong duality theory for the augmented
Lagrangian relaxation of the block-structured integer
programming (1), which motivates us to utilize the
ALM for solving the problem (1).

(ii) Based on the special structure of (1), we propose two
block coordinate descent (BCD)-type methods that

are well-suited for solving the resulting subproblems
in our ALM framework. These methods utilize clas-
sical update and proximal linear update techniques,
denoted as ALM-C and ALM-P, respectively. We also
analyze their convergence properties under proper
conditions.

(iii) To address challenges in finding the global opti-
mal solution for practical problems such as train
timetabling, we introduce refinement strategies and
propose a customized ALM to enhance the quality
of solutions generated by the ALM. Our numerical
experiments demonstrate the effectiveness of the pro-
posed method in solving large-scale instances.

Note that the ADMM-based method in [21] solves each
subproblem only once per iteration for a fixed Lagrangian
multiplier. On the other hand, our ALM method involves
multiple iterations using the BCD method to minimize each
AL function until certain rules are satisfied. Once the AL
subproblem is solved exactly, the strong duality guarantees
that the ALM can converge to a global minimizer of the
problem (1). Therefore, achieving high accuracy in minimiz-
ing the AL function allows our ALM to achieve superior
solutions with fewer iterations, resulting in significantly
reduced computational time compared to the ADMM. This
claim is supported by our numerical tests. Additionally,
we introduce Assumptions 3.1 and 3.2, derived from the
structural characteristics of the practical problem in [20] and
[21], and subsequently analyze the theoretical properties
of the ALM-C method under these assumptions. However,
our ALM-P method has wider applicability and does not
require these specific assumptions. Moreover, the ALM can
be regarded as a dual ascent algorithm with respect to dual
variables, hence ensuring its convergence. In contrast, the
convergence analysis of the ADMM for solving this kind of
problem remains unclear.

The existing ALM-based methods for solving integer
programming in [33] mainly focused on the duality of
the augmented Lagrangian dual for MILP with equality
constraints, but numerical experiments were not available.
Moreover, our approach differs significantly in that we han-
dle inequality constraints directly, without introducing slack
variables. This approach has two key benefits: it reduces the
number of variables, thus decreasing computational burden
in high-dimensional cases, and it allows for more cus-
tomized algorithmic design based on the inherent structure
of the problem. In [17], the ℓ1 norm was considered as an
augmented term in the AL function for MILP such that the
minimization of the AL function can be decomposed into
multiple low-dimensional ℓ1-penalty subproblems due to
the separable blocks. These subproblems were then solved
in parallel using the Gurobi solver. In our work, we take
a different approach by using a quadratic term in the AL
function which allows the augmented Lagrangian subprob-
lem to be reduced to a linear programming under certain
conditions. Furthermore, we update the blocks of variables
sequentially one at a time.

1.3 Notation and Organization
Let Nm := {1, 2, ...,m}, Np := {1, 2, ..., p} and Rm

+ :=
{x ∈ Rm : xi ≥ 0 for all i}. The superscript “⊤” means
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“transpose”. Denote ai by the i-th row of the matrix A
and bi by the i-th element of the vector b. For convenience,
we let AI,j denote the submatrix consisting of columns of
Aj indexed by I and bI denote the subvector consisting
of entries of b ∈ Rm indexed by I . A neighborhood of a
point x∗ is a set N (x∗, 1) consisting of all points x such that
∥x− x∗∥2 ≤ 1. Let 1 be a row vector of all ones.

This paper is structured as follows. An AL function
is defined and the strong duality of the problem (1) is
discussed in section 2. We propose a customized ALM
incorporating BCD methods and refinement strategies to
improve the quality of the ALM solutions in section 3. We
establish the convergence results of both the BCD methods
to minimize the AL function and the ALM applied to the
whole problem (1) in section 4. The proposed method is
applied to two practical problems in section 5. Concluding
remarks are made in the last section.

2 THE AL STRONG DUALITY

The Lagrangian relaxation (LR) of (1) with respect to the
constraint (1b) has the following form:

min
x∈X

L(x, λ) :=
p∑

j=1

c⊤j xj + λ⊤

 p∑
j=1

Ajxj − b

 , (2)

where λ ∈ Rm
+ is a Lagrange multiplier associated with

the constraint (1b). We can observe that (2) is much easier
to be solved than the original problem (1) since (2) can
be decomposed into p-block low-dimensional independent
subproblems. However, there may exist a non-zero duality
gap when certain constraints are relaxed by using classical
Lagrangian dual [33]. To reduce the duality gap, we add a
quadratic penalty function to the Lagrangian function in (2)
and solve the augmented Lagrangian dual problem which
is defined as follows.
Definition 2.1 (AL Dual). We define an AL function by

L(x, λ, ρ) =

p∑
j=1

c⊤j xj + λ⊤

 p∑
j=1

Ajxj − b


+
ρ

2

∥∥∥∥∥∥
 p∑

j=1

Ajxj − b


+

∥∥∥∥∥∥
2

, (3)

where λ ∈ Rm
+ , ρ > 0. The corresponding AL relaxation

of (1) is given by

d(λ, ρ) := min
x∈X

L(x, λ, ρ). (4)

We call the following maximization problem the AL dual
problem:

fLD
ρ := max

λ∈Rm
+

d(λ, ρ). (5)

Note that the classical AL function of (1) is given by

L̂(x, λ, ρ) = c⊤x +
ρ

2

∥∥∥∥∥
(
Ax− b+

λ

ρ

)
+

∥∥∥∥∥
2

− ∥λ∥
2

2ρ
. (6)

We prefer using the form of the AL function (3) rather than
the classical version (6) due to the absence of λ/ρ in the
quadratic term of the max function. This makes it possible to

convert the AL function into a linear function under certain
conditions, making the problem (4) easier to solve, which
will be explained in the next section. We also verify that
the quadratic term in (3) is an exact penalty and strong
duality holds between the AL dual problem (5) and the
primal problem (1).

Lemma 2.1 (Strong Duality). Suppose the problem (1) is
feasible and its optimal value is bounded. If a minimum
achievable non-zero slack exists, i.e., there is a δ such
that for any i ∈ Nm,

0 < δ ≤ min
x∈X
{(aix− bi)

2 : aix > bi}, (7)

then there exists a finite ρ∗ ∈ (0,+∞) such that

fLD
ρ∗ = min

Ax≤b,x∈X
c⊤x.

Proof For any λ ∈ Rm
+ and ρ > 0, since {x ∈ X : Ax− b ≤

0} ⊆ X , we have

d(λ, ρ) ≤ min
x∈X

Ax−b≤0

L(x, λ, ρ) ≤ min
x∈X

Ax−b≤0

c⊤x = f IP. (8)

Then fLD
ρ ≤ f IP.

Now it suffices to find a finite ρ∗ such that fLD
ρ∗ ≥ f IP.

We first let x0 be any arbitrary feasible solution of (1), that is,
x0 ∈ X and Ax0 ≤ b. Denote by fLP the linear programming
(LP) relaxation of f IP. Since the value of the LP relaxation of
(1) is bounded [34], i.e., −∞ < fLP ≤ c⊤x0 < +∞, we set
ρ∗ = 2(c⊤x0 − fLP)/δ, then 0 < ρ∗ < +∞. Moreover,

fLD ≥ max
λ∈Rm

+

d(λ, ρ∗) ≥ d(λ∗, ρ∗) = min
x∈X

L(x, λ∗, ρ∗), (9)

where λ∗ ∈ Rm
+ is a given parameter. Let I := {i ∈ Nm :

aix− bi > 0, x ∈ X}, we consider following two cases:
Case 1: I = ∅. In this case we have Ax ≤ b for all x ∈ X .

By letting λ̄ = 0, we can obtain that

L(x, λ̄, ρ∗) = c⊤x + λ̄⊤(Ax− b) +
ρ∗

2
∥ (Ax− b)+ ∥

2

= c⊤x ≥ f IP. (10)

Case 2: I ̸= ∅. Denote by λLP a positive optimal vector of
dual variables for Ax ≤ b in the LP relaxation of (1). In this
case we get

L(x, λLP, ρ∗) =c⊤x + (λLP)⊤(Ax− b) +
ρ∗

2

∑
i∈I

(aix− bi)
2

+
ρ∗

2

∑
i/∈I

((aix− bi)+)
2

=c⊤x + (λLP)⊤(Ax− b) +
ρ∗

2

∑
i∈I

(aix− bi)
2.

Since

ρ∗

2

∑
i∈I

(aix−bi)
2 ≥ ρ∗

2
min
i∈I

(aix−bi)
2

(7)
≥ ρ∗

2
δ = c⊤x0−fLP,

it yields

L(x, λLP, ρ∗) ≥ c⊤x + (λLP)⊤(Ax− b) + (c⊤x0 − fLP)

≥ fLP + (c⊤x0 − fLP) = c⊤x0 ≥ f IP, (11)



4

where the second inequality holds due to the definition of
λLP. Thus the inequalities (10) and (11) by letting λ∗ be λLR

and λ̄ imply that

d(λ∗, ρ∗) = minx∈X L(x, λ∗, ρ∗) ≥ f IP.

This together with (9) and (8) yields that

fLD
ρ∗ = d(λ∗, ρ∗) = f IP.

Hence we complete the proof. □

One can observe from the proof that there exists a finite
value ρ∗ such that for all ρ ≥ ρ∗, the strong duality still
holds. Therefore, given a sufficiently large penalty parame-
ter ρ, we can achieve a satisfactory feasibility of (1). Specif-
ically, as ρ increases beyond ρ∗, the augmented Lagrangian
method penalizes constraint violations (1b) more heavily,
thereby making the solution closer to the feasible region
of the problem. The strong duality allows us to obtain a
globally optimal solution to the problem (1) by solving the
augmented Lagrangian dual problem (5).

To utilize the concave structure of the dual function
d(λ, ρ), we apply the projected subgradient method for
solving (5) since the dual function is not differentiable. We
first give the definition of subgradient and subdifferential.

Definition 2.2. Let h : Rm → R be a convex function. The
vector s ∈ Rm is called a subgradient of h at x̄ ∈ Rm if

h(x)− h(x̄) ≥ s⊤(x− x̄), ∀x ∈ Rm.

The subdifferential of h at x̄ is the set of all subgradients
of h at x̄ which is given by

∂h(x) = {s ∈ Rm : h(x)−h(x̄) ≥ s⊤(x−x̄), ∀x ∈ Rm}.

Since d(λ, ρ) is concave, we adjust Definition 2.2 to cor-
respond to the set −∂(−d(λ, ρ)), allowing us to apply
properties of the subdifferential of a convex function to a
concave function.

Proposition 2.1. Consider the dual function d(λ, ρ) :
Rm+1 → R. Then the subdifferentials of d at λ and ρ
satisfy

Ax−b ∈ ∂λd(λ, ρ),
1

2
∥(Ax−b)+∥2 ∈ ∂ρd(λ, ρ), (12)

where x is a solution of (4) with input (λ, ρ).

Proof Let x be a solution of (4) with input (λ, ρ). Then for
any pair (λ̂, ρ̂) ∈ Rm

+ × R+, it holds that

d(λ̂, ρ̂) ≤ c⊤x + λ̂⊤(Ax− b) + ρ̂
2∥(Ax− b)+∥2

= c⊤x + λ⊤(Ax− b) + ρ
2∥(Ax− b)+∥2

+(λ̂− λ)⊤(Ax− b) + ρ̂−ρ
2 ∥(Ax− b)+∥2

= d(λ, ρ) + (λ̂− λ)⊤(Ax− b) + ρ̂−ρ
2 ∥(Ax− b)+∥2,

where the last equality holds due to the optimality of x.
Then by the definition of subgradient and subdifferential,
we arrive at (12). □

3 AUGMENTED LAGRANGIAN METHOD

In this section, we introduce an augmented Lagrangian
method framework. This method is composed of two steps
in solving the augmented Lagrangian dual problem (5). We
first use the primal information x to construct the subgradi-
ent of d at (λ, ρ). Since λ and ρ satisfy λ ≥ 0 and ρ > 0,
then we apply the projected subgradient method to update
parameters λ and ρ. Starting from λ0 ∈ Rm

+ and ρ0 > 0, we
can update λ and ρ at (k + 1)-th iteration by

λk+1 =
(
λk + αk(Axk+1 − b)

)
+
, (13a)

ρk+1 =

(
ρk +

αk

2

∥∥∥(Axk+1 − b)+

∥∥∥2)
+

= ρk +
αk

2

∥∥∥(Axk+1 − b)+

∥∥∥2 , (13b)

where xk+1 is an optimal solution of the augmented La-
grangian relaxation problem (4) at λk and ρk, that is,

xk+1 ∈ argmin
x∈X

L(x, λk, ρk). (14)

Therefore, the iterative processes (14), (13a) and (13b) con-
sisting of primal and dual variables make up the ALM
framework.

Solving the x-subproblem (14) is an important step in
ALM. While the subproblem (14) has no closed form solu-
tion in general, we can apply an iterative method to solve
it exactly or inexactly. Consequently, the ALM for solving
the problem (1) consists of outer and inner iterations. The
subscript k is used to denote the outer iteration number, and
the subscript t is used to denote the inner iteration number.

3.1 A BCD method for subproblem (14)

In this subsection, we present a BCD method for solving the
x-subproblem (14) in the ALM framework. The BCD method
minimizes the function L by iterating cyclically in order
x1, ..., xp, fixing the previous iteration during each iteration.
Denote xt =

(
xt1; xt2; ...; xtp

)
where xtj is the value of xj at its

t-th update. Let

Lt
j(xj , λ, ρ) = L(xt+1

1 , ..., xt+1
j−1, xj , xtj+1, ..., xtp, λ, ρ),

and

xt(j) =
(

xt+1
1 , xt+1

2 , ..., xt+1
j−1, xtj , xtj+1, ..., xtp

)
.

Therefore xt(1) =
(
xt1; xt2; ...; xtp

)
= xt and xt(p + 1) =(

xt+1
1 ; xt+1

2 ; ...; xt+1
p

)
= xt+1. Given fixed parameters λ ≥

0 and ρ > 0, we can also calculate the gradient of
L(xt(j), λ, ρ) at xj by

gj(xt) := ∇xjL(x
t(j), λ, ρ)

= cj +A⊤
j λ+ ρA⊤

j

(
Axt(j)− b

)
+
.

At each step, we consider two types of updates for every
xj ∈ Xj :

Classical: xt+1
j ∈ argmin

xj∈Xj

Lt
j(xj , λ, ρ), (15a)

Proximal linear:

xt+1
j ∈ argmin

xj∈Xj

{
⟨xj − xtj , gj(x

t)⟩+ 1

2τ
∥xj − xtj∥2

}
, (15b)
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where τ > 0 is a step size. In fact, if one defines the
projection operator by

PX (v) ∈ argmin{∥u− v∥ : u ∈ X},

then we obtain the following equivalent form of (15b):

xt+1
j = PXj

(
xtj − τgj(xt)

)
.

In general, the classical subproblem (15a) is fundamen-
tally harder to solve because of the quadratic term in the
objective function. However, we derive a simplified form
of this subproblem under certain conditions, which will be
discussed in Subsection 3.1.2. By contrast, the prox-linear
subproblem (15b) is relatively easy to solve because the
objective function is linear with respect to xj . Now we
summarize the ALM for solving (1) in Algorithm 1, which
allows each xj to be updated by (15a) or (15b). We assume
that each block j is updated by the same scheme in (15a)
and (15b) for all iteration t.

Algorithm 1: ALM with BCD

Input: Initial point x0, λ0, ρ0.
Output: A feasible solution xk+1.

1 for k = 0, 1, ..., kmax do
2 for t = 0, 1, ..., tmax do
3 for j = 1, 2, ..., p do
4 Compute x(t+1)

j by (15a) or (15b);

5 if x(t+1) = x(t), then let xk+1 = x(t+1) and
break;

6 if ∥(Axk+1 − b)+∥2 = 0, then Teminate;
7 Update the Lagrangian multipliers λk+1 by (13a)

and the penalty coefficient ρk+1 by (13b).

Subsequently, we show more detailed information about
these two updates (15a) and (15b).

3.1.1 Proximal linear update of BCD
Before considering the proximal linear subproblem (15b), we
first give a definition of a linear operator, which is essential
in the BCD method.
Definition 3.1. The linear operator associated to a vector

v ∈ Rn is defined by

TΩ(v) = argmin
u∈Ω

v⊤u,

where Ω is a nonempty and closed set.

Benefiting from the good characteristics of x being a
binary variable, we have

∥xj∥2 = 1⊤xj , for ∀j ∈ Np, (16)

then the objective function in (15b) is linear. Therefore, we
can also rewrite (15b) as

xt+1
j ∈ argmin

xj∈Xj

{
x⊤j gj(x

t) +
1

2τ
1⊤xj −

1

τ
x⊤j xtj

}
= TXj

(
τgj(xt) +

1
2
− xtj

)
. (17)

Due to the discrete property of the feasible setXj , it is crucial
to choose the step size τ appropriately. If τ is too large, the

BCD method will not converge. If τ is too small, the BCD
method will be stuck at some points. The reason why this
happens will be explained in the convergence analysis.

3.1.2 Classical update of BCD

We start by giving the following assumption of model (1),
which is very common in many applications such as train
timetabling, vehicle routing, and allocation problems.

Assumption 3.1. The entries of the matrix A are either 1 or
0. The vector b equals 1.

Under this assumption, we consider the subproblem (15a).
For each j ∈ Np, if the condition Ajxt+1

j ≤ 1 always holds
for each iteration of the BCD method, then

xt+1
j ∈ argmin

xj∈Xj

Lt
j(xj , λ, ρ) (18)

= TXj

cj +A⊤
j λ+ ρA⊤

j

 p∑
l ̸=j

Alxtl(j)−
1
2


+

 .

To prove the above derivation, we introduce following two
notations at the t-th update:

I := {i ∈ Nm :
∑p

l ̸=j Ai,lxtl(j) = 0},
Ī := {i ∈ Nm :

∑p
l ̸=j Ai,lxtl(j) ≥ 1}, (19)

where xtl(j) =
{

xt+1
l , if l < j,

xtl , if l > j.
Obviously, I ∩Ī = ∅ and

I ∪ Ī = Nm. Therefore, we have∑p

l ̸=j
AĪ,lx

t
l(j)−

1Ī
2

=

(∑p

l ̸=j
AĪ,lx

t
l(j)−

1Ī
2

)
+

, (20)∑p

l ̸=j
AI,lxtl(j)−

1I
2

= 0, (21)

and(
AI,jxj +

p∑
l ̸=j

AI,lxtl(j)− 1I

)
+

= (AI,jxj − 1I)+=0,

AĪ,jxj +
∑p

l ̸=j AĪ,lx
t
l(j)− 1Ī ≥ 0.

(22)

Since the element in Ajxj is either 1 or 0, we have

∥Ajxj∥2 = 1⊤(Ajxj), ∀ j ∈ Np. (23)

Denote C =
∥∥∥∑p

l ̸=j AĪ,lx
t
l(j)− 1Ī

∥∥∥2. Then

∥∥∥∥(Ajxj +
∑p

l ̸=j Alxtl(j)− 1
)
+

∥∥∥∥2
(22)
= ∥AĪ,jxj∥2 + 2(AĪ,jxj)⊤

(∑p
l ̸=j AĪ,lx

t
l(j)− 1Ī

)
+ C

(23)
= 2(AĪ,jxj)⊤

(∑p
l ̸=j AĪ,lx

t
l(j)−

1Ī
2

)
+ C

(20)
= 2(AĪ,jxj)⊤

(∑p
l ̸=j AĪ,lx

t
l(j)−

1Ī
2

)
+
+ C

(21)
= 2(AĪ,jxj)⊤

(∑p
l ̸=j AĪ,lx

t
l(j)−

1Ī
2

)
+

+2(AI,jxj)⊤
(∑p

l ̸=j AI,lxtl(j)−
1I
2

)
+
+ C

= 2(Ajxj)⊤
(∑p

l ̸=j Alxtl(j)− 1
2

)
+
+ C.



6

Then the iterative scheme for x-update is given by

xt+1
j = argmin

xj∈Xj

Lt
j(xj , λ, ρ)

= argmin
xj∈Xj

{
c⊤j xj + λ⊤ (Ajxj − 1)

+ρ
2

∥∥∥∥(Ajxj +
∑p

l ̸=j Alxtl(j)− 1
)
+

∥∥∥∥2
}

(24)
= argminxj∈Xj

{
c⊤j xj + λ⊤ (Ajxj − 1)

+ρ(Ajxj)⊤
(∑p

l ̸=j Alxtl(j)− 1
2

)
+

}
= TXj

(
cj +A⊤

j λ+ ρA⊤
j

(∑p
l ̸=j Alxtl(j)− 1

2

)
+

)
.

We can observe that the condition Ax ≤ 1 induces the
decomposition of minimizing the augmented Lagrangian
function (3) into a set of subproblems with a linear objective
function, which makes (15a) easier to solve. Therefore, the
key point in the derivation of the linearization process is
utilizing the fact that the entries in Ajxj are either 1 or 0.
We next verify this condition is always true in each iteration
of the BCD method under the following assumption.
Assumption 3.2. Denote by TAj

the indices of columns of the
matrix Aj containing only zeros and cjs the s-th element
of cj . At least one of the following holds.

(i) For all j ∈ Np, there exists xj ∈ Xj such that Ajxj ≤
1 and {s ∈ Nnj

: cjs ̸= 0} ⊆ TAj
.

(ii) For all j ∈ Np, there is at most one nonzero element
in the vector cj and {xj ∈ Rnj : Ajxj ≤ 1} ⊆ {xj ∈
Rnj : xj ∈ Xj}.

Remark: (a) Assumption 3.2 (i) requires that if an element
xjs satisfies xjs = 1, then at least one of cjs and the s-th
column vector of Aj is zero. Assumption 3.2 (ii) requires
that if the block constraint set Xj is large enough such
that Ajxj ≤ 1 holds, then the weight cj corresponding
to each block variable has only one nonzero element. (b)
Assumption 3.2 usually holds when A and c are sparse. This
is particularly true in the train timetabling problem with
the objective of scheduling more trains, as will be shown in
Section 5.
Lemma 3.1. Suppose Assumption 3.2 hold. From any start-

ing point x0, the solution generated by the BCD method
with the classical update at each iteration satisfies
Ajxt+1

j ≤ 1 for all j ∈ Np and t = 0, 1, 2, ....

Proof Let xt+1
j be the solution generated by the BCD

method after t-th classical update. We argue by contra-
diction and suppose that there exists i ∈ Nm such that
Ai,jxt+1

j > 1. Then for any x̄j ∈ Xj satisfying Aj x̄j ≤ 1,
we have

Lt
j(x

t+1
j , λ, ρ) < Lt

j(x̄j , λ, ρ), ∀j ∈ Np,

which implies that for any j ∈ Np,cj +A⊤
j λ+ ρA⊤

j

 p∑
l ̸=j

Alxtl(j)−
1
2


+

⊤

(xt+1
j −x̄j) < 0,

then
c⊤j (x

t+1
j − x̄j) + λ⊤(Ajxt+1

j −Aj x̄j)+

ρ
(∑p

l ̸=j Alxtl(j)− 1
2

)⊤
+

(Ajxt+1
j −Aj x̄j) < 0.

(24)

We consider following two cases corresponding to As-
sumption 3.2:

Case 1: Assumption 3.2 (i) implies cjs = 0 for any
s ∈ Sj := {s ∈ Nnj

: xt+1
js

= 1,Ai,js = 1}. Taking
x̄j = (xt+1

j1
, ..., xt+1

js
− 1, ..., xt+1

jnj
) with s ∈ Sj such that

Aj x̄j ≤ 1 gives us

c⊤j (x
t+1
j −x̄j) =

∑
s
cjs = 0 and Ai,jxt+1

j −Ai,j x̄j ≥ 1. (25)

This contradicts (24) since λ ≥ 0, ρ > 0.
Case 2: Assumption 3.2 (ii) implies that there exists

x̄j = (xt+1
j1

, ..., x̄js′ , ..., xt+1
js
− 1, ..., xt+1

jnj
) with x̄js′ = 1 (26)

for any s ∈ Sj and s′ ̸= s such that Aj x̄j ≤ 1. If cjs′ ≥
0, we can apply the same procedure in Case 1 and arrive
at the contradiction. If cjs′ < 0, we take x̄j in (26), then
xt+1
js′
− x̄js′ ≤ 0. Hence,

c⊤j (x
t+1
j − x̄j) = cjs′ (x

t+1
js′
− x̄js′ ) ≥ 0, Ai,jxt+1

j −Ai,j x̄j ≥ 1,

which is a contradiction that completes the proof. □

Overall, we can reformulate the subproblem (15a) into
(18) based on the special structure of the model (1) under
certain conditions, and thus make it easier to solve. It is
worth noting that if Assumption 3.2 is not satisfied, we
can consider (18) as a linear approximation of (15a). This
linearization technique is widely used, including in works
[20] and [21]. However, they lacked theoretical guarantees.
Our main result shows that under specified assumptions,
using the update (18) in the ALM-C method is equivalent to
solving (15a) exactly, theoretically ensuring the effectiveness
of our method.

3.2 Finding a good feasible solution by set packing

Since the BCD method may not always yield a feasible
solution [35], we can adopt several refinement strategies that
are very useful to find a feasible solution to the problem (1)
in practice. Very often, (1) represents a problem where we
optimize under limited resources, and this provides us a
view of set packing problems. Since we produce candidate
solutions all along, a natural idea is to utilize past iterates
to construct a feasible solution. A simple strategy could be
constructing a solution pool for each j that includes the past
BCD iterates V k

j = {x1j , x2j , ..., xkj }, j = 1, ..., p. Intuitively,
the solution pool may include feasible or “nice” solutions in
some sense.

To illustrate the above approach, we first introduce the
iterative sequential technique.

3.2.1 A sweeping technique

The most simple technique is probably to select a subset
of blocks, one by one, until the infeasibility is detected. We
present this sequential method in Algorithm 2, which can be
understood by simply sweeping the blocks and selecting a
candidate solution from V k

j if feasibility is still guaranteed,
otherwise simply skip the current block and continue.
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Algorithm 2: A sweeping technique

Input: The set of past BCD solutions V k
j , j = 1, ..., p.

Output: A feasible solution x̂k

1 while the termination is not satisfied do
2 for j = 1, 2, ..., p do
3 Select vj ∈ V k

j ;

4 if Ajvj +
j−1∑
l=1

Alx̂
k
l − b ≤ 0 then

5 let x̂kj = vj ,
6 else
7 let x̂kj = 0;

3.2.2 A packing technique
Let us further explore the idea of selecting solutions in
a systematic way. Formally, for each block j ∈ Np, we
introduce a set of binary variables µj that defines the current
selection:

x̂kj = Xk
j µj , µj ∈ {0, 1}k,

where Xk
j = [x1j ; x2j ; ...; xkj ]. We consider the following prob-

lem:

min
µj∈{0,1}k

∑p

j=1
c⊤j X

k
j µj (27a)

s.t. µ⊤
j 1 ≤ 1, ∀j = 1, ..., p, (27b)∑p

j=1
AjX

k
j µj ≤ b. (27c)

In view of (27b), one may recognize the above problem as a
restricted master problem appearing in column generation
algorithms where (27c) stands for a set of knapsack con-
straints.

Specifically, the coupling constraints (27c) in our model
are cliques, representing complete subgraphs where each
pair of distinct nodes is connected. This allows us to refor-
mulate the model as a maximum independent set problem.
Therefore, we can find a feasible solution x∗ which satisfies
Ax∗ ≤ b by solving the problem (27). Since this problem
is still hard, we only solve the relaxation problem of the
maximal independent set. Now we go into details. Since the
knapsack (27c) means the candidate solutions may conflict,
we can construct a conflict graph F = (V,E). In this graph,
V represents the set of nodes, where each node corresponds
to a solution generated as the algorithm proceeds, and E
is the set of edges that connect two conflicting solutions,
meaning they violate the coupling constraints. In this view,
we only have to maintain the graph F and find a maximal
independent set K. Therefore, the output feasible point x∗j
corresponds to vj ∈ K for each j ∈ Np. If vj /∈ K,
then x∗j = 0. We summarize the maximal independent set
technique in Algorithm 3. We also note that Algorithm 2
can be seen as a special case of Algorithm 3.

Based on the above-mentioned techniques, we improve
the ALM and propose a customized ALM in Algorithm 4.

Although Algorithms 2 and 3 can help us find a feasible
solution to problem (1), the quality of output by them
remains unjustified. To evaluate and improve the quality
of the solution, the simple way is to estimate the upper
and lower bounds of the objective function value, and then

Algorithm 3: A packing (maximal independent set)
technique

Input: The BCD solution xk, last conflict graph
F k−1 = (V k−1, Ek−1)

Output: A feasible solution xk∗
1 Step 1: Conflict graph update
2 for j = 1, 2, ..., p do
3 Collect new candidate paths Ṽ k

j for block j;
4 (1.1 node-update) V k ← V k−1 + Ṽ k

j ;
5 (1.2 self-check) Ek ← Ek−1 + {(p, p′) | ∀p ̸=

p′, p ∈ V k
j , p′ ∈ V k

j };
6 (1.3 edge-completion) Ek ← Ek +

{
(p, p′) |

if p, p′are compatible for ∀p ∈ Ṽ k
j , p′ ∈ V k\V k

j

}
,

here ‘compatible’ means that these two nodes
(block variables) satisfy the binding constraints;

7 Step 2: Maximal independent set (MIS) for a
feasible solution

8 Select a candidate solution set K ⊂ V k;
9 for v ∈ K do

10 Compute a maximal independent set K(v) with
respect to v in O(|Ek|) iterations;

11 Compute x∗ = argmaxv K(v).

Algorithm 4: A customized ALM

Input: x0, λ0, ρ0 > 0 and the best objective function
value f∗ = +∞. Set k = 0.

Output: A local (global) optimal solution x∗.
1 while the termination is not satisfied do
2 Step 2: Construct solution using Alg. 1
3 Update the BCD solution xk+1 by the procedure

in lines 2-5 of Alg. 1;
4 Step 3: Generate a feasible solution
5 if the BCD solution is not feasible then
6 transform the BCD solution to a feasible

solution x̄k+1 by calling a refinement
method in Alg. 2 or 3;

7 else
8 let x̄k+1 = xk+1;

9 Step 4: Update the best solution
10 if c⊤x̄k+1 ≤ f∗ then
11 Set f∗ = c⊤x̄k+1 and x∗ = x̄k+1;

12 Update the Lagrangian multipliers λk+1 by (13a)
and the penalty coefficient ρk+1 by (13b). Let
k = k + 1.
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calculate the gap between them. The smaller the gap, the
better the current solution. Obviously, our method can pro-
vide an upper bound of the objective function value. As for
the generation of the lower bound, we can use the following
method. (i) LP relaxation: by directly relaxing the binary
integer variables to [0, 1] continuous variables, we solve a
linear programming problem exactly to obtain the lower
bound of the objective function value. (ii) LR relaxation:
since the Lagrangian dual problem (2) is separable, we can
solve the decomposed subproblems exactly to obtain the
lower bound of the objective function value.

In general, the Lagrangian dual bound is at least as tight
as the linear programming bound obtained from the usual
linear programming relaxation [14]. Note that the relaxation
must be solved to optimality to yield a valid bound. There-
fore, we can use a combination of LR method and Alg. 4.
To be specific, LR aims at generating the lower bound of
the objective function value in (1), the solution is usually
infeasible. Steps 2 and 3 in Alg. 4 are used for generating fea-
sible solutions of (1). The smaller the gap between the lower
bound and the upper bound, the closer the feasible solution
is to the global optimal solution of the problem. It can be
seen from the iterative procedure that after many iterations,
this algorithm can generate many feasible solutions, and the
lower bound of the model is constantly improving. Finally,
we select the best solution. The combination of these two
methods takes advantage of the ALM and the LR method,
it not only finds a good feasible solution but also evaluates
the quality of the solution.

Compared with the ADMM-based method in [21], we
utilize BCD method to perform multiple iterations to solve
the subproblem (14) until the solutions remain unchanged,
which can improve the solution accuracy of the subproblem,
thereby reducing the total number of iterations. Moreover,
we adopt different refinement techniques to further enhance
the solution quality.

4 CONVERGENCE ANALYSIS

In this section, we present the convergence analysis of the
block coordinate descent method for solving the augmented
Lagrangian relaxation problem (4) and the augmented La-
grangian method for solving the dual problem (5). Unless
otherwise stated, the convergence results presented in this
section do not rely on Assumptions 3.1 and 3.2.

4.1 Convergence of BCD

We begin this section with the property of augmented La-
grangian function (3) that is fundamental in the convergence
analyis.

Proposition 4.1. The gradient of L(x, λ, ρ) at x is Lipschitz
continuous with constant κ on X , namely,

∥∇L(x, λ, ρ)−∇L(x̄, λ, ρ)∥ ≤ κ∥x− x̄∥

for all x, x̄ ∈ X , where κ = ρ∥A∥22. Furthermore,

L(x̄, λ, ρ) ≤ L(x, λ, ρ) + ⟨x̄− x,∇L(x, λ, ρ)⟩+ κ

2
∥x̄− x∥2

(28)
for all x, x̄ ∈ X .

Proof For any x, x̄ ∈ X ,

∥∇L(x, λ, ρ)−∇L(x̄, λ, ρ)∥

=
∥∥∥ρA⊤(Ax− b)+ − ρA⊤(Ax̄− b)+

∥∥∥
≤ρ∥A∥2 ∥(Ax− b)+ − (Ax̄− b)+∥
≤ρ∥A∥2 ∥Ax−Ax̄∥ ≤ ρ∥A∥22 ∥x− x̄∥ .

Then we have

⟨∇L(x, λ, ρ)−∇L(x̄, λ, ρ), x− x̄⟩
≤∥∇L(x, λ, ρ)−∇L(x̄, λ, ρ)∥∥x− x̄∥ ≤ κ∥x− x̄∥2.

It follows from the convexity of the function f(x) = κ
2 ∥x∥

2−
L(x, λ, ρ) that

f(x̄) ≥ f(x) +∇f(x)⊤(x− x̄),

which implies the estimate (28). □

Considering two different updates in the BCD method,
we first summarize the convergence property of the BCD
method for solving (15a), which has been presented in
[36]. Before that, we give the definition of the blockwise
optimal solution, which is also called coordinatewise min-
imum point in [37]. Given parameters λ and ρ, a feasible
solution x∗ is called a blockwise optimal solution of the
problem (4) if for each j ∈ Np, we have for all x =
(x∗1, ..., x∗j−1, xj , x∗j+1, ..., x∗p) ∈ X , L(x∗, λ, ρ) ≤ L(x, λ, ρ).
Lemma 4.1. Suppose Assumptions 3.1 and 3.2 hold. If the

starting point satisfies x0 ∈ X , then the BCD method for
solving (15a) is always executable and terminates after
a finite number of iterations with a blockwise optimal
solution of the problem (4).

Proof If Assumptions 3.1 and 3.2 hold, Lemma 3.1 tells us
that the subproblem (15a) can be solved exactly. (i) Since the
constraint set of each subproblem (15a) is bounded, then
all subproblems have an optimal solution. Therefore, the
BCD method for solving (15a) is executable. (ii) The result
in (i) illustrates that the sequence {xt} generated by the
BCD method exists. Thus the sequence of objective function
values {L(xt, λ, ρ)} can only take finitely many different
values. This together with the monotonically decreasing
property of the function L(x, λ, ρ) yields that L(xt, λ, ρ)
must become a constant. Then the BCD method is exe-
cutable. (iii) By the definition of the blockwise optimal
solution and the fact that the subproblem (15a) can be solved
exactly, we arrive at the conclusion. □

A similar conclusion can be found in [36], but it does not
clarify how to solve the subproblem. Note that each (global)
optimal solution of the model (4) is blockwise optimal, but
not vice versa. Subsequently, we analyze the convergence of
(15b). The following lemma ensures decreasing the function
value of L after each iteration if xt+1 ̸= xt and the step size
is chosen properly.
Lemma 4.2. Let {xt}t∈N be a sequence generated by (15b),

we obtain

(
1

2τ
− κ

2
)∥xt+1−xt∥2 ≤ L(xt, λ, ρ)−L(xt+1, λ, ρ). (29)

Proof Since

xt+1
j = TXj

(
τgj(xt)⊤xj +

1
2
− xtj

)
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and xtj ∈ Xj for all j ∈ {1, 2, ..., p}, we have(
τgj(xt) +

1
2
− xtj

)⊤
xt+1
j ≤

(
τgj(xt) +

1
2
− xtj

)⊤
xtj ,

which implies that

2τ⟨xt+1
j − xtj , gj(x

t)⟩+ ∥xt+1
j − xtj∥2 ≤ 0. (30)

Proposition 4.1 tells us that

L(xt+1, λ, ρ)− L(xt, λ, ρ)

≤
∑p

j=1
⟨xt+1

j − xtj , gj(x
t)⟩+ κ

2

∑p

j=1
∥xt+1

j − xtj∥2. (31)

Combining inequalities (30) and (31) yields (29). The proof
is completed. □

This lemma tells us that a small step size satisfying τ <
1/κ leads to a decrease in the function value L when xt+1 ̸=
xt. However, the following lemma states that when the step
size is too small, the iteration returns the same result. We let
g(x) denote the gradient of L(x, λ, ρ) at x.
Lemma 4.3. If the step size satisfies 0 < τ < 1

2∥g(xt)∥ when
g(xt) ̸= 0, then it holds that

xt = TX
(
τg(xt) +

1

2
− xt

)
.

Proof If 0 < τ < 1
2∥g(xt)∥ , for all xt ̸= x ∈ X , we have

−2τg(xt)⊤(xt−x) ≤ 2τ∥g(xt)∥∥xt−x∥ ≤ ∥xt−x∥ < ∥xt−x∥2,

where the last inequality holds due to xt, x ∈ {0, 1}n. It
yields that(

τg(xt) +
1
2
− xt

)⊤
xt ≤

(
τg(xt) +

1
2
− xt

)⊤
x.

By the definition of the operator TX (·), we arrive at the
conclusion. □

Based on Lemma 4.3, the implementation of the BCD
method heavily relies on the choice of step size τ . Hence,
we give a definition of a τ -stationary point.
Definition 4.1. For the AL relaxation problem (4), if a point

x∗ satisfies

x∗ = TX
(
τg(x∗) +

1
2
− x∗

)
with τ > 0, then it is called a τ -stationary point.

For the augmented Lagrangian relaxation problem (4),
given parameters λ and ρ, we say that x∗ is a δ-local
minimizer if there is an integer δ > 0 such that

L(x, λ, ρ) ≥ L(x∗, λ, ρ), for all x ∈ N (x∗, δ) ∩ X .

Note that a n-local minimizer is a global minimizer due to
the fact ∥x − x∗∥ ≤ n for all x, x∗ ∈ X . The following im-
portant result reveals a relationship between a τ -stationary
point and a global minimizer of the problem (4).
Theorem 4.1. We have the following relationships between

the τ -stationary point and the local minimizer of the
problem (4).

(i) If x∗ is a local minimizer, then x∗ is a τ -stationary
point for any step size 0 < τ < 1/κ.

(ii) If x∗ is a τ -stationary point with τ > δ/2, then x∗

is a δ-local minimizer of the problem (4) under the
assumption that the entries in A, b, c, λ and ρ are
integral.

Proof (i) If x∗ is a local minimizer, then for any x ∈ X we
have

L(x∗, λ, ρ) ≤L(x, λ, ρ)

≤L(x∗, λ, ρ) + ⟨∇L(x∗, λ, ρ), x− x∗⟩+ κ

2
∥x− x∗∥2.

Therefore,

⟨∇L(x∗, λ, ρ), x− x∗⟩ ≥ −κ

2
∥x− x∗∥2 ≥ − 1

2τ
∥x− x∗∥2,

which implies that x∗ is a τ -stationary point.
(ii) Since x∗ is a stationary point, then for any x ∈ X we

have(
τg(x∗) +

1
2
− x∗

)⊤
x∗ ≤

(
τg(x∗) +

1
2
− x∗

)⊤
x. (32)

For any x ∈ X ∩N (x∗, δ), we define the index sets J := {l ∈
Nn : x∗

l = 0, xl = 1} and J̄ := {l ∈ Nn : x∗
l = 1, xl = 0}.

Then (
τg(x∗) +

1
2
− x∗

)⊤
(x− x∗)

=
∑

l∈J

(
τgl(x∗) +

1

2

)
−
∑

l∈J̄

(
τgl(x∗)−

1

2

)
≤ τ

(∑
l∈J

gl(x∗)−
∑

l∈J̄
gl(x∗)

)
+

δ

2
,

which together with (32) and τ > δ
2 yields that∑

l∈J
gl(x∗)−

∑
l∈J̄

gl(x∗) ≥ −
δ

2τ
> −1.

Since the entries in A, b, c, λ and ρ are integral, then gl(x∗)
is an integer for every l ∈ Nn. This implies that∑

l∈J
gl(x∗)−

∑
l∈J̄

gl(x∗) ≥ 0.

Then for any x ∈ X ∩N (x∗, δ), it follows from the convexity
of L that

L(x, λ, ρ)− L(x∗, λ, ρ)
≥ ⟨∇L(x∗, λ, ρ), x− x∗⟩
=

∑
l∈J

gl(x∗)(xl − x∗
l ) +

∑
l∈J̄

gl(x∗)(xl − x∗
l )

=
∑

l∈J
gl(x∗)−

∑
l∈J̄

gl(x∗) ≥ 0.

Therefore, x∗ is a δ-local minimizer of the problem (4). □

We can observe from Theorem 4.1 that every block-
wise optimal solution of (4) is a τ -stationary point. Con-
versely, if the entries in A, b, c, λ and ρ are integral and
τ > 1

2 maxj{nj}, then every τ -stationary point of (4) is
blockwise optimal. These results on relationships between
τ -stationary point, blockwise optimal solution and local
(global) minimizer are summarized in Figure 1 intuitively.

We finally present the main result on the convergence of
the BCD method for solving (15b).
Theorem 4.2. (Convergence properties) Let {xt}t∈N be a

sequence generated by (15b). If the step size satisfies
0 < τ < 1

2κ , then we have
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δ-local minimizer

τ -stationary point
Condition (a), τ > 1

2
maxj{nj}

blockwise optimal solution

Condition (a), τ > δ/2
0 < τ < 1/κ

Assumption 3.1

δ =
n

Fig. 1: The relationships among τ -stationary point, blockwise optimal solution and local minimizer. Condition(a): the
entries in A, b, c, λ and ρ are integral.

(i) The sequence {L(xt, λ, ρ)}t∈N is nonincreasing and
κ

2
∥xt+1 − xt∥2 ≤ L(xt, λ, ρ)− L(xt+1, λ, ρ). (33)

(ii) The sequence {xt} converges to a τ -stationary point
after at most ⌈ 2C

√
n+κn
κ ⌉ iterations, where C =

maxx∈X ∥∇L(x, λ, ρ)∥.

Proof (i) It is obvious from (29) that if 0 < τ < 1
2κ , then

(33) holds.
(ii) Given the parameters λ ∈ Rm

+ and ρ > 0, we can
observe that the model (4) can be equivalently written as

minF (x) := L(x, λ, ρ) + δX (x),

where δX (x) is the indicator function of the set X , i.e.,
δX (x) = +∞, if x ∈ X and 0 otherwise. To verify that the
sequence {xt} converges to a τ -stationary point, we examine
that the conditions in [38, Theorem 1] hold.

Firstly, since the set X = {x ∈ {0, 1}n : Bx ≤ d} is
semi-algebraic, then δX (x) is a Kurdyka-Łojasiewicz (KL)
function [38], [39]. It is obvious to see that L(x, λ, ρ) is also
a KL function, and hence the function F (x) satisfies the KL
property, which is a crucial condition ensuring convergence.

Secondly, the Lipschitz constant κ > 0 in Proposition 4.1
is bounded if ρ has an upper bound, and the problem (4) is
inf-bounded.

Thirdly, for any x, x̄ ∈ X with x̄ = (x1, ..., x̄j , ..., xp),

∥∇xjL(x, λ, ρ)−∇xjL(x̄, λ, ρ)∥

=
∥∥∥ρA⊤

j (Ax− b)+ − ρA⊤
j (Ax̄− b)+

∥∥∥
≤ ρ∥Aj∥2 ∥(Ax− b)+ − (Ax̄− b)+∥
≤ ρ∥Aj∥2 ∥Ax−Ax̄∥ ≤ ρ∥Aj∥22 ∥xj − x̄j∥ .

Therefore, the result follows from [38, Theorem 1].
Suppose x∗ is a τ -stationary point, then for every x ∈ X ,

we have

L(x, λ, ρ)− L(x∗, λ, ρ)

≤⟨∇L(x∗, λ, ρ), x− x∗⟩+ κ

2
∥x− x∗∥2

≤C∥x− x∗∥+ κ

2
∥x− x∗∥2 ≤ C

√
n+

κn

2
. (34)

If each iteration always finds a new point until arriving at
x∗, we get

κT

2
≤
∑T

t=0

(
L(xt, λ, ρ)− L(xt+1, λ, ρ)

)
≤ L(x0, λ, ρ)− L(x∗, λ, ρ), (35)

where the first inequality holds due to the conclusion in (i)
and the fact ∥xt+1 − xt∥ ≥ 1. Thus combining (34) with (35)

yields that T ≤ ⌈ 2C
√
n+κn
κ ⌉. It implies that we only need at

most ⌈ 2C
√
n+κn
κ ⌉ steps to arrive at a τ -stationary point. □

If each iteration of the BCD method always finds a
new point, then according to Theorem 4.2 (i), we have∑∞

t=0 ∥xt+1 − xt∥2 < +∞. By Theorem 1 in [38], we can
conclude that limt→∞ xt = x∗, where x∗ is a limit point
of the sequence {xt}t∈N. If we choose an initial point that
is already close to an optimal solution and an appropriate
step size τ , based on specific convergence criteria detailed
in Theorem 4.2, the BCD method can find a global solution
of problem (4).

4.2 Convergence of ALM
Assume the BCD method returns a global minimizer x∗ to
the augmented Lagrangian relaxation problem (4) in each
inner loop. In this subsection, we focus on the convergence
property of the projected subgradient method for solving
the dual problem (5). For convenience, we introduce the
following constants for subsequent analysis:

S := argmaxλ∈Rm
+ ,ρ>0 d(λ, ρ),

θ := min(λ,ρ)∈S ∥λ0 − λ∥2 + (ρ0 − ρ)2.

Let dkg denote the subgradient of d(λk, ρk). We estimate the
distance between the dual function value in each iteration
and the optimal value of the problem (1) in the following
theorem.
Theorem 4.3. If we take the step size αk = βk

∥dk
g∥

with βk =√
θ
K , then,

f IP − max
k∈{1,2,...,K}

d(λk, ρk) ≤ ζ

2

√
5θ

K
,

where ζ = maxx∈X ∥Ax− b∥4. Furthermore, if the posi-
tive sequence {βk}k∈N is bounded and

∑
k∈N β

2
k < +∞.

Then (λk, ρk) converges to some (λ∗, ρ∗) ∈ S.

Proof Let {(λk, ρk)}k∈N be the sequence generated by
Algorithm 1. We derive from the Lemma 3 in [17] that

f IP − max
k∈{1,2,...,K}

d(λk, ρk) ≤
θ +

∑K
k=1(α

k∥dkg∥)2

2
∑K

k=1 α
k

. (36)

For all k ∈ N, we have

∥dkg∥2 = ∥Axk−b∥2+1

4
∥(Axk−b)+∥4 ≤

5

4
∥Axk−b∥4 ≤ 5

4
ζ.

Then the right-hand side of (36) satisfies

θ +
∑K

k=1(α
k∥dkg∥)2

2
∑K

k=1 α
k

=

√
5ζ(θ +

∑K
k=1 β

2
k)

4
∑K

k=1 βk

=
ζ

2

√
5θ

K
.
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Thus we arrive at the first result.
The second claim is then proved in [40, Theorem 7.4],

where the proof for the subgradient method is readily
extended to the projected subgradient method. □

Although the theoretical analysis of ALM-C relies on
Assumption 3.1, our tests show that ALM-C is also effective
in more general settings. Furthermore, we present the ALM-
P method as a versatile alternative not relying on this
assumption.

5 APPLICATIONS

In this section, we show the performance of the proposed
algorithms on two practical problems. One is the train
timetabling problem and the other is the vehicle routing
problem. To show the performance of compared methods,
we define three termination criteria: a maximum number
of iterations, a time limit, and an optimality gap based on
the difference between the objective value generated by our
methods and the best known value. All instances are tested
on a MacBook Pro 2019 with 8GB of memory and Intel Core
i5 (Turbo Boost up to 4.1 GHz) with 128 MB eDRAM.

5.1 Capacitated vehicle routing problem
We consider the capacitated vehicle routing problem with
time windows (CVRPTW). The problem is defined on
a complete directed graph G = (V,E), where V =
{0, 1, ..., n} is the node set and E is the edge set. Node
0 represents the depot where the vehicles are based, and
nodes 1 to n represent the customers that need to be served.
Each edge (s, t) in E has an associated travel time Tst. Each
customer s has a demand cs and a service time window
[as, bs]. We let dst be the distance from node s to node t and
M be a large constant. The objective is to construct a set of
least-cost vehicle routes starting and ending at the depot,
such that each customer is visited exactly once within their
time window, and the total demand of customers served in
each route does not exceed vehicle capacity C .

To formulate this problem as an integer program, we de-
fine the following decision variables: (i) xj

st: binary variable
equal to 1 if edge (s, t) is used by vehicle j, 0 otherwise. (ii)
wj

s: continuous variable indicating the start of service time
at customer s by vehicle j. Then the block structured integer
linear programming formulation is:

min
∑

j∈Np

∑
(s,t)∈E

dstx
j
st (37a)

s.t.
∑

j∈Np

∑
t∈V :t̸=s

xj
st = 1, s ∈ V \0 (37b)∑

t∈V \s
xj
st =

∑
t∈V \s

xj
ts, i ∈ V, j ∈ Np (37c)∑

t∈V \0
xj
0t = 1, j ∈ Np (37d)∑

s∈V

∑
t∈V \s

csx
j
st ≤ C, j ∈ Np (37e)

wj
s + Tst −M(1− xj

st) ≤ wj
t , (s, t) ∈ E, j ∈ Np (37f)

as ≤ wj
s ≤ bs, s ∈ V, j ∈ Np (37g)

xj
st ∈ 0, 1, (s, t) ∈ E, j ∈ Np (37h)

The block structure lies in the routing variables xj
st for

each vehicle j, which are constrained by the flow balance,

capacity and time window constraints. By relaxing the
coupling constraints (37b), the problem decomposes into
separate routing subproblems per vehicle.

5.1.1 Parameter Setting

We let ALM-C and ALM-P denote Algorithm 4 using the
updates (15a) and (15b) in step 2, respectively. We compare
our proposed methods with the Gurobi solver (version
11.0.0) and OR-tools on all the instances from the Solomon
dataset [41]. Since the ADMM in [20] lacks adaptability for
all instances, then we do not compare with it. To illustrate
the scale of these instances, we present a subset of represen-
tative examples in Table 1. The notations |F |, |V | and |E|
represent the number of vehicles, the number of customers
and the number of edges. n and nw denote the number of
variables x and w, respectively. To evaluate the robustness
of the compared methods, we conduct experiments on the
C1-type instances with various problem sizes, as detailed
in Table 2. The results of all remaining instances from the
Solomon dataset are presented in Table 3.

We adopt a “vehicle and route-based” formulation to
model the CVRPTW problem, which is different from the
space-time network flow formulation used in [20]. There-
fore, the subproblem is a route problem with capacity and
time window constraints. We utilize the Gurobi solver to
solve the subproblem for convenience. Note that the for-
mulation does not affect Gurobi’s performance. To ensure a
fair comparison and maximize Gurobi’s utilization, we have
implemented efficient callback functions based on Danzig’s
formulation to fine-tune its performance. We set a time limit
of 2000 seconds for the compared methods, except for or-
tools where the time limit is set to 500 seconds, and use the
symbol “–” to signify that the solver failed to find a feasible
solution within the allotted time limit.

TABLE 1: A subset of representative examples of the
Solomon datasets

No. |F | |V | |E| m q n nw

R101-50 12 50 2,550 50 30,636 30,600 612
R201-50 6 50 2,550 50 15,318 15,300 306

RC101-50 8 50 2,550 50 20,424 20,400 408
RC201-50 5 50 2,550 50 12,765 12,750 255
C101-100 10 100 10,100 100 101,030 101,000 1,010
C201-100 3 100 10,100 100 30,309 30,300 303

5.1.2 Performances of the Proposed Algorithm

In the subsequent tables, the “f∗” and “f” columns corre-
spond to the best-known objective values and the objective
values of feasible solutions generated by these compared
methods, respectively. The “Time” column denotes the CPU
time (in seconds) that the methods taken by the algorithms
to meet the stopping criteria. The optimality gap is defined
by gap1 = |f − f∗|/|f∗|. Due to the lack of an inherent
termination criterion in OR-tools, it runs for the entire
limited time and outputs the corresponding feasible solu-
tion. Therefore, we do not report its solution time. Table 2
shows the stability of the compared methods under various
problem sizes on the C1-type instances. We can observe
that our methods outperform the OR-Tools and Gurobi,
and are more stable than the OR-Tools. From Table 3, we
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can find that the ALM-C algorithm outperforms the OR-
Tools and Gurobi in most instances, achieving significantly
lower optimality gaps and competitive computation times.
The ALM-P algorithm also exhibits promising results, often
outperforming Gurobi in efficiency and solution quality.
Overall, both the proposed ALM-C and ALM-P algorithms
demonstrate their superiority and robustness in solving the
CVRPTW problem, providing high-quality solutions with
good computational efficiency when compared to existing
solvers and heuristic approaches.

To demonstrate the advantages of our methods, we
show the convergence curve of the primal bound and dual
bound of Gurobi, comparing it to the solution found by our
solver with the instance “C109.50” as an example. As we
can observe in Figure 2, our methods achieve near-optimal
solutions in around 15 seconds, significantly faster than
Gurobi which takes approximately 300 seconds. We notice
that as the objective values increase, the corresponding con-
straint violation decreases simultaneously, facilitating fast
convergence.

5.2 Train timetabling problem

We consider following space-time network model for the
train timetabling problem (TTP) on a macro level, which is
based on the model in [42]. We use a directed, acyclic and
multiplicative graph G = (V,E) to characterize the train
timetabling problem, where V and E denote the set of all
nodes and the set of all arcs. For each train j ∈ Np, the
sets or parameters with superscript or subscript notation
corresponds to relevant object to j. For each arc e ∈ Ej ,
we introduce a binary variable xe equal to 1 if the arc e is
selected. For each node v ∈ V , let δ+j (v) and δ−j (v) be the
sets of arcs in Ej leaving and entering node v, respectively.
Then the integer programming model of TTP is given by

max
∑

j∈Np

∑
e∈Ej

pexe (38a)

s.t.
∑

e∈δ+j (σ)
xe ≤ 1, j ∈ Np (38b)∑

e∈δ−j (v)

xe =
∑

e∈δ+j (v)

xe, j ∈ Np, v ∈ V \{σ, τ} (38c)

∑
e∈δ−j (τ)

xe ≤ 1, j ∈ Np (38d)∑
v′∈N (v)

∑
j∈T (v′)

∑
e∈δ−j (v′)

xe ≤ 1, v ∈ V (38e)∑
e∈C

xe ≤ 1, C ∈ C (38f)

xe ∈ {0, 1}, e ∈ E, (38g)

where pe is the “profit” of using a certain arc e. σ and τ
denote artificial origin and destination nodes, respectively.
T (v) andN (v) denote the set of trains may passing through
node v and the set of nodes conflicted with node v, respec-
tively. C denotes the (exponentially large) family of maximal
subsets C of pairwise incompatible arcs. In this model, (38b),
(38c), (38d) imply the arcs of train j should form a valid path
in G, (38e) represents headway constraints, (38f) forbids the
simultaneous selection of incompatible arcs, imposing the
track capacity constraints.

Let xj = {xe | e ∈ Ej}. Then we can rewrite this
space-time network model in the general form as (1). Our

goal is to show that the proposed Algorithm 4 is fully
capable to provide implementable time tables for the Jinghu
railway. Specifically, our algorithms are tested on the time-
tabling problem for Beijing-Shanghai high-speed railway
(or Jinghu high-speed railway in Mandarin). As one of the
busiest railways in the world, the Beijing-Shanghai high-
speed railway transported over 210 million passengers in
2019*. In our test case, the problem consists of 29 stations
and 292 trains in both directions (up and down), including
two major levels of speed: 300 km/h and 350 km/h. Several
numerical experiments are carried out based on the data
of Beijing-Shanghai high-speed railway to demonstrate the
feasibility and effectiveness of the proposed strategy.

We compare our proposed methods with the Gurobi
solver and ADMM [21] on small and real-world instances,
as presented in Tables 4 and 5. The notations |F |, |S| and
|T | represent the number of trains, the number of stations,
and the time window. In most large-scale cases, the Gurobi
solver takes a much longer time to solve, so we set a
time limit of two hours. Since (38a) maximizes the positive
revenue, we have a negative cost if reversing the objective to
a minimization problem, then both subproblems (15a) and
(15b) are solved by the Bellman-Ford algorithm, which is an
efficient tool for solving the shortest path problem.

5.2.1 Performances on small instances
We first validate our algorithm on a smaller sub-network
using a subset of stations of the Jinghu railway. We set the
revenue of each arc proportional to the distance between
two stations, which corresponds to an intuition that longer
rides should bear higher incomes. For our proposed meth-
ods, we set uniformly ρ0 = 20 and σ = 1.2 for all instances.
We set a time limit of 100 seconds for our algorithms.
Since the optimal value is unknown, we report the upper
bounds (UB) obtained by the Gurobi solver as a reference
for comparison in Table 4. We can observe that our ALM-C
performs competitively with the Gurobi solver in terms of
both the optimal value and computation time.

5.2.2 Performances on real-world instances
To verify the efficiency of the ALM-C and ALM-P on large-
scale data with all stations involved, we consider the fol-
lowing five examples of ascending problem size in Table
5. Similarly, we try to maximize the total revenue of our
schedule. In practice, the revenue of an arc may be am-
biguous. Besides, since Jinghu high-speed railway always
has a high level of utilization, introducing new trains is
always beneficial since it further covers unmet demand. In
this view, we introduce an alternative objective function to
simply maximize the number of scheduled trains. Perhaps
not surprisingly, this simplified objective can dramatically
speed up our methods for practical interest. This is due
to the fact that the coefficient pe in the objective function
is sparse, resulting in faster identification of the optimal
solution under this model.

For our proposed methods, we set ρ0 = 10−3 and σ =
2 for the instances No. 1-2, ρ0 = 10−2 and σ = 1.1 for
the instances No. 3 and No. 5, ρ0 = 10−3 and σ = 1.1

*. For details, see https://en.wikipedia.org/wiki/Beijing-
Shanghai high-speed railway.
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TABLE 2: Performance comparison on Solomon’s C1 instances with varying problem size and perturbation. A time limit
of 500 seconds is set for OR-Tools.

ins. |V | |F | f∗ OR-Tools Gurobi ALM-P ALM-C
f gap1 f gap1 Time f gap1 Time f gap1 Time

c101 25 3 191.3 632.6 230.7% 191.8 0.3% 0.0 191.8 0.3% 2.4 191.8 0.3% 2.7
50 5 362.4 514.4 41.9% 363.2 0.2% 1.1 363.2 0.2% 5.9 363.2 0.2% 5.0
100 10 827.3 828.9 0.2% 828.9 0.2% 8.9 828.9 0.2% 57.8 828.9 0.2% 55.0

c102 25 3 190.3 786.1 313.1% 190.7 0.2% 1.9 190.7 0.2% 3.7 190.7 0.2% 4.6
50 5 361.4 667.9 84.8% 362.2 0.2% 25.5 362.2 0.2% 16.0 362.2 0.2% 15.3
100 10 827.3 828.9 0.2% - 2000 828.9 0.2% 167.4 828.9 0.2% 196.4

c103 25 3 190.3 786.1 313.1% 190.7 0.2% 7.0 190.7 0.2% 15.9 190.7 0.2% 11.0
50 5 361.4 667.9 84.8% 362.2 0.2% 1584.8 365.3 1.1% 40.0 362.2 0.2% 41.5
100 10 826.3 - - - 2000 839.0 1.5% 362.6 828.1 0.2% 259.9

c104 25 3 186.9 875.6 368.5% 187.4 0.3% 45.1 188.6 0.9% 33.5 188.6 0.9% 17.9
50 5 358.0 606.2 69.3% 360.1 0.6% 2000 362.2 1.2% 57.1 358.9 0.3% 319.8
100 10 822.9 1202.3 46.1% - 2000 890.9 8.3% 667.5 904.9 10.0% 363.3

c105 25 3 191.3 609.6 218.6% 191.8 0.3% 0.1 191.8 0.3% 3.3 191.8 0.3% 3.4
50 5 362.4 482.4 33.1% 363.2 0.2% 0.3 363.2 0.2% 6.4 363.2 0.2% 6.0
100 10 827.3 828.9 0.2% 828.9 0.2% 15.8 828.9 0.2% 53.3 828.9 0.2% 34.2

c106 25 3 191.3 639.6 234.3% 191.8 0.3% 0.1 191.8 0.3% 3.6 191.8 0.3% 3.8
50 5 362.4 430.4 18.8% 363.2 0.2% 1.4 363.2 0.2% 5.8 363.2 0.2% 5.9
100 10 827.3 828.9 0.2% 828.9 0.2% 650.6 828.9 0.2% 69.6 828.9 0.2% 47.0

c107 25 3 191.3 565.6 195.6% 191.8 0.3% 0.1 191.8 0.3% 3.2 191.8 0.3% 4.3
50 5 362.4 457.4 26.2% 363.2 0.2% 0.8 363.2 0.2% 6.1 363.2 0.2% 6.6
100 10 827.3 828.9 0.2% 828.9 0.2% 14.6 828.9 0.2% 65.2 828.9 0.2% 35.2

c108 25 3 191.3 564.6 195.1% 191.8 0.3% 0.9 191.8 0.3% 4.5 191.8 0.3% 4.4
50 5 362.4 - - 363.2 0.2% 18.6 363.2 0.2% 8.4 363.2 0.2% 14.2
100 10 827.3 - - - 2000 828.9 0.2% 98.0 828.9 0.2% 265.4

c109 25 3 191.3 475.6 148.6% 191.8 0.3% 9.6 191.8 0.3% 6.3 191.8 0.3% 9.7
50 5 362.4 363.2 0.2% 363.2 0.2% 1867.4 363.2 0.2% 12.3 363.2 0.2% 13.1
100 10 827.3 828.9 0.2% - 2000 828.9 0.2% 234.5 828.9 0.2% 304.3

(a) Objective Value (b) Constraint Violation (c) Primal and Dual Bound of Gurobi

Fig. 2: Comparison of Gurobi and our methods

for the instance No. 4. We set x0 and λ0 to be zero for all
instances. Both the number of variables and the number of
constraints of the model (38) are very large for this practical
TTP instance, whose dimensions are up to tens of millions.
Tables 6 and 7 show the performance results of our proposed
methods and the Gurobi solver, where gap2 := (UB− f)/f .

The results clearly demonstrate the high effectiveness of
our methods compared to Gurobi, especially when dealing
with large-scale data. For the instance No. 1, both ALM-
C and ALM-P can schedule 27 trains in a few seconds,
which are at least 1000 times faster than the Gurobi solver
and meanwhile obtain satisfactory accuracy performance. In
particular, when the scale of data is up to tens of millions in

instance No. 5, our ALM-C and ALM-P successfully sched-
ule all 292 trains. In contrast, the Gurobi solver produces a
relatively small number of trains, only 30 trains, and takes
much longer. The results of other instances also illustrate the
effectiveness of this technique. Therefore, we can conclude
that the customized ALM provides a fast and global optimal
solution for this practical problem.

6 CONCLUSION

In this paper, we study general integer programming with
block structure. Benefiting from its special structure, we
extend the augmented Lagrangian method, originally de-
signed for continuous problems, to effectively solve the
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TABLE 3: Complete results on other Solomon’s instances, all instances are associated with 50 customers. A time limit of
500 seconds is set for OR-Tools.

ins. |J | f∗ OR-Tools Gurobi ALM-P ALM-C
f ε f ε t f ε t f ε t

c201.50 3 360.2 1622 350.3% 361.8 0.4% 0.1 361.8 0.4% 4.2 361.8 0.4% 3.4
c202.50 3 360.2 1622 350.3% 361.8 0.4% 5.7 361.8 0.4% 19.1 366.8 1.8% 7.1
c203.50 3 359.8 1713.4 376.2% 361.4 0.4% 113.5 361.4 0.4% 43.7 361.4 0.4% 76.8
c204.50 2 350.1 1435.3 310.0% 351.7 0.5% 2000 366.9 4.8% 55.7 351.7 0.5% 166.3
c205.50 3 359.8 1729 380.5% 361.4 0.4% 1.1 361.4 0.4% 7.9 361.4 0.4% 7.0
c206.50 3 359.8 1741.8 384.1% 361.4 0.4% 1.5 361.4 0.4% 14.4 361.4 0.4% 19.1
c207.50 3 359.6 1622.3 351.1% 361.2 0.4% 11.9 361.2 0.5% 25.0 361.2 0.4% 125.7
c208.50 2 350.5 1629.2 364.8% 352.1 0.5% 8.0 355.9 1.5% 14.2 352.1 0.5% 31.5

r101.50 12 1044 1541.9 47.7% 1046.7 0.3% 2.1 1046.7 0.3% 38.5 1046.7 0.3% 47.3
r102.50 11 909 1374.8 51.2% 911.4 0.3% 2000 939.5 3.4% 248.9 925.3 1.8% 317.2
r103.50 9 772.9 1069.1 38.3% - - 2000 806.4 4.3% 289.8 803.8 4.0% 256.1
r104.50 6 625.4 743.5 18.9% - - 2000 654.4 4.6% 472.1 686.6 9.8% 649.9
r105.50 9 899.3 1101.7 22.5% 901.9 0.3% 268.5 906.13 0.8% 61.1 901.9 0.3% 60.2
r106.50 5 793 937.8 18.3% - - 2000 - - - - - -
r107.50 7 711.1 790.5 11.2% - - 2000 816.47 14.8% 120.5 741.5 4.3% 336.2
r108.50 6 617.7 698.1 13.0% - - 2000 645.7 4.5% 215.1 643.9 4.2% 466.5
r109.50 8 786.8 873.2 11.0% 805.6 2.4% 2000 796.3 1.2% 77.2 788.7 0.2% 324.9
r110.50 7 697 887.1 27.3% - - 2000 754.9 8.3% 560.6 768.1 10.2% 225.4
r111.50 7 707.2 784.5 10.9% - - 2000 750.0 6.0% 297.8 801.9 13.4% 220.8
r112.50 6 630.2 730.6 15.9% - - 2000 665.7 5.6% 476.5 698.0 10.8% 300.2

r201.50 6 791.9 1196.9 51.1% 794.3 0.3% 5.2 803.5 1.5% 27.0 801.3 1.2% 30.4
r202.50 5 698.5 1173.2 68.0% 723.0 3.5% 2000 735.7 5.3% 437.0 726.3 4.0% 337.2
r203.50 5 605.3 1173.2 93.8% 608.0 0.4% 2000 639.4 5.6% 168.6 653.0 7.9% 380.9
r204.50 2 506.4 1127.9 122.7% 512.4 1.2% 2000 524.0 3.5% 75.8 583.8 15.3% 401.6
r205.50 4 690.1 1132.3 64.1% 700.2 1.5% 2000 732.4 6.1% 74.5 731.7 6.0% 87.8
r206.50 4 632.4 1066.9 68.7% 657.2 3.9% 2000 682.1 7.9% 188.4 677.2 7.1% 266.6
r207.50 3 361.6 1046.8 189.5% - - 2000 362.6 0.3% 13.1 364.1 0.7% 25.2
r208.50 1 328.2 1019.6 210.7% - - 2000 329.3 0.3% 11.9 329.3 0.3% 13.3
r209.50 4 600.6 1043.6 73.8% 639.6 6.5% 2000 608.5 1.3% 217.9 609.4 1.5% 58.5
r210.50 4 645.6 1119.5 73.4% 661.0 2.4% 2000 710.2 10.0% 288.6 669.2 3.7% 253.4
r211.50 3 535.5 958.7 79.0% - - 2000 590.4 10.3% 168.8 555.1 3.7% 339.8

rc101.50 8 944 1108.3 17.4% 945.6 0.2% 2000 945.6 0.2% 191.2 945.6 0.2% 78.8
rc102.50 7 822.5 940.7 14.4% - - 2000 823.1 0.1% 510.3 823.1 0.1% 242.9
rc103.50 6 710.9 834.9 17.4% - - 2000 736.4 3.6% 134.7 751.3 5.7% 335.2
rc104.50 5 545.8 641.4 17.5% - - 2000 546.5 0.1% 101.6 546.5 0.1% 91.5
rc105.50 8 855.3 1112.7 30.1% - - 2000 873.2 2.1% 99.0 902.7 5.5% 134.4
rc106.50 6 723.2 793 9.7% - - 2000 733.7 1.5% 79.3 728.1 0.7% 152.4
rc107.50 6 642.7 752.3 17.1% - - 2000 650.3 1.2% 235.2 644.0 0.2% 183.7
rc108.50 6 598.1 690.3 15.4% - - 2000 600.7 0.4% 256.1 599.2 0.2% 276.4

rc201.50 5 684.8 1904.7 178.1% 686.3 0.2% 12.5 687.7 0.4% 31.9 686.3 0.2% 14.8
rc202.50 5 613.6 1172.6 91.1% 615.0 0.2% 2000 615.6 0.3% 62.2 615.0 0.2% 85.9
rc203.50 4 555.3 1163.1 109.5% 556.5 0.2% 2000 590.4 6.3% 256.7 558.5 0.6% 265.8
rc204.50 3 444.2 1090.3 145.5% 509.4 14.7% 2000 451.8 1.7% 218.4 462.3 4.1% 153.7
rc205.50 5 630.2 1222.7 94.0% 632.0 0.3% 2000 632.0 0.3% 89.8 632.0 0.3% 56.0
rc206.50 5 610 1088.5 78.4% 611.7 0.3% 2000 611.7 0.3% 36.8 611.7 0.3% 42.9
rc207.50 4 558.6 998.3 78.7% - - 2000 591.7 5.9% 315.5 608.5 8.9% 281.1
rc208.50 2 269.1 936.9 248.2% - - 2000 269.6 0.2% 65.0 269.6 0.2% 109.1

problem (1). By introducing a novel augmented Lagrangian
function, we establish the strong duality and optimality for
the problem (1). Furthermore, we provide the convergence
results of the proposed methods for both the augmented
Lagrangian relaxation and dual problems. To obtain high-
quality feasible solutions, we develop a customized ALM
combined with refinement techniques to iteratively improve
the primal and dual solution quality simultaneously. The
numerical experiments demonstrate that the customized
ALM is time-saving and performs well for finding optimal
solutions to a wide variety of practical problems.
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