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Abstract. Subspace techniques such as Krylov subspace methods have been well known and extensively used in7
numerical linear algebra. They are also ubiquitous and becoming indispensable tools in nonlinear opti-8
mization due to their ability to handle large scale problems. There are generally two types of principals: i)9
the decision variable is updated in a lower dimensional subspace; ii) the objective function or constraints10
are approximated in a certain smaller functional subspace. The key ingredients are the constructions of11
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such that either the exact or inexact solutions of subproblems are readily available and the corresponding13
computational cost is significantly reduced. A few relevant techniques include but not limited to direct14
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correction, sampling and sketching. This paper gives a comprehensive survey on the subspace meth-16
ods and their recipes in unconstrained and constrained optimization, nonlinear least squares problem,17
sparse and low rank optimization, linear and nonlinear eigenvalue computation, semidefinite program-18
ming, stochastic optimization and etc. In order to provide helpful guidelines, we emphasize on high level19
concepts for the development and implementation of practical algorithms from the subspace framework.20
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1. Introduction. Large scale optimization problems appear in a wide variety of scien-91
tific and engineering domains. In this paper, we consider a general optimization problem92

(1.1) min
x

f(x), s. t. x ∈ X ,93

where x is the decision variable, f(x) is the objective function and X is the feasible set. Effi-94
cient numerical optimization algorithms have been extensively developed for (1.1) with vari-95
ous types of objective functions and constraints [111, 88]. With the rapidly increasing prob-96
lem scales, subspace techniques are ubiquitous and becoming indispensable tools in nonlinear97
optimization due to their ability to handle large scale problems. For example, the Krylov sub-98
space methods developed in the numerical linear algebraic community have been widely used99
for the linear least squares problem and linear eigenvalue problem. The characteristics of the100
subspaces are clear in many popular optimization algorithms such as the linear and nonlin-101
ear conjugate gradient methods, Nesterov’s accelerated gradient method, the Quasi-Newton102
methods and the block coordinate decent (BCD) method. The subspace correction method103
for convex optimization can be viewed as generalizations of multigrid and domain decompo-104
sition methods. The Anderson acceleration or the direct inversion of iterative subspace (DIIS)105
methods have been successful in computational quantum physics and chemistry. The stochas-106
tic gradient type methods usually take a mini-batch from a large collection samples so that107
the computational cost of each inner iteration is small. The sketching techniques formulate a108
reduced problem by a multiplication with random matrices with certain properties.109

The purpose of this paper is to provide a review of the subspace methods for nonlinear110
optimization, for their further improvement and for their future usage in even more diverse111
and emerging fields. The subspaces techniques for (1.1) are generally divided into two cat-112
egories. The first type is to update the decision variable in a lower dimensional subspace,113
while the second type is to construct approximations of the objective function or constraints114
in a certain smaller subspace of functions. Usually, there are three key steps.115

• Identify a suitable subspace either for the decision variables or the functions.116
• Construct a proper subproblem by various restrictions or approximations.117
• Find either an exact or inexact solution of subproblems.118

These steps are often mixed together using the specific structures of the problems case by119
case. The essence is how to reduce the corresponding computational cost significantly.120
During the practice in unconstrained and constrained optimization, nonlinear least squares121
problem, sparse and low rank optimization, linear and nonlinear eigenvalue computation,122
semidefinite programming, stochastic optimization, manifold optimization, phase retrieval,123
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variational minimization and etc, the collection of subspaces techniques is growing ever rich.124
It includes but not limited to direct combinations, BCD, active sets, limited-memory, Ander-125
son acceleration, subspace correction, sampling and sketching. We aim to provide helpful126
guidelines for the development and implementation of practical algorithms using the sub-127
space framework. Hence, only high level algorithmic ideas rather than theoretical properties128
of the subspace techniques are covered in various contexts.129

1.1. Overview of Subspace Techniques. We next summarize the concepts and130
contexts of a few main subspace techniques.131

Direct Combinations. It is a common practice to update the decision variables using a132
combination of a few known directions which forms a subspace. The linear and nonlinear133
conjugate gradient methods [111, 88], the Nesterov’s accelerated gradient method [84, 85],134
the Heavy-ball method [90], the search direction correction method [126] and the momentum135
method [47] take a linear combination of the gradient and the previous search direction. The136
main difference is reflected in the choices of the coefficients according to different explicit137
formulas.138

BCD. The variables in many problems can be split naturally into a few blocks whose sub-139
spaces are spanned by the coordinate directions. The Gauss-Seidel type of the BCD method140
updates only one block by minimizing the objective function or its surrogate while all other141
blocks are fixed at each iteration. It has been one of the core algorithmic idea in solving142
problems with block structures, such as convex programming [77], nonlinear programming143
[9], semidefinite programming [129, 145], compressive sensing [72, 32], etc. A proximal144
alternating linearized minimization method is developed in [10] for solving a summation of145
nonconvex but differentiable and nonsmooth functions. The alternating direction methods of146
multipliers (ADMM) [11, 27, 41, 45, 55, 125] minimize the augmented Lagrangian function147
with respect to the primal variables by BCD, then update the Lagrangian multiplier.148

Active Sets. When a clear partition of variables is not available, a subset of the variables149
can be fixed in the so-called active sets under certain mechanisms and the remaining variables150
are determined from certain subproblems for optimization problems with bound constraints151
or linear constraints in [17, 18, 51, 81, 82], `1-regularized problem for sparse optimization152
in [133, 105, 64] and general nonlinear programs in [19, 20]. In quadratic programming, the153
inequality constraints that have zero values at the optimal solution are called active, and they154
are replaced by equality constraints in the subproblem [111].155

Limited-memory. A typical subspace is constructed from a number of history infor-156
mation, for example, the previous iterates {xk}, the previous gradients {∇f(xk)}, the dif-157
ferences between two consecutive iterates {xk − xk−1}, and the differences between two158
consecutive gradients {∇f(xk) − ∇f(xk−1)}. After the new iterate is formed, the oldest159
vectors in the storage are replaced by the most recent vectors if certain justification rules are160
satisfied. Two examples are the limited memory BFGS method [111, 88], and the limited161
memory block Krylov subspace optimization method (LMSVD) [74].162

Anderson Acceleration. For a sequence {xk} generated by a general fixed-point iter-163
ation, the Anderson acceleration produces a new point using a linear combination of a few164
points in {xk}, where the coefficients are determined from an extra linear least squares prob-165
lem with a normalized constraint [13, 4, 123]. A few related schemes include the minimal166
polynomial extrapolation, modified minimal polynomial extrapolation, reduced rank extrap-167
olation, the vector Epsilon algorithm and the topological Epsilon algorithm. The Anderson168
acceleration is also known as Anderson mixing, Pulay mixing, DIIS or the commutator DIIS169
[92, 93, 115] in electronic structure calculation. These techniques have also been applied to170
optimization problems in [99, 147].171

Subspace correction. For variational problems, the domain decomposition methods172
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split the spatial domain into several subdomains and solve the corresponding problems on173
these subdomains iteratively using certain strategies. The successive subspace correction174
(SSC) and parallel subspace correction (PSC) methods [22, 36, 39, 38, 68, 112] are similar to175
the Gauss-Seidel-type and Jacobian-type BCD methods, respectively. However, the subspace176
correction is significantly different from BCD due to the strong connections between variables177
in the subdomains. The PSC methods have been studied for LASSO in [36, 39, 29] and total178
variation minimization in [37, 38, 39, 68].179

Sampling. Assume that there are a large number of data. The general concept of sam-180
pling is to randomly select a small set of samples with an appropriate probability distribution181
with or without replacement. In the stochastic gradient descent type methods, the gradient in182
expectation is approximated by a sum of sample gradients over a mini-batch [47]. Random183
sampling is also helpful in many other contexts, for example, a greedy algorithm for a mixed184
integer programming in volumetric modulated arc therapy [139].185

Sketching. For huge data represented in matrices, the sketching technique builds low-186
dimensional approximations using random linear maps [78, 136, 118]. It has been adopted187
for nonlinear least squares problems in [141, 103] and large scale SDP problems in [144].188
The Nyström approximation can be viewed as a special sketching scheme. An initial quasi-189
Newton matrix can be constructed if a single Hessian-matrix multiplication is affordable in190
[58].191

1.2. Notation. Let Sn be the collection of all n-by-n symmetric matrices. For any192
matrix X ∈ Rn×n, diag(X) denotes a column vector consisting of all diagonal entries of X .193
For any vector x ∈ Rn, Diag(x) is an n-by-n diagonal matrix whose i-th diagonal entry is194
xi. Given two matrices A,B ∈ Cn×p, the Frobenius inner product is defined as 〈A,B〉 =195
tr(A∗B), and the corresponding Frobenius norm is defined as ‖A‖F =

√
tr(A∗A). The196

operation A� B denotes the Hadamard product between two matrices A and B of the same197
sizes. Let en be a vector of all ones in Rn. For any matrixX ∈ Rn×p, Range(X) denotes the198
subspace spanned by the columns of X . The subscript usually denotes the iteration number,199
while the supscript is reserved as the index of a vector or matrix.200

1.3. Organization. The rest of this paper is organized as follows. The subspace meth-201
ods applied in general unconstrained optimization, nonlinear equations and nonlinear least202
squares problem, stochastic optimization, sparse optimization, the domain decomposition,203
general constrained optimization, eigenvalue computation, optimization problems with or-204
thogonality constraints, semidefinite programming and low rank matrix optimization are dis-205
cussed in Sections 2 to 11, respectively. Finally, a few typical scenarios are summarized in206
Section 12.207

2. General Unconstrained Optimization. In this section, we consider the uncon-208
strained optimization209

(2.1) min
x∈Rn

f(x) ,210

where f(x) : Rn → R is a differentiable function. The line search and trust region methods211
are the two main types of approaches for solving (2.1). The main difference between them212
is the order of determining the so-called step size and search direction. Subspace techniques213
have been substantially studied in [26, 48, 140, 142, 143, 87, 128, 127, 49].214

2.1. The Line Search Methods. At the k-th iteration xk, the line search methods215
first generate a descent search direction dk and then search along this direction for a step size216
αk such that the objective function at the next point217

(2.2) xk+1 = xk + αkdk218
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is suitably reduced. The step size αk is often selected by the monotone line search procedures219
with the Armijo, Goldstein or the Wolfe-Powell rules. The nonmonotone line procedures are220
also widely used. Interested readers are referred to [111, 88] for further information. Here,221
we mainly focus on generating the direction dk in a subspace Sk, i.e.,222

d ∈ Sk.223

For simplicity, we often denote gk = ∇f(xk).224

2.1.1. The Nonlinear Conjugate Gradient (CG) Method. The nonlinear CG method225
is popular for solving large scale optimization problems. The search direction dk lies in a par-226
ticular subspace227

(2.3) Sk = span{gk, dk−1},228

which is spanned by the gradient gk and the last search direction dk−1. More specifically, dk229
is a linear combination of −gk and dk−1 with a weight βk−1, i.e.,230

(2.4) dk = −gk + βk−1dk−1,231

where d0 = −g0 and β0 = 0. A few widely used choices for the weight βk−1 are232

βk−1 =
g>k gk

g>k−1gk−1
, (F-R Formula),233

βk−1 =
g>k (gk − gk−1)

d>k−1(gk − gk−1)
, (H-S or C-W Formula),234

βk−1 =
g>k (gk − gk−1)

g>k−1gk−1
, (PRP Formula),235

βk−1 = − g>k gk
d>k−1gk−1

, (Dixon Formula),236

βk−1 = − g>k gk
d>k−1(gk − gk−1)

, (D-Y Formula).237

238

It is easy to observe that these formulas are equivalent in the sense that they yield the same239
search directions when the function f(x) is quadratic with a positive definite Hessian matrix.240
In this case, the directions d1, . . . , dk are conjugate to each other with respect to the Hessian241
matrix. It can also be proved that the CG method has global convergence and n-step local242
quadratic convergence. However, for a general nonlinear function with inexact line search,243
the behavior of the methods with different βk can be significantly different.244

2.1.2. Nesterov’s Accelerated Gradient Method. The steepest descent gradient245
method simply uses dk = −gk in (2.2) for unconstrained optimization. Assume that the246
function f(x) is convex, the optimal value f∗ of (2.1) is finite and it attains at a point x∗, and247
the gradient f(x) is Lipschitz continuous with a constant L, i.e.,248

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.249

Let {xk}∞k=0 be a sequence generated by the gradient method with a fixed step size αk = 1
L .250

Then it can be proved that the convergence of the objective function values is251

f(xk)− f(x∗) ≤ L

2k
‖x0 − x∗‖2,252
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which is often described as a convergence rate at O(1/k).253
A natural question is whether a faster convergence rate can be achieved if only the gra-254

dient information is used. We now present the so-called FISTA method proposed by Beck255
and Teboulle [5] which is equivalent to Nesterov accelerated gradient method [84, 85]. The256
FISTA method first calculates a new point by an extrapolation of the previous two points,257
then performs a gradient step at this new point:258

yk = xk−1 +
k − 2

k + 1
(xk−1 − xk−2),259

xk = yk − αk∇f(yk).260

An illustration of the FISTA method is shown in Figure 2.1. Under the same assumptions as

xk−2 xk−1 yk

xk = yk − tk∇f(yk)

Fig. 2.1 The FISTA method

261
the gradient method, the FISTA method with a fixed step size αk = 1

L has a convergence rate262
of O(1/k2), i.e.,263

f(xk)− f∗ ≤ 2L

(k + 1)2
‖x0 − x∗‖2.264

Obviously, the FISTA method can also be interpreted as a subspace method whose subspace265
is266

(2.5) Sk = span{xk−1, xk−2,∇f(yk)}.267

2.1.3. The Heavy-ball Method. The heavy-ball method [90] is also a two-step scheme:268

dk = −gk + βdk−1,269

xk+1 = xk + αdk,270

with p0 = 0 and α, β > 0. If β ∈ [0, 1) and α ∈
(

0, 1−β
L

]
and under the same assumptions271

as in Sec. 2.1.2, it is established in [42] that272

f(x̄k)− f∗ ≤ 1

k + 1

(
β

1− β
(f(x0)− f∗) +

1− β
2α
‖x0 − x∗‖2

)
,273

where x̄k = 1
1+k

∑k
i=1 xi. We can see that the Heavy-ball method is the same as the nonlin-274

ear CG method (2.4) except that the parameter β is different.275

2.1.4. A Search Direction Correction (SDC) Method. The search direction (2.4)276
can also be modified by adding a non-trivial weight to gk. Let d0 = 0. At the beginning of277
the (k + 1)-th iteration, if a descent condition278

(2.6) 〈gk, dk〉 ≤ 0279
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holds, we update280

(2.7) dk+1 = (1− βk)dk − γk
‖dk‖
‖gk‖

gk − gk.281

Then we update βk+1 and γk+1 as follows:282

(2.8) βk =
r

lk − 1 + r
, γk =

r − 3

lk − 1 + r
,283

where r ≥ 3, {lk} is a sequence of parameters with of l1 = 1 and lk+1 = lk + 1. If the284
criterion (2.6) is not met, we reset dk+1, βk+1 and γk+1 as285

dk+1 = −gk, βk+1 = β1, γk+1 = γ1, lk+1 = l1.286

For more details, we refer the reader to [126].287

2.1.5. Quasi-Newton Methods. The search directions of the limited-memory quasi-288
Newton methods [111, 88] also lie in subsapces. Let Bk be the limited-memory BFGS (L-289
BFGS) matrix and Hk be its inverse matrix generated from a few most recent pairs {si, yi},290
where291

si = xi+1 − xi, yi = gi+1 − gi.292

Then the search direction is293

(2.9) dk = −B−1
k gk = −Hkgk,294

which is usually computed by the two-loop recursion. In fact, both Bk and Hk can be written295
in a compact representation [21]. Assume that there are p pairs of vectors:296

(2.10) Uk = [sk−p, . . . , sk−1] ∈ Rn×p, Yk = [yk−p, . . . , yk−1] ∈ Rn×p.297

For a given initial matrix H0
k , the Hk matrix is:298

(2.11) Hk = H0
k + CkPkC

>
k ,299

where300

Ck :=
[
Uk, H

0
kYk

]
∈ Rn×2p, Dk = diag

[
s>k−pyk−p, . . . , s

>
k−1yk−1

]
301

Pk :=

[
R−>k (Dk + Y >k H

0
kYk)R−1

k −R−>k
−R−1

k 0

]
, (Rk)i,j =

{
s>k−p+i−1yk−p+j−1, if i ≤ j,
0, o.w.

302
303

The initial matrix H0
k is usually set to be a positive scalar γk times the identity matrix, i.e.,304

γkI . Therefore, we have305

dk ∈ span{gk, sk−1, . . . , sk−p, yk−1, . . . , yk−p}.306

2.1.6. Acceleration Techniques. Gradient descent algorithms may converge slowly307
after certain iterations. This issue can be resolved by using acceleration techniques such308
as Anderson Acceleration (AA) [4, 123]. An extrapolation-based acceleration techniques309
proposed in [99] can be applied to overcome the instability of the Anderson Acceleration. To310
be precise, we perform linear combinations of the points xk every l + 2 iterations to obtain a311

better estimation x̃ =
∑l
i=0 c̃ixk−l+i. Define the difference of l + 2 iteration points as312

U = [xk−l+1 − xk−l, . . . , xk+1 − xk].313

Then the coefficients c̃ = (c̃0, . . . , c̃l)
T is the solution of the following problem314

(2.12) c̃ = arg min
c>el+1=1

cT (UTU + λI)c,315

where λ > 0 is a regularization parameter.316
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2.1.7. Search Direction From Minimization Subproblems. We next construct317
the search direction by solving a subproblem defined in a subspace Sk as318

(2.13) min
d∈Sk

Qk(d) ,319

where Qk(d) is an approximation to f(xk + d) for d in the subspace Sk. It would be de-320
sirable that the approximation model Qk(d) has the following properties: (i) it is easy to be321
minimized in the subspace Sk; (ii) it is a good approximation to f and the solution of the322
subspace subproblem will give a sufficient reduction with respect to the original objective323
function f .324

It is natural to use quadratic approximations to the objective function. This leads to325
quadratic models in subspaces. A successive two-dimensional search algorithm is developed326
by Stoer and Yuan in [143] based on327

min
d∈span{−gk,dk−1}

Qk(d).328

Let the dimension dim(Sk) = τk and Sk be a set generated by all linear combinations of
vectors p1, p2, . . . , pτk ∈ Rn, i.e.,

Sk = span{p1, p2, . . . , pτk} .

Define Pk = [p1, p2, ..., pτk ]. Then d ∈ Sk can be represented as d = Pkd̄ with d̄ ∈ Rτk .329
Hence, a quadratic function Qk(d) defined in the subspace can be expressed as a function Q̄k330
in a lower dimension space Rτk in terms of Qk(d) = Q̄k(d̄). Since τk usually is quite small,331
the Newton method can be used to solve (2.13) efficiently.332

We now discuss a few possible choices for the subspace Sk. A special subspace is a333
combination of the current gradient and the previous search directions, i.e.,334

(2.14) Sk = span{−gk, sk−1, ..., sk−m} .335

In this case, any vector d in the subspace Sk can be expressed as336

(2.15) d = αgk +

m∑
i=1

βisk−i = (−gk, sk−1, · · · , sk−m)d̄337

where d̄ = (α, β1, · · · , βm)> ∈ Rm+1. All second order terms of the Taylor expansion of338
f(xk + d) in the subspace Sk can be approximated by secant conditions339

(2.16) s>k−i∇2f(xk)sk−j ≈ s>k−iyk−j , s>k−i∇2f(xk)gk ≈ y>k−igk ,340

except g>k ∇2f(xk)gk. Therefore, it is reasonable to use the following quadratic model in the341
subspace Sk:342

(2.17) Q̄k(d̄) = (−‖gk‖2, g>k sk−1, · · · , g>k sk−m)d̄+
1

2
d̄>B̄kd̄ ,343

where344

(2.18) B̄k =


ρk −g>k yk−1 . . . −g>k yk−m

−g>k yk−1 y>k−1sk−1 . . . y>k−msk−1

...
...

. . .
...

−g>k yy−m y>k−msk−1 . . . y>k−msk−m

345
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with ρk ≈ g>k ∇2f(xk)gk. Hence, once a good estimation to the term g>k ∇2f(xk)gk is346
available, we can obtain a good quadratic model in the subspace Sk.347

There are different ways to choose ρk. Similar to the approach in [143], we can let348

(2.19) ρk = 2
(s>k−1gk)2

s>k−1yk−1
,349

due to the fact that the mean value of cos2(θ) is 1
2 , which gives350

(2.20) g>k ∇2f(xk)gk =
1

cos2 θk

(s>k−1∇2f(xk)gk)2

s>k−1∇2f(xk)sk−1
≈ 2

(s>k−1gk)2

s>k−1yk−1
,351

where θk is the angle between (∇2f(xk))
1
2 gk and (∇2f(xk))

1
2 sk−1. Another way to es-352

timate g>k (∇2f(xk))gk is by replacing ∇2f(xk) by a quasi-Newton matrix. We can also353
obtain ρk by computing an extra function value f(xk + tgk) and setting354

(2.21) ρk =
2(f(xk + tgk)− f(xk)− t‖gk‖22)

t2
.355

By letting the second order curvature along gk to be the average of those along sk−i(i =356
1, ...,m), we obtain357

(2.22) ρk =
‖gk‖22
m

m∑
i=1

s>k−iyk−i

s>k−isk−i
.358

Similar to (2.14), a slightly different subspace is359

(2.23) Sk = span{−gk, yk−1, ..., yk−m} .360

In this case, any vector in Sk can be represented as361

(2.24) d = αgk +

m∑
i=1

βiyk−i = Wkd̄362

where Wk = [−gk, yk−1, ..., yk−m] ∈ Rn×(m+1). The Newton step in the subspace Sk is363
Wkd̄k with364

(2.25) d̄k = −
[
W>k ∇2f(xk)Wk

]−1
W>k ∇f(xk) .365

Thus, the remaining issue is to obtain a good estimate of d̄k, using the fact that all the elements366
of
[
W>k (∇2f(xk))−1Wk

]
is known except one entry gk∇2f(xk)−1gk.367

2.1.8. Subspace By Coordinate Directions. We next consider subspaces spanned368
by coordinate directions with sparsity structures. Let gik be the i-th component of the gradient369
gk. The absolute values |gik| are sorted in the descending order such that370

(2.26) |gi1k | ≥ |g
i2
k | ≥ |g

i3
k | ≥ · · · ≥ |g

in
k |.371

The subspace372

(2.27) Sk = span{ei1 , ei2 , ..., eiτ }373
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is called as the τ -steepest coordinates subspace, where ei is a vector of all zeros except that374
the i-th component is one. Then, the steepest descent direction in the subspace is sufficiently375
descent, namely376

(2.28) min
d∈Sk

d>gk
‖d‖2‖gk‖2

≤ − τ
n
.377

When (g
iτ+1

k )2 ≤ ε
∑τ
j=1(g

ij
k )2, the following estimation can be established:378

(2.29) min
d∈Sk

d>gk
‖d‖2‖gk‖2

≤ − 1√
1 + ε(n− τ)

.379

Consequently, a sequential steepest coordinates search (SSCS) technique can be designed
by augmenting the steepest coordinate directions into the subspace sequentially. For example,
consider minimizing a convex quadratic function

Q(x) = g>x+
1

2
x>Bx.

At the k-th iteration of SSCS, we first compute gk = ∇Q(xk), then choose380

ik = arg min
i
{|gik|}.381

Let Sk = span{ei1 , ..., eik}. The next iteration is to find382

xk+1 = arg min
x∈xk+Sk

Q(x).383

2.2. Trust Region Methods. The trust region methods for (2.1) compute a search384
direction in a ball determined by a given trust region radius whose role is similar to the step385
size. The trust region subproblem (TRS) is normally386

(2.30)
min
s∈Rn

Qk(s) = g>k s+
1

2
s>Bkd

s. t. ‖s‖2 ≤ ∆k ,

387

where Bk is an approximation to the Hessian∇2f(xk) and ∆k > 0 is the trust region radius.388
A subspace version of the trust region subproblem is suggested in [101]:389

min
s∈Rn

Qk(s)

s. t. ‖s‖2 ≤ ∆k, s ∈ Sk.
390

The Steihaug truncated CG method [107] for solving (2.30) is essentially a subspace method.391
When the approximate HessianBk is generated by the quasi-Newton updates such as the SR1,392
PSB or the Broyden family [111, 88], the TRS has subspace properties. Suppose B1 = σI393
with σ > 0, let sk be an optimal solution of TRS (2.30) and set xk+1 = xk + sk. Let394
Gk = span{g1, g2, · · · , gk}. Then it can be proved that sk ∈ Gk and for any z ∈ Gk,395
w ∈ G⊥k , it holds396

(2.31) Bkz ∈ Gk, Bku = σu .397

Therefore, the subspace trust region algorithm generates the same sequences as the full space398
trust region quasi-Newton algorithm. Based on the above results, Wang and Yuan [128]399
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presented a subspace trust region quasi-Newton method for large scale unconstrained opti-400
mization. Similar results for the line search quasi-Newton methods were obtained by Gill401
and Leonard [44, 43].402

We next discuss a special trust region subproblem which can make good use of subspace403
properties. If the norm ‖.‖2 is replaced by a general norm ‖.‖W in (2.30), we can obtain a404
general TRS subproblem405

min
s∈Rn

g>s+
1

2
s>Bs

s. t. ‖s‖W ≤ ∆.

406

Here, the subscript k in gk and Bk is omitted for simplicity. Intuitively, we should choose
the norm ‖.‖W properly so that the TRS can easily be solved by using the corresponding
subspace properties of the objective function g>s + 1

2s
>Bs. Assume that B is a limited

memory quasi-Newton matrix which can be expressed as

B = σI + PDP>, P ∈ Rn×l ,

where P>P = I . Let P>⊥ be the projection onto the space orthogonal to Range(P ). Then407
the following function408

(2.32) ‖s‖P = max{‖P>s‖∞, ‖P>⊥ s‖2}409

is a well-defined norm, which leads to a P -norm TRS:410

(2.33)
min
s∈Rn

g>s+
1

2
s>Bs

s. t. ‖s‖P ≤ ∆.

411

Due to the definition of the ‖.‖P , the solution s of the TRS (2.33) can be expressed by412

s = Ps1 + P⊥s2,413

where s1 and s2 can be computed easily. In fact, s1 is the solution of the box constrained414
quadratic program (QP):415

min
s∈Rl

s>(P>g) +
1

2
s>(σI +D)s

s. t. ‖s‖∞ ≤ ∆,

416

It can be verified that s1 has a closed form solution:417

(s1)i =

{
−(P>g)i
σ+Dii

if |(P>g)i| < (σ +Dii)∆ ,
∆sign(−(P>g)i) otherwise ,

418

for i = 1, ..., l. On the other hand, s2 is solution of the 2-norm constrained special QP419

min
s∈Rn−l

s>(P>⊥ g) +
1

2
σs>s

s. t. ‖s‖2 ≤ ∆.

420

whose closed-form solution is421

s2 = −min

(
1

σ
,

∆

‖P>⊥ g‖

)
P>⊥ g .422

Numerical results based on a trust region algorithm that uses the the W -norm TRS were423
shown in [15].424
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3. Nonlinear Equations and Nonlinear Least Squares Problem. In this sec-425
tion, we consider the system of nonlinear equations426

(3.1) F (x) = 0, x ∈ Rn ,427

and nonlinear least squares problem:428

(3.2) min
x∈Rn

‖F (x)‖22,429

where F (x) = (F 1(x), F 2(x), . . . , Fm(x))> ∈ Rm.430

3.1. General Subspace Methods. Due to the special structures of nonlinear equa-431
tions, several implementations of Newton-like iteration schemes based on Krylov subspace432
projection methods are considered in [14]. Newton–Krylov methods with a global strategy433
restricted to a suitable Krylov subspace are developed in [7]. Because the nonlinear least434
squares problem (3.2) is also an unconstrained optimization problem, all the subspace tech-435
niques discussed in Section 2 can be applied. For example, assume that there are ik lin-436
early independent vectors {q1

k, q
2
k, ..., q

ik
k } which spans Sk. Let Qk = [q1

k, q
2
k, ..., q

ik
k ]. Then437

d ∈ Sk can be expressed as Qkz with respect to a variable z ∈ Rik . For (3.1), one can find a438
subspace step from439

(3.3) F (xk +Qkz) = 0.440

The linearized system for subproblem (3.3) is441

(3.4) F (xk) + JkQkz = 0,442

where Jk is the Jacobian of F at xk, Similarly, one can construct a subspace type of the443
Levenberg-Marquardt method for (3.2) as444

min
z

‖F (xk) + JkQkz‖22 +
λk
2
‖z‖22,445

where λk is a regularization parameter adjusted to ensure global convergence.446

3.2. Subspace by Subsampling/Sketching. We start from solving a linear least447
squares problem on massive data sets:448

(3.5) min
x

‖Ax− b‖22,449

where A ∈ Rm×n and b ∈ Rm. Although applying the direct or iterative methods to (3.5) is450
straightforward, it may be prohibitive for large values ofm. The sketching technique chooses451
a matrix W ∈ Rr×m with r � m and formulates a reduced problem452

(3.6) min
x

‖W (Ax− b)‖22.453

It can be proved that the solution of (3.6) can be a good approximation to that of (3.5) in454
certain sense if the matrix W is chosen suitably. For example, one may randomly select r455
rows from the identity matrix to form W so that WA is a submatrix of A. Another choice is456
that each element of W is sampled from an i.i.d. normal random variable with mean zero and457
variance 1/r. These concepts have been extensively investigated for randomized algorithms458
in numerical linear algebra [78, 136].459
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For nonlinear equations, the simple sketching approach is to ignore some equations.460
Instead of requiring the original system (3.1), we consider461

(3.7) F i(x) = 0, i ∈ Ik ,462

which is an incomplete set of equations. To solve the nonlinear equations (3.1) is to find a x463
at which F maps to the origin [141]. Let P>k be a mapping from Rm to a lower dimensional464
subspace. Solving the reduced system465

(3.8) P>k F (x) = 0466

is exactly replacing F = 0 by requiring its mapping to the subspace spanned by Pk to be467
zero. Together with (3.3) yields:468

(3.9) P>k F (xk +Qkz) = 0,469

The linearized system for subproblem (3.9) is470

(3.10) P>k [ F (xk) + JkQkz ] = 0 .471

Of course, the efficiency of such an approach depends on how to select Pk and Qk. We can472
borrow ideas from subspace techniques for large scale linear systems [98]. Instead of using473
(3.10), we can use a subproblem of the following form:474

(3.11) P>k F (xk) + Ĵkz = 0 ,475

where Ĵk ∈ Rik×ik is an approximation to P>k JkQk. The reason for preferring (3.11) over476
(3.10) is that in (3.11) we do not need the Jacobian matrix Jk, whose size is normally signifi-477
cantly larger than that of Ĵk.478

Similar idea has also been studied for nonlinear least squares problems. At the k-th479
iteration, we consider minimizing the sum of squares of some randomly selected terms in an480
index set Ik ⊂ {1, ...,m} instead of all terms:481

(3.12) min
x∈Rn

∑
i∈Ik

(F i(x))2 .482

This approach works quite well on the distance geometry problem which has lots of applica-483
tions including protein structure prediction, where the nonlinear least squares of all the terms484
have lots of local minimizers [103]. Combining subspace with sketching yields a counterpart485
to (3.9) for nonlinear least squares:486

(3.13) min
d∈Sk

‖P>k F (xk + d)‖22 .487

A projected nonlinear least squares method is studied in [57] to fit a model ψ to (noisy)488
measurements y for the exponential fitting problem:489

(3.14) min
x∈Rn

‖ψ(x)− y‖22,490

where ψ(x) ∈ Rm and n � m. Since computing the Jacobian of (3.14) can be expensive,491
a sequence of low-dimensional surrogate problems are constructed from a sequence of sub-492
spaces {W`} ⊂ Rm. Let PW`

be an orthogonal projection ontoW` andW` is an orthonormal493
basis forW`, i.e., PW`

= W`W
>
` . Then it solves the following minimization problem:494

min
x
‖PW`

[ψ(x)− y]‖22 = min
x
‖W>` ψ(x)−W>` y‖22.495

This manuscript is for review purposes only.

14



3.3. Partition of Variables. We now consider the partition of variables, which is also496
a subspace technique for nonlinear least squares problem. Let Ik be a subset of {1, ..., n}.497
The variables are partitioned into two group x = (x̄ , x̂), where x̄ = (xi, i ∈ Ik) and498
x̂ = (xi , i 6∈ Ik). At the k-th iteration, the variables xi(i 6∈ Ik) are fixed and xi(i ∈ Ik) are499
free to be changed in order to obtain a better iterate point. This procedure yields a subproblem500
with fewer variables:501

(3.15) min
x̄∈R|Ik|

n∑
i=1

(F i(x̄, x̂k))2 .502

It is easy to see that partition of variables use special subspaces that spanned by coordinate503
directions. An obvious generalization of partition of variables is decomposition of the space504
which uses subspaces spanned by any given directions.505

3.4. τ−steepest Descent Coordinate Subspace. The τ−steepest descent coor-506
dinate subspace discussed in Section 2 can also be extended to nonlinear equations and non-507
linear least squares. Assume that508

(3.16) |F i1(xk)| > · · · > |F iτ (xk)| > · · ·509

at the k−th iteration. If F (x) is a monotone operator, applying the method in a subspace510
spanned by the coordinate directions {eij , j = 1, ..., τ} generates a system511

(3.17) F ij (xk) + d>∇F ij (xk) = 0, j = 1, ..., τ .512

For general nonlinear functions F (x), it is better to replace eij by the steepest descent coor-
dinate direction of the function F ij (x) at xk, i.e., substituting ij by an index lj such that

lj = arg max
t=1,...,n

∣∣∣∣∂F ij (xk)

∂xt

∣∣∣∣ .
However, it may be possible to have two different j at one lj so that subproblem (3.17) has no513
solution in the subspace spanned by {el1 , ..., elτ }. Further discussion on subspace methods514
for nonlinear equations and nonlinear least squares can be found in [141].515

4. Stochastic Optimization. The supervised learning model in machine learning as-516
sumes that (a, b) follows a probability distribution P , where a is an input data and b is the517
corresponding label. Let φ(a, x) be a prediction function in a certain functional space and518
`(·, ·) represent a loss function to measure the accuracy between the prediction and the true la-519
bel. The task is to predict a label b from a given input a, that is, finding a function φ such that520
the expected risk E[`(φ(a, x), b)] is minimized. In practice, the real probability distribution521
P is unknown, but a data set D = {(a1, b1), (a2, b2), · · · , (aN , bN )} is obtained by random522
sampling, where (ai, bi) ∼ P i.i.d. Then an empirical risk minimization is formulated as523

(4.1) min
x
f(x) :=

1

N

N∑
i=1

fi(x),524

where fi(x) = `(φ(ai;x), bi)). In machine learning, a large number of problems can be525
expressed in the form of (4.1). For example, the function φ in deep learning is expressed526
by a deep neural network. Since the size N usually is huge, it is time consuming to use the527
information of all components fi(x). However, it is affordable to compute the information at528
a few samples so that the amount of calculation in each step is greatly reduced.529
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4.1. Stochastic First-order Methods. In this subsection, we briefly review a few530
widely used stochastic first-order methods [47]. Instead of using the full gradient ∇f(xk),531
the stochastic gradient method (SGD) for (4.1) selects a uniformly random sample sk from532
{1, . . . , N} and updates533

(4.2) xk+1 = xk − αk∇fsk(xk).534

A common assumption for convergence is that the expectation of the stochastic gradient is535
equal to the full gradient, i.e.,536

E[∇fsk(xk) | xk] = ∇f(xk).537

When fi(xk) is not differentiable, then its subgradient is used in (4.2). Note that only one538
sample is used in (4.2). The mini-batch SGD method tries to balance between the robustness539
of the SGD and the computational cost. It randomly selects a mini-batch Ik ⊂ {1, . . . , N}540
such that |Ik| is quite small, then computes541

(4.3) xk+1 = xk −
αk
|Ik|

∑
sk∈Ik

∇fsk(xk).542

Obviously, subsampling defines a kind of subspace in terms of the component functions543
{f1(x), . . . , fN (x)}. For simplicity, we next only consider extensions based on (4.2).544

After calculating a random gradient∇fsk(xk) at the current point, the momentum method545
does not directly update it to the variable xk. It introduces a speed variable v, which represents546
the direction and magnitude of the parameter movements. Formally, the iterative scheme is547

(4.4)
vk+1 = µkvk − αk∇fsk(xk),

xk+1 = xk + vk+1.
548

This new update direction v is a linear combination of the previous update direction vk and549
the gradient ∇fsk(xk) to obtain a new vk+1. When µk = 0, the algorithm degenerates to550
SGD. In the momentum method, the parameter µk is often in the range of [0, 1). A typical551
value is µk ≥ 0.5, which means that the iteration point has a large inertia and each iteration552
will make a small correction to the previous direction.553

Since the dimension of the variable x can be more than 10 million and the convergence554
speed of each variable may be different, updating all components of x using a single step size555
αk may not be suitable. The adaptive subgradient method (AdaGrad) controls the step sizes of556
each component separately by monitoring the accumulation of the gradients elementwisely:557

Gk =

k∑
i=1

∇fsi(xi)�∇fsi(xi),558

where � the Hadamard product between two vectors. The AdaGrad method is559

(4.5)
xk+1 = xk −

αk√
Gk + εen

�∇fsk+1
(xk+1),

Gk+1 = Gk +∇fsk+1
(xk+1)�∇fsk+1

(xk+1),
560

where the division in αk√
Gk+εen

is also performed elementwisely. Adding the term ε1n is to561

prevent the division by zeros.562
The adaptive moment estimation (Adam) method combines the momentum and AdaGrad563

together by adding a few small corrections. At each iteration, it performs:564

vk = ρ1vk−1 + (1− ρ1)∇fsk(xk),565
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Gk = ρ2Gk−1 + (1− ρ2)∇fsk(xk)�∇fsk(xk),566

v̂k =
vk

1− ρk1
,567

Ĝk =
Gk

1− ρk2
,568

xk+1 = xk −
αk√

Ĝk + εen
� v̂k,569

where the typical values for ρ1 and ρ2 are ρ1 = 0.9 and ρ2 = 0.999. We can see that the570
direction vk is a convex combination of vk−1 and ∇fsk(xk), then it is corrected to v̂k. The571

value Ĝk is also obtained in a similar fashion. The main advantage of Adam is that after the572
deviation correction, the step size of each iteration has a certain range, making the parameters573
relatively stable.574

The above algorithms have been implemented in mainstream deep learning frameworks,575
which can be very convenient for training neural networks. The algorithms implemented576
in Pytorch are AdaDelta, AdaGrad, Adam, Nesterov, RMSProp, etc. The algorithms im-577
plemented in Tensorflow are AdaDelta, AdaGradDA, AdaGrad, ProximalAdagrad, Ftrl, Mo-578
mentum, Adam and CenteredRMSProp, etc.579

4.2. Stochastic Second-Order method. The subsampled Newton method takes an580
additional random set IHk ⊂ {1, . . . , N} independent to Ik and compute a search direction as581  1

|IHk |
∑
i∈IHk

∇2fi(x)

 dk = − 1

|Ik|
∑
sk∈Ik

∇fsk(xk).582

Therefore, the subspace techniques in section 2 can also be adopted here.583
Assume that the loss function is the negative logarithm probability associated with a584

distribution with a density function p(y|a, x) defined by the neural network and parameterized585
by x. The so-called KFAC method [79] is based on the Kronecker-factored approximate586
Fisher matrix. Take an L-layer feed-forward neural network for example. Namely, each layer587
j ∈ {1, 2, . . . , L} is given by588

(4.6) sj = Tjwj−1, wj = ψj(sj),589

where w0 = a is the input of the neural network, wL(x) ∈ Rm is the output of the neural590
network under the input a, the constant term 1 is not considered in wj−1 for simplicity, Tj is591
the weight matrix and ψj is the block-wise activation function. The jth diagonal block of F592
corresponding to the parameters in the jth layer using a sample set B can be written in the593
following way:594

(4.7) F j := Qj−1,j−1 ⊗Gj,j ,595

where596

Qj−1,j−1 =
1

|B|
∑
i∈B

wij−1(wij−1)>,

Gj,j =
1

|B|
∑
i∈B

Ez∼p(z|ai,x)[g̃
i
j(z)g̃

i
j(z)

>],

597

and g̃ij(z) := ∂`(φ(ai,x),z)
∂sij

. Therefore, the KFAC method computes a search direction in the598

jth layer from599
F jdjk = −gjk,600

This manuscript is for review purposes only.

17



where gjk is the corresponding subsampled gradient in the jth layer.601

5. Sparse Optimization.602

5.1. Basis Pursuit. Given a matrix A ∈ Rm×n and a vector b ∈ Rm such that m �603
n, basis pursuit is to find the sparsest signal among all solutions of the equation Ax = b. It604
leads to a NP-hard problem:605

(5.1) min
x
‖x‖0, s. t. Ax = b,606

where ‖x‖0 = |{j | xj 6= 0}|, i.e., the number of the nonzero elements of x. An exact607
recovery of the sparest signal often requires the so-called restricted isometry property (RIP),608
i.e., there exists a constant δr such that609

(1− δr)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δr)‖x‖22, whenever ‖x‖0 ≤ r.610

The greedy pursuit methods build up an approximation in a subspace at the k-th iteration.611
Let Tk be a subset of {1, . . . , n}, xTk be a subvector of x corresponding to the set Tk and612
ATk be a column submatrix of A whose column indices are collected in the set Tk. Then the613
subspace problem is614

xTkk = arg min
x

1

2
‖ATkx− b‖22.615

Clearly, the solution is xTkk = A†Tkb where A†Tk is the pseudoinverse of ATk . Since the size of616
Tk is controlled to be small, ATk roughly has full rank column due to the RIP property. All617
other elements of xk whose indices are in the complementary set of Tk are set to 0.618

We next explain the choices of Tk. Assume that the initial index set T0 is empty. The619
orthogonal matching pursuit (OMP) [116] computes the gradient620

gk = A>(ATkx
Tk
k − b),621

then selects an index such that tk = arg maxj=1,...,n |gj |. If multiple indices attain the622
maximum, one can break the tie deterministically or randomly. Then the index set at the next623
iteration is augmented as624

Tk+1 = Tk ∪ {tk}.625

The CoSaMP [83] method generates an s-sparse solution, i.e., the number of nonzero com-626
ponents is at most s. Let (xk)s be a truncation of xk such that only the s largest entries in the627
absolute values are kept and all other elements are set to 0. The support of (xk)s is denoted as628
supp((xk)s). Then a gradient gk is computed at the point (xk)s and the set Tk+1 is updated629
by630

Tk+1 = supp((gk)2s) ∪ supp((xk)s).631

5.2. Active Set Methods. Consider the `1-regularized minimization problem632

(5.2) min
x∈Rn

ψµ(x) := µ‖x‖1 + f(x),633

where µ > 0 and f(x) : Rn → R is continuously differentiable. The optimality condition of634
(5.2) is that there exists a vector635

(5.3) (∇f(x))i


= −µ, xi > 0,

= +µ, xi < 0,

∈ [−µ, µ], otherwise.

636
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A two-stage active-set algorithm called “FPC AS” is proposed in [133]. First, an active set637
is identified by a first-order type method using the so-called “shrinkage” operation. Then,638
a smooth and smaller subproblem is constructed based on this active set and solved by a639
second-order type method. These two operations are iterated until convergence criteria are640
satisfied. While shrinkage is very effective in obtaining a support superset, it can take a lot641
of steps to find the corresponding values. On the other hand, if one imposes the signs of the642
components of the variable x that are the same as those of the exact solution, problem (5.2)643
reduces to a small smooth optimization problem, which can be relatively easily solved to644
obtain x. Consequently, the key components are the identification of a “good” support set by645
using shrinkage and the construction of a suitable approximate smooth optimization problem.646

The iterative shrinkage procedure for solving (5.2) is indeed a proximal gradient method.647
Given an initial point x0, the algorithm iteratively computes648

xk+1 := arg min
x

µ‖x‖1 + (x− xk)>gk +
1

2αk
‖x− xk‖22,649

where gk := ∇f(xk) and αk > 0. A simple calculation shows that650

(5.4) xk+1 = S (xk − αkgk, µαk) ,651

where for y ∈ Rn and ν ∈ R, the shrinkage operator is defined as652

S(y, ν) = arg min
x

ν‖x‖1 +
1

2
‖x− y‖22653

= sign(y)�max {|y| − ν,0} .654

Note that the scheme (5.4) first executes a gradient step with a step size αk, then performs655
a shrinkage. In practice, αk can be computed by a non-monotone line search in which the656
initial value is set to the BB step size. The convergence of (5.4) has been studied in [53]657
under suitable conditions on αk and the Hessian∇2f . An appealing feature proved in [53] is658
that (5.4) yields the support and the signs of the minimizer x∗ of (5.2) after a finite number659
of steps under favorable conditions. For more references related to shrinkage, the reader is660
referred to [133].661

We now describe the subspace optimization in the second stage. For a given vector662
x ∈ Rn, the active set is denoted byA(x) and the inactive set (or support) is denoted by I(x)663
as follows664

(5.5) A(x) := {i ∈ {1, · · · , n} | |xi| = 0} and I(x) := {i ∈ {1, · · · , n} | |xi| > 0}.665

We require that each component xi either has the same sign as xik or is zero, i.e., x is required666
to be in the set667

(5.6) Ω(xk) :=
{
x ∈ Rn : sign(xik)xi ≥ 0, i ∈ I(xk) and xi = 0, i ∈ A(xk)

}
.668

Then, a smooth subproblem is formulated as either an essentially unconstrained problem669

(5.7) min
x

µ sign(xIkk )>xIk + f(x), s. t. xi = 0, i ∈ A(xk)670

or a simple bound-constrained problem671

(5.8) min
x

µ sign(xIkk )>xIk + f(x), s. t. x ∈ Ω(xk).672
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Since the size of the variables in (5.7) and (5.8) is relatively small, these two problems can be673
solved efficiently by methods such as L-BFGS-B. If f(x) is quadratic, problem (5.7) can be674
solved by the CG method for a system of linear equations.675

The active set strategies have also been studied in [105, 64]. Specifically, the method676
in [64] solves a smooth quadratic subproblem determined by the active sets and invokes a677
corrective cycle that greatly improves the efficiency and robustness of the algorithm. The678
method is globalized by using a proximal gradient step to check the desired progress.679

6. The Domain Decomposition Methods.680

6.1. A Two-level Subspace Method. Consider an infinite dimensional minimiza-681
tion problem682

(6.1) min
x∈V

F(x),683

where F is a mapping from an infinite-dimensional space V to R. Many large-scale finite684
dimensional optimization problems arise from infinite dimensional optimization problems685
[28]. Since explicit solutions for these problems are usually not available, we solve the dis-686
cretized version of them from the “discretize-then-optimize” strategy by using the concept of687
multilevel optimization.688

Let Vh be a finite dimensional subset of V at the grid level h, for example, a standard689
finite element space associated with the grid level h. For consecutive coarser levels, we690
choose nested spaces, so that V1 ⊂ · · · ⊂ VN−1 ⊂ VN ⊂ V , where N is reserved for the691
index of the finest level and 1 for the coarsest level. The functional F(x) restricted on Vh is692
constructed as fh(xh) for xh ∈ Vh. Therefore, the discretization of problem (6.1) is693

(6.2) min
xh∈Vh

fh(xh).694

Let xh,k be a vector where the first subscript h denotes the discretization level of the695
multigrid and the second subscript k denotes the iteration count. We next briefly describe a696
two-level subspace method in [24] instead of simply finding a point xh,k+1 in the coarser grid697
space VH . We seek a point xh,k+1 in Sh,k + VH , satisfying some conditions, where Sh,k is698
a subspace including the descent information, such as the coordinate direction of the current699
iteration and the previous iterations or the gradient Dhf(xh,k) in the finite space Vh. Then,700
we solve701

(6.3) Sh,k = span{xh,k−1,xh,k,Dhf(xh,k)} ⊆ Vh.702

When xh,k is not optimal on a coarse level H ∈ {1, 2, . . . , N}, we go to this level and703
compute a new solution xh,k+1 by704

(6.4) xh,k+1 ≈ arg min f(x), s. t. x ∈ Sh,k + VH .705

Otherwise, we find a point xh,k+1 ∈ Vh on level h.706
The so-called full multigrid skill or mesh refinement technique can often help to generate707

a good initial point so that the total number of iterations is reduced. Firstly, we solve the708
target problem at the coarsest level which is computationally cheap. After an approximate709
solution x∗h at the current level is obtained, we prolongate it to the next finer level h+ 1 with710
interpolation as an initial point, and then apply the two-level subspace method at this new711
level to find a solution x∗h+1. This process is repeated until the finest level is reached.712
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6.2. The Subspace Correction Method. We next briefly review the subspace cor-713
rection methods [112]. Given the current point xh,k, the relaxation (or smoothing) procedure714
is the operation on the current level h, namely, to find a direction dh,k to approximate the715
solution of716

(6.5) min
d∈Vh

fh(xh,k + d),717

and the coarse grid correction procedure is the operation on the coarse level H , namely, to718
find a direction dh,k to approximate the solution719

(6.6) min
d∈VH

fh(xh,k + d).720

The concept of the subspace correction methods can be used to solve subproblems (6.5)721

and (6.6). Let {φ(j)
h }

nh
j=1 be a basis for Vh, where nh is the dimension of Vh. Denote Vh722

as a direct sum of the one-dimensional subspaces Vh = V(1)
h ⊕ · · · ⊕ V(nh)

h . Then for each723
j = 1, · · · , nh in turn, we perform the following correction step for subproblem (6.5) at the724
k-th iteration:725

(6.7)


d

(j)∗

h,k = min
d

(j)
h,k∈V

(j)
h

fh(xh,k + d
(j)
h,k)

xh,k = xh,k + d
(j)∗

h,k .

726

For subproblem (6.6), a similar strategy can be adopted by decompose space VH into a di-727
rect sum. Global convergence of this algorithm has been proved in [113] for strictly convex728
functions under some assumptions. The subspace correction method can be viewed as a gen-729
eralization of the coordinate search method or the pattern search method.730

6.3. Parallel Line Search Subspace Correction Method. In this subsection, we731
consider the following optimization problem732

min
x∈Rn

ϕ(x) := f(x) + h(x),(6.8)733

where f(x) is differentiable convex function and h(x) is a convex function that is possibly734
nonsmooth. The `1-regularized minimization (LASSO) [114] and the sparse logistic regres-735
sion [100] are examples of (6.8). The PSC methods have been studied for LASSO in [36, 39]736
and total variation minimization in [37, 38, 39, 68].737

Suppose that Rn is split into p subspaces, namely,738

Rn = X1 +X2 + · · ·+Xp,(6.9)739

where
Xi = {x ∈ Rn|supp(x) ⊂ Ji}, 1 ≤ i ≤ p,

such that J := {1, ..., n} and J =
p⋃
i=1

Ji. For any i 6= j, 1 ≤ i, j ≤ p, Ji
⋂
Jj = ∅ holds in740

a non-overlapping domain decomposition of Rn. Otherwise, there exist i, j ∈ {1, ..., p} and741
i 6= j such that Ji

⋂
Jj 6= ∅ in an overlapping domain decomposition of Rn.742

Let ϕik be a surrogate function of ϕ restricted to the i-th subspace at k-th iteration. The743
PSC framework for solving (6.8) is:744

dik = arg min
di∈Xi

ϕik(di), i = 1, ..., p,(6.10)745
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xk+1 = xk +

p∑
i=1

αikd
i
k.746

The convergence can be proved if the step sizes αik (1 ≤ i ≤ p) satisfy the conditions:747 ∑p
i=1 α

i
k ≤ 1 and αik > 0 (1 ≤ i ≤ p). Usually, the step size αik is quite small under these748

conditions and convergence becomes slow. For example, the diminishing step size αik = 1
p749

tends to be smaller and smaller as the number of subspaces increases.750
A parallel subspace correction method (PSCL) with the Armijo backtracking line search751

for a large step size is proposed in [29]. At the k-th iteration, it chooses a surrogate functions752
ϕik and solves the subproblem (6.10) for each block, then computes a summation of the753
direction dk =

∑p
i=1 d

i
k. The next iteration is754

xk+1 = xk + αkdk,755

where αk satisfies the Armijo backtracking conditions. When h(x) = 0 and f(x) is strongly756
convex, the surrogate function can be set to the original objective function ϕ. Otherwise, it757
can be a first-order Taylor expansion of the smooth part f(x) with a proximal term and the758
nonsmooth part h(x):759

ϕik(di) = ∇f(xk)>di +
1

2λi
‖di‖22 + h(xk + di), for di ∈ Xi.(6.11)760

Both non-overlapping and overlapping schemes can be designed for PSCL.761
The directions from different subproblems can be equipped with different step sizes. Let762

Zk =
(
d1
k, d

2
k, . . . , d

p
k

)
. The next iteration is set to763

xk+1 = xk + Zkαk.764

One can find αk as an optimal solution of765

αk = arg min
α∈Rp

ϕ(xk + Zkα).766

Alternatively, we can solve the following approximation:767

ak ≈ arg min
α∈Rp

∇f(xk)>Zkα+
1

2tk
‖Zkα‖22 + h(xk + Zka).768

The global convergence of PSCL is established by following the convergence analysis769
of the subspace correction methods for strongly convex problem [112], the active-set method770
for l1 minimization [134] and the BCD method for nonsmooth separable minimization [119].771
Specifically, linear convergence rate is proved for the strongly convex case and convergence772
to the solution set of problem (6.8) globally is obtained for the general nonsmooth case.773

7. General Constrained Optimization. In this section, we first present subspace774
methods for solving general equality constrained optimization problems:775

(7.1)
min
x∈Rn

f(x)

s. t. c(x) = 0,
776

where c(x) = (c1(x), · · · , cm(x))>, f(x) and ci(x) are real functions defined in Rn and at777
least one of the functions f(x) and ci(x) is nonlinear. Note that inequality constraints can also778
be added to (7.1) but they are omitted to simplify our discussion in the first few subsections.779
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In the last subsection, we discuss methods for bound-constrained minimization problems.780
Problem (7.1) is often minimized by computing solutions of a sequence of subproblems which781
are simpler than (7.1) itself. However, they are still large-scale linear or quadratic problems782
because normally subproblems are also defined in the same dimensional space as the original783
nonlinear problem.784

7.1. Direct Subspace Techniques. The sequential quadratic programming (SQP)785
is an important method for solving (7.1). It successively minimizes quadratic approximations786
to the Lagrangian function subject to the linearized constraints. Let Qk(d) be a quadratic787
approximation to the Lagrangian function of (7.1) at the k-th iteration:788

(7.2) Qk(d) = g>k d+
1

2
d>Bkd,789

where gk = ∇f(xk) and Bk is an approximation to the Hessian of the Lagrangian function.790
The search direction dk of a line search type SQP method is obtained by solving the following791
QP subproblem792

min
d∈Rn

Qk(d)(7.3)793

s. t. c(xk) +A>k d = 0,(7.4)794795

where Ak = ∇c(xk). Although the SQP subproblem is simpler than (7.1), it is still difficult796
when the dimension n is large.797

In general, the subspace SQP method constructs the search direction dk by solving a QP798
in a subspace:799

(7.5)
min Qk(d)

s. t. ck +A>k d = 0, d ∈ Sk ,
800

where Sk is a subspace. Lee et al. [70] considered the following choice:

Sk = span{gk, sk−m̄, ..., sk−1, ȳk−m̄, ..., ȳk−1,∇c1(xk), ...,∇cm(xk)},

where m̄ is the memory size of the limited memory BFGS method for constructing Bk in801
(7.2), and ȳi is a linear combination of yi andBisi. LetUk be a matrix of linearly independent802
vectors in Sk. A reduced constrained version of (7.5) is803

(7.6)
min
z

(U>k gk)>z +
1

2
z>U>k BkUkz

s. t. T>k (ck +A>k Ukz) = 0,
804

where Tk is a projection matrix so that the constraints are not over-determined.805

7.2. Second Order Correction Steps. The SQP step dk can be decomposed into806
two parts dk = hk + vk where vk ∈ Range(Ak) and hk ∈ (A>k ). Thus, vk is a solution of807
the linearized constrained (7.4) in the range space of Ak, while hk is the minimizer of the808
quadratic function Qk(vk + d) in the null space of A>k .809

One good property of the SQP method is its superlinear convergence rate, namely when810
xk is close to a Karush–Kuhn–Tucker (KKT) point x∗ it holds811

(7.7) xk + dk − x∗ = o(‖xk − x∗‖) .812

This manuscript is for review purposes only.

23



However, a superlinearly convergent step dk may generate a point that seems “bad” since
it may increase both the objective function and the constraint violations. Even though (7.7)
holds, the Maratos effect shows that it is possible for the SQP step dk to have both

f(xk + dk) > f(xk), ‖c(xk + dk)‖ > ‖c(xk)‖.

The second order correction step method [35, 80] solves a QP subproblem whose constraints813
(7.4) are replaced by814

(7.8) c(xk + dk) +A>k (d− dk) = 0,815

because the left hand side of (7.8) is a better approximation to c(xk + d) close to the point816
d = dk. Since the modification of the constraints is a second order term, the new step can817
be viewed as the SQP step dk adding a second order correction step d̂k. Consequently, the818
Maratos effect is overcomed. For detailed discussions on the SQP method and the second819
order correction step, we refer the reader to [111].820

We now examine the second order correction step from subspace point of views. It can821
be verified that the second order correction step d̂k is a solution of822

min
d∈Rn

Qk(dk + d)

s. t. c(xk + dk) +A>k d = 0 .
823

Compute the QR factorization824

Ak = [Yk, Zk]

[
Rk
0

]
825

and assume that Rk is nonsingular. Therefore, the second order correction step can be repre-826
sented as d̂k = v̂k + ĥk, where v̂k = −YkR−Tk c(xk + dk) and ĥk is the minimizer of827

(7.9) min
h∈Null(A>k )

Q(dk + v̂k + h) .828

Since dk is the SQP step, it follows that gk + Bkdk ∈ Range(Ak), which implies that the829
minimization problem (7.9) is equivalent to830

(7.10) min
h∈Null(A>k )

1

2
(v̂k + h)>Bk(v̂k + h) .831

Examining the SQP method from the perspective of subspace enables us to get more832
insights. If Y >k BkZk = 0, it holds ĥk = 0, which means that the second order correction833

step d̂k ∈ Range(Ak) is also a range space step. Hence, the second order correction uses834
two range space steps and one null space step. Note that a range space step is fast since it is835
a Newton step, while a null space step is normally slower because Bk is often approximated836
by a quasi-Newton approximation to the Hessian of the Lagrangian function. Intuitively, it837
might be better to have two slower steps with one fast step. Therefore, it might be reasonable838
to study a correction step d̂k ∈ Null(A>k ) in a modified SQP method.839

7.3. The Celis-Dennis-Tapia (CDT) Subproblem. The CDT subproblem [23] is840
often needed in some trust region algorithms for constrained optimization. It has two trust841
region ball constraints:842

(7.11)
min
d∈Rn

Qk(d) = g>k d+
1

2
d>Bkd

s. t. ‖ck +A>k d‖2 ≤ ξk, ‖d‖2 ≤ ∆k,

843
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where ξk and ∆k are both trust region radii. Let Sk = span{Zk},Z>k Zk = I , span{Ak, gk} ⊂844
Sk and Bku = σu, ∀u ∈ S⊥k . It is shown in [50] that the CDT subproblem is equivalent to845

min
d̄∈Rr

Q̄k(d̄) = ḡ>k d̄+
1

2
d̄>B̄kd̄

s. t. ‖ck + Ā>k d̄‖2 ≤ ξk, ‖d̄‖2 ≤ ∆k ,

846

where ḡk = Z>k gk, B̄k = Z>k BkZk and Āk = Z>k Ak. Consequently, a subspace version of847
the Powell-Yuan trust algorithm [91] was developed in [50].848

7.4. Simple Bound-constrained Problems. We now consider the optimization849
problems with simple bound-constraints:850

(7.12)
min
x∈Rn

f(x)

s. t. l ≤ x ≤ u,
851

where l and u are two given vectors in Rn. In this subsection, the superscript of a vector852
denotes its indices, for example, xi is the ith component of x.853

A subspace adaptation of the Coleman-Li trust region and interior method is proposed in854
[12]. The affine scaling matrices Dk and Ck are defined from examining the KKT conditions855
of (7.12) as:856

Dk = D(xk) = diag(|v(xk)|−1/2), Ck = Dkdiag(gk)JvkDk857

where Jv(x) is a diagonal matrix whose diagonal elements equal to zero or ±1, and858

vi =


xi − ui, if gi < 0 and ui < +∞,
xi − li, if gi ≥ 0 and li > −∞,
−1, if gi < 0 and ui = +∞,
+1, if gi ≥ 0 and li = −∞.

859

Let Hk be an approximation to the Hessian matrix∇f (xk) and define860

ĝk = D−1
k gk, M̂k = D−1

k HkD
−1
k + diag(gk)Jvk .861

Then the subspace trust region subproblem is862

(7.13)
min
s

g>k s+
1

2
s>(Hk + Ck)s

s. t. ‖Dks‖2 ≤ ∆k, s ∈ Sk.
863

If the matrix M̂k is positive definite, the subspace is taken as864

Sk = span{D−2
k gk, wk},865

where wk is either ŝNk = −M̂−1
k ĝk or its inexact version. Otherwise, Sk is set to866

span{D−2
k sign(gk)} or span{D−2

k sign(gk), wk},867

where ŵk is a vector of nonpositive curvature of M̂k.868
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A subspace limited memory quasi-Newton method is developed by Ni and Yuan in [87].869
There are three types of search directions: a subspace quasi-Newton direction, subspace gra-870
dient and modified gradient directions. The limited memory quasi-Newton method is used871
to update the variables with indices outside of the active set, while the projected gradient872
method is used to update the active variables. An active set algorithm is designed in [52].873
The algorithm consists of a nonmonotone gradient projection step, an unconstrained opti-874
mization step, and a set of rules for branching between the two steps. After a suitable active875
set is detected, some components of variables are fixed and the method is switched to the876
unconstrained optimization algorithm in a lower-dimensional space.877

8. Eigenvalue Computation. The eigenvalue decompostion (EVD) and singular value878
decomposition (SVD) are fundamental computational tools with extraordinarily wide-ranging879
applications in science and engineering. For example, most algorithms in high dimensional-880
ity reduction, such as the principal component analyses (PCA), the multidimensional scaling,881
Isomap and etc, use them to transform the data into a meaningful representation of reduced882
dimensionality. More recently, identifying dominant eigenvalue or singular value decom-883
positions of a sequence of closely related matrices has become an indispensable algorithmic884
component for many first-order optimization methods for various convex and nonconvex opti-885
mization problems, such as semidefinite programming, low-rank matrix computation, robust886
principal component analysis, sparse principal component analysis, sparse inverse covari-887
ance matrix estimation, nearest correlation matrix estimation and the self-consistent iteration888
in electronic struture calculation. The computational cost of these decompositions is a major889
bottleneck which significantly affects the overall efficiency of these algorithms.890

For a given real symmetric matrix A ∈ Rn×n, let λ1, λ2, · · · , λn be the eigenvalues891
of A sorted in a descending order: λ1 ≥ λ2 ≥ · · · ≥ λn, and q1, . . . , qn ∈ Rn be the892
corresponding eigenvectors such that Aqi = λiqi, ‖qi‖2 = 1, i = 1, . . . , n and q>i qj = 0893
for i 6= j. The eigenvalue decomposition of A is defined as A = QnΛnQ

>
n , where, for any894

integer i ∈ [1, n],895

(8.1) Qi = [q1, q2, . . . , qi] ∈ Rn×i, Λi = Diag(λ1, λ2, . . . , λi) ∈ Ri×i,896

and Diag(·) denotes a diagonal matrix with its arguments on the diagonal. For simplicity,897
we also write A = QΛQ> where Q = Qn and Λ = Λn. Without loss of generality, we898
assume for convenience that A is positive definite (after a shift if necessary). Our task is to899
compute p largest eigenpairs (Qp,Λp) for some p � n where by definition AQp = QpΛp900
and Q>p Qp = I ∈ Rp×p. Replacing A by a suitable function of A, say λ1I −A, one can also901
in principle apply the same algorithms to finding p smallest eigenpairs as well.902

We next describe the Rayleigh-Ritz (RR) step which is to extract approximate eigenpairs,903
called Ritz-pairs, from the range space R(Z) spanned by a given matrix Z ∈ Rn×m. This904
procedure is widely used as an important component for an approximation to a desired m-905
dimensional eigenspace of A. It consists of the following four steps.906

(i) Given Z ∈ Rn×m, orthonormalize Z to obtain U ∈ orth(Z), where orth(Z) is the907
set of orthonormal bases for the range space of Z908

(ii) Compute H = U>AU ∈ Rm×m, the projection of A onto the range space of U .909
(iii) Compute the eigenvalue decomposition H = V >ΣV , where V >V = I and Σ is910

diagonal.911
(iv) Assemble the Ritz pairs (Y,Σ) where Y = UV ∈ Rn×m satisfies Y >Y = I .912

The RR procedure is denoted as a map (Y,Σ) = RR(A,Z) where the output (Y,Σ) is a Ritz913
pair block.914

8.1. Classic Subspace Iteration. The simple (simultaneous) subspace iteration (SSI)915
method [95, 96, 108, 110] is an extension of the power method which computes a single eigen-916

This manuscript is for review purposes only.

26



pair corresponding to the largest eigenvalue in magnitude. Starting from an initial matrix U ,917
SSI repeatedly performs the matrix-matrix multiplications AU , followed by an orthogonal-918
ization and RR projection, i.e.,919

(8.2) Z = orth(AU), U = RR(A,Z).920

The major purpose of orthogonalization is to guarantee the full-rankness of the matrix Z921
since AU may lose rank numerically. The so-called deflation can be executed after each922
RR projection to fix the numerically converged eigenvectors since the convergence rates for923
different eigenpairs are not the same. Moreover, q extra vectors, often called guard vectors,924
are added to U to accelerate convergence. Although the iteration cost is increased at the initial925
stage, the overall performance may be better.926

Due to fast memory access and highly parallelizable computation on modern computer927
architectures, simultaneous matrix-block multiplications have advantages over individual matrix-928
vector multiplications. Whenever there is a gap between the p-th and the (p + 1)-th eigen-929
values of A, the SSI method is ensured to converge to the largest p eigenpairs from any930
generic starting point. However, the convergence speed of the SSI method depends critically931
on eigenvalue distributions. It can be intolerably slow if the eigenvalue distributions are not932
favorable.933

8.2. Polynomial Filtering. The idea of polynomial filtering is originated from a well-934
known fact that polynomials are able to manipulate the eigenvalues of any symmetric matrix935
A while keeping its eigenvectors unchanged. Due to the eigenvalue decomposition (8.1), it936
holds that937

(8.3) ρ(A) = Qρ(Λ)QT =

n∑
i=1

ρ(λi)qiq
T
i ,938

where ρ(Λ) = diag(ρ(λ1), ρ(λ2), . . . , ρ(λn)). Ideally, the eigenvalue distribution ρ(A) is939
more favorable than the original one.940

The convergence of the desired eigen-space of SSI is determined by the gap of the eigen-941
values, which can be very slow if the gap is nearly zero. Polynomial filtering has been used942
to manipulate the gap in eigenvalue computation through various ways [97, 109, 150, 34] in943
order to obtain a faster convergence. One popular choice of ρ(t) is the Chebyshev polynomial944
of the first kind, which can be written as945

(8.4) Td(t) =

{
cos(d arccos t) |t| ≤ 1,
1
2 ((t−

√
t2 − 1)d + (t+

√
t2 − 1)d) |t| > 1,

946

where d is the degree of the polynomial. Since Chebyshev polynomials grow pretty fast947
outside the interval [−1, 1], they can help to suppress all unwanted eigenvalues in this interval948
efficiently. For these eigenvalues in a general interval [a, b], the polynomial can be chosen as949

(8.5) ρ(t) = Td

(
t− (b+ a)/2

(b− a)/2

)
.950

From an initial matrix U , the polynomial-filtered subspace iteration is simply951

(8.6) Z = orth(ρ(A)U), U = RR(A,Z).952
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8.3. Limited Memory Methods. Finding a p-dimensional eigenspace associated with953
p largest eigenvalues of A is equivalent to solving a trace maxmization problem with orthog-954
onality constraints:955

(8.7) max
X∈Rn×p

tr(X>AX), s. t. X>X = I.956

The first-order optimality conditions of (8.7) are957

AX = XΛ, X>X = I,958

where Λ = X>AX ∈ Rp×p is the matrix of Lagrangian multipliers. Once the matrix Λ959
is diagonalized, the matrix pair (Λ, X) provides p eigenpairs of A. When maximization is960
replaced by minimization, (8.7) computes an eigenspace associated with p smallest eigenval-961
ues. A few block algorithms have been designed based on solving (8.7), including the locally962
optimal block preconditioned conjugate gradient method (LOBPCG) [65] and the limited963
memory block Krylov subspace optimization method (LMSVD) [74]. At each iteration, these964
methods in fact solve a subspace trace maximization problem of the form965

(8.8) Y = arg max
X∈Rn×p

{
tr(X>AX) : X>X = I, X ∈ S

}
.966

Obviously, the closed-form solution of (8.8) can be obtained by using the RR procedure.967
The subspace S is varied from method to method. In LOBPCG, S is the span of the two968

most recent iterations Xi−1 and Xi, and the residual AXi−XiΛi at Xi, which is essentially969
equivalent to970

(8.9) S = span {Xi−1, Xi, AXi} .971

The term AXi can be pre-multiplied by a pre-conditioning matrix if it is available. The972
LMSVD method constructs the subspace S as a limited memory of the current i-th iterate973
and the previous t iterates; i.e.,974

(8.10) S = span {Xi, Xi−1, ..., Xi−t} .975

In general, the subspace S should be constructed such that the computational cost of solving976
the subproblem (8.8) is relatively small.977

8.4. Augmented Rayleigh-Ritz Method. We next introduce the augmented Rayleigh-978
Ritz (ARR) procedure. It is easy to see that the RR map (Y,Σ) = RR(A,Z) is equivalent to979
solving the trace-maximization subproblem (8.8) with the subspace S = R(Z), while requir-980
ing Y >AY to be a diagonal matrix Σ. For a fixed number p, the larger the subspace R(Z)981
is, the greater chance there is to extract better Ritz pairs. The augmentation of the subspaces982
in LOGPCG and LMSVD is the main reason why they generally achieve faster convergence983
than the classic SSI.984

The augmentation in ARR is based on a block Krylov subspace structure, i.e., for some985
integer t ≥ 0,986

(8.11) S = span{X,AX,A2X, . . . , AtX}.987

Then the optimal solution of the trace maximization problem (8.8), restricted in the sub-988
space S in (8.11), is computed via the RR procedure using (Ŷ , Σ̂) = RR(A,Kt), where989
Kt = [X,AX,A2X, . . . , AtX]. Finally, the p leading Ritz pairs (Y,Σ) is extracted from990
(Ŷ , Σ̂). This augmented RR procedure is simply referred as ARR. It looks identical to a991
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block Lanczos algorithm. However, a fundamental dissimilarity is that the ARR is primarily992
developed to compute a relatively large number of eigenpairs by using only a few augmenta-993
tion blocks.994

We next describe an “Arrabit” algorithmic framework with two main steps at each outer995
iteration: a subspace update (SU) step and an ARR projection step, for computing a subset996
of eigenpairs of large matrices. The goal of the subspace update step is finding a matrix997
X ∈ Rn×p so that its column space is a good approximation to the p-dimensional eigenspace998
spanned by p desired eigenvectors. Once X is obtained, the projection step aims to extract999
from X a set of approximate eigenpairs that are optimal in certain sense. The SU step is1000
often performed on a transformed matrix ρ(A), where ρ(t) : R→ R is a suitable polynomial1001
function. For a reasonable choice X ∈ Rn×p, it follows from (8.3) that ρ(A)X ≈ QpQ

T
pX1002

would be an approximate basis for the desired eigenspace. The analysis of ARR in [135,1003
Corollary 4.6] shows that the convergence rate of SSI is improved from |ρ(λp+1)/ρ(λp)| for1004
RR (t = 0) to |ρ(λ(t+1)p+1)/ρ(λp)| for ARR (t > 0). Therefore, a significant improvement1005
is possible with a suitably chosen polynomial ρ(·) such that |ρ(λ(t+1)p+1)| � |ρ(λp+1)|.1006

In principle, the SU step can be fulfilled by many kinds of updating schemes without1007
explicit orthogonalizations. The Gauss-Newton (GN) algorithm in [75] solves the nonlinear1008
least squares problem:1009

min ‖XX> −A‖2F .1010

For any full-rank matrix X ∈ Rn×p, it takes the simple closed form1011

X+ = X + α

(
I − 1

2
X(X>X)−1X>

)(
AX(X>X)−1 −X

)
,1012

where the parameter α > 0 is a step size. The classic power iteration can be modified without1013
orthogonalization at each step. For X = [x1 x2 · · · , xm] ∈ Rn×m, the power iteration is1014
applied individually to all columns of the iterate matrix X , i.e.,1015

xi = ρ(A)xi and xi =
xi

‖xi‖2
, i = 1, 2, · · · ,m.1016

This scheme is called a multi-power method.1017

8.5. Singular Value Decomposition. Computing the singular value decomposition1018
of a real symmetric matrix A ∈ Rm×n is equivalent to finding the eigenvalue decomposition1019
of AA>. Although the methods in the previous subsections can be applied to AA> directly,1020
the efficiency can be improved when some operations are performed carefully. We first state1021
the abstract form of the LMSVD method [74], then describe a few implementation details.1022

There are two main steps. For a chosen subspace Si with a block Krylov subspace1023
structure, an intermediate iterate is computed from1024

(8.12) X̂i := arg max
X∈Rm×p

‖A>X‖2F, s. t. X>X = I, X ∈ Si.1025

The next iterate Xi+1 is generated from a SSI step on X̂i, i.e.,1026

(8.13) Xi+1 ∈ orth
(
AA>X̂i

)
.1027

We collect a limited memory of the last a few iterates in (8.10) into a matrix1028

(8.14) X = Xt
i := [Xi, Xi−1, ..., Xi−t] ∈ Rm×q1029
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where q = (t+ 1)p is the total number of columns in Xt
i. For simplicity of notation, the su-1030

perscript and subscript of Xt
i are dropped whenever no confusion would arise. The collection1031

matrix X is written in boldfaces to differentiate it from its blocks. Similarly, a collection of1032
matrix-vector multiplications from the SSI steps are saved in1033

(8.15) Y = Yt
i := A>Xt

i :=
[
A>Xi, A

>Xi−1, ..., A
>Xi−t

]
∈ Rm×q.1034

Assume that X has a full rank and this assumption will be relaxed later. A stable ap-1035
proach for solving (8.12) is to find an orthonormal basis for Si, say,1036

Q = Qt
i ∈ orth

(
Xt
i

)
.1037

Note that X ∈ Si if and only if X = QV for some V ∈ Rq×p. The generalized eigenvalue1038
problem (8.12) is converted into an equivalent eigenvalue problem1039

(8.16) max
V ∈Rq×p

‖RV ‖2F, s. t. V >V = I,1040

where1041

(8.17) R = Rt
i := A>Qt

i.1042

The matrix product R in (8.17) can be computed from historical information without any1043
additional computation involving the matrix A. Since Q ∈ orth(X) and X has a full rank,1044
there exists a nonsingular matrix C ∈ Rq×q such that X = QC. Therefore, Q = XC−1, and1045
R in (8.17) can be assembled as1046

R = A>Q = (A>X)C−1 = YC−1,(8.18)1047

where Y = A>X is accessible from our limited memory. Once R is available, a solution V̂1048
to (8.16) can be computed from the p leading eigenvectors of the q × q matrix R>R. The1049
matrix product can then be calculated as1050

(8.19) AA>X̂i = ARV̂ = AYC−1V̂ .1051

We now explain how to efficiently and stably compute Q and R when the matrix X is1052
numerically rank deficient. Since each block itself in X is orthonormal, keeping the latest1053
block Xi intact and projecting the rest of the blocks onto the null space of X>i yields1054

(8.20) PX = PXi :=
(
I −XiX

>
i

)
[Xi−1 · · · Xi−p] .1055

An orthonormalization of PX is performed via the eigenvalue decomposition of its Gram1056
matrix1057

(8.21) P>XPX = UXΛXU
>
X ,1058

where UX is orthogonal and ΛX is diagonal. If ΛX is invertible, it holds1059

(8.22) Q = Qt
i :=

[
Xi, PXUXΛ

− 1
2

X

]
∈ orth

(
Xt
i

)
.1060

The above procedure can be stabilized by deleting the columns of PX whose Euclidean1061
norms are below a threshold or deleting the small eigenvalues in ΛX and the corresponding1062
columns in UX . The same notations are still used for PX , UX and ΛX after these possible1063
deletions. Therefore, a stable construction of Q is still provided by formula (8.22) and the1064
corresponding R matrix can be formulated as1065

(8.23) R = Rt
i :=

[
Yi, PY UXΛ

− 1
2

X

]
,1066

where PY = PYi := A>PX before the stabilization procedure but some of the columns of1067
PY may have been deleted due to the stabilization steps. Therefore, the R matrix in (8.23) is1068
well defined as is the Q matrix in (8.22) after the numerical rank deficiency is removed.1069
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8.6. Randomized SVD. Given an m×n matrix A and an integer p < min(m,n), we1070
want to find an orthonormal m× p matrix Q such that1071

A ≈ QQTA.1072

A prototype randomized SVD in [54] is essentially one step of the Power method using an1073
initial random input. We select an oversampling parameter l ≥ 2 and an exponent t (for1074
example, t = 1 or t = 2), then perform the following steps.1075

• Generate an n× (p+ l) Gaussian matrix Ω.1076
• Compute Y = (AA>)tAΩ by the multiplications of A and A> alternatively.1077
• Construct a matrix Q = orth(Y ) by the QR factorization.1078
• Form the matrix B = Q>A.1079
• Calculate an SVD of B to obtain B = ŨΣV >, and set U = QŨ .1080

Consequently, we have the approximation A ≈ UΣV >. For the eigenvalue computation, we1081
can simply run the SSI (8.2) for only one step with an Gaussian matrix U . Assume that the1082
computation is performed in exact arithmetic. It is shown in [54] that1083

E‖A−QQ>A‖2 ≤
[
1 +

4
√
p+ l

l − 1

]
σp+1,1084

where the expectation is taken with respect to the random matrix Ω and σp+1 is the (p+1)-th1085
largest singular value of A.1086

Suppose that a low rank approximation of A with a target rank r is needed. A sketching1087
method is further developed in [118] for selected p and `. Again, we draw independent1088
Gaussian matrix Ω ∈ Rn×p and Ψ ∈ R`×m, and compute the matrix-matrix multiplications:1089

Y = AΩ, W = ΨA,1090

Then an approximation Â is computed:1091
• Calculate an orthogonal-triangular factorization Y = QR where Q ∈ Rm×p.1092
• Compute a least-squares problem to derive X = (ΨQ)†W ∈ Rp×n1093
• Assemble the rank-p approximation Â = QX1094

Assume that p = 2r + 1 and ` = 4r + 2. It is established that1095

E‖A− Â‖F ≤ 2 min
rank(Z)≤r

‖A− Z‖F .1096

8.7. Truncated Subspace Method for Tensor Train. In this subsection, we con-1097
sider the trace maximization problem (8.7) whose dimension reaches the magnitude ofO(1042).1098
Due to the scale of data storage, a tensor train (TT) format is used to express data matrices1099
and eigenvectors in [148]. The corresponding eigenvalue problem can be solved based on the1100
subspace algorithm and the alternating direction method with suitable truncations.1101

The goal is to express a vector x ∈ Rn as a tensor x ∈ Rn1×n2×···×nd for some positive1102
integers n1, . . . , nd such that n = n1n2 . . . nd using a collection of three-dimensional tensor1103
cores Xµ ∈ Rrµ−1×rµ×nu with fixed dimensions rµ, µ = 1, . . . , d and r0 = rd = 1. A1104
tensor x is stored in the TT format if its elements can be written as1105

xi1i2...id = X1(i1)X2(i2) · · ·Xd(id),1106

where Xµ(iµ) ∈ Rrµ−1×rµ is the iµ-th slice of Xµ for iµ = 1, 2, . . . , nµ. The values rµ are1107
often equal to a constant r, which is then called the TT-rank. Consequently, storing a vector1108

x ∈ Rnd1 only needs O(dn1r
2) entries if the corresponding tensor x has a TT format. The1109

representation of x is shown as graphs in Figure 8.1.1110
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· · · · · · ×
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Xd(id)

Fig. 8.1 The first row is a TT format of u with cores Xµ, µ = 1, 2, . . . , d. The second row is a representation of
its elements xi1i2...id .

There are several ways to express a matrix X ∈ Rn×p with p � n in the TT format. A1111
direct way is to store each column ofX as tensors x1,x2, . . . ,xp in the TT format separately.1112
Another economic choice is that these p tensors share all except one core. Let the shared1113
cores be Xi, i 6= µ and the µ-th core of xi be Xµ,i, for i = 1, 2, . . . , p. Then the i1i2 · · · id1114
component of xj is1115

(8.24) X(i1, . . . , iµ, . . . ., id; j) = X1(i1) · · ·Xµ,j(iµ) · · ·Xd(id).1116

The above scheme generates a block-µ TT (µ-BTT) format, which is depicted in Figure 8.2.1117
Similarly, a matrix A ∈ Rn×n is in an operator TT format A if the components of A can be1118
assembled as1119

(8.25) Ai1i2···id,j1j2···jd = A1(i1, j1)A2(i2, j2) · · ·Ad(id, jd),1120

where Aµ(iµ, jµ) ∈ Rrµ−1×rµ for iµ, jµ ∈ {1, . . . , nµ}.1121

X1
r0

n1

r1

Xµ−1
rµ-2

rµ-1

nµ-1

Xµ,1

rµ−1

rµ

nµ

Xµ,p
rµ−1

rµ

nµ

Xµ+1
rµ

rµ+1

nµ+1

Xd
rd-1

rd

nd

Fig. 8.2 Demonstration of a µ-BTT format.

Assume that the matrix A itself can be written in the operator TT format. Let X ∈ Rn×p1122
with n = n1n2 . . . nd whose BTT format is X, and Tn,r,p be the set of the BTT formats1123
whose TT-ranks are no more than r. Then the eigenvalue problem in the block BTT format is1124

(8.26) min
X∈Rn×p

tr(X>AX), s. t. X>X = Ip and X ∈ Tn,r,p,1125
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where X ∈ Tn,r,p means that all calculations are performed in the BTT format. Since1126
the TT-ranks increase dramatically after operations such as the addition and matrix-vector1127
multiplication in the TT formats, the computational cost and the storage becomes more and1128
more expensive as the TT-ranks increase. Therefore, the subspace methods in subsection 8.31129
can only be applied with projections to Tn,r,p at some suitable places so that the overall1130
computational cost is still tractable.1131

In our truncated subspace optimization methods, solving the subproblem (8.8) is split1132
into a few steps. First, the subspace Sk is modified with truncations so that the computation of1133
the coefficient matrix U>AU in the RR procedure is affordable. Let PT(X) be the truncation1134
of X to the BTT format Tn,r,p. One can choose either the following subspace1135

(8.27) ST
k = span{PT(AXk),Xk,Xk−1},1136

or a subspace similar to that of LOBPCG with two truncations as1137

(8.28) ST
k = span{Xk,PT(Rk),PT(Pk)},1138

where the conjugate gradient direction is Pk = Xk −Xk−1 and the residual vector is Rk =1139
AXk −XkΛk.1140

Consequently, the subspace problem in the BTT format is1141

Yk+1 := arg min
X∈Rn×p

tr(X>AX), s. t. X>X = Ip, X ∈ ST
k ,(8.29)1142

which is equivalent to a generalized eigenvalue decomposition problem:1143

(8.30) min
V ∈Rq×p

tr(V >(S>AS)V ), s. t. V >S>SV = Ip.1144

Note that Yk+1 /∈ Tn,r,p because the rank of Yk+1 is larger than r due to several additions1145
between the BTT formats. Since Yk+1 is a linear combination of the BTT formats in ST

k ,1146
problem (8.29) still can be solved easily but only the coefficients of the linear combinations1147
are stored.1148

We next project Yk+1 to the required space Tn,r,p as1149

(8.31) Xk+1 = arg min
X∈Rn×p

‖X−Yk+1‖2F , s. t. X>X = Ip, X ∈ Tn,r,p.1150

This problem can be solved by using the alternating minimization scheme. By fixing all1151
except the µth core, we obtain1152

(8.32) min
V

‖X 6=µV − vec(Yk+1)‖2F , s. t. V >X>6=µX 6=µV = Ip,1153

where1154
X6=µ := (X≥µ+1 ⊗ Inµ ⊗X≤µ−1),1155

and1156

X≤µ = [X1(i1)X2(i2) · · ·Xµ(iµ)] ∈ Rn1n2···nµ×rµ ,1157

X≥µ = [Xµ(iµ)Xµ+1(iµ+1) · · ·Xd(id)]
> ∈ Rnµnµ+1···nd×rµ−1 .1158

Therefore, after imposing orthogonality on X6=µ, (8.32) is reformulated as1159

(8.33) min
V

‖V −X>6=µvec(Yk+1)‖2F , s. t. V >V = Ip,1160

whose optimal solution can be computed by the p-dominant SVD of X>6=µvec(Yk+1).1161
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9. Optimization with Orthogonality Constraints. In this section, we consider the1162
optimization problem with orthogonality constraints [132, 59, 2]:1163

(9.1) min
X∈Cn×p

f(X) s. t. X∗X = Ip,1164

where f(X) : Cn×p → R is a R-differentiable function [67]. The set St(n, p) := {X ∈1165
Cn×p : X∗X = Ip} is called the Stiefel manifold. Obviously, the eigenvalue problem in sec-1166
tion 8 is a special case of (9.1). Other important applications include the density functional1167
theory [131], Bose-Einstein condensates [137], low rank nearest correlation matrix comple-1168
tion [121], and etc. Although (9.1) can be treated from the perspective of general nonlinear1169
programming, the intrinsic structure of the Stiefel manifold enables us to develop more effi-1170
cient algorithms. In fact, it can be solved by the Riemannian gradient descent, Riemannian1171
conjugate gradient, proximal Riemannian gradient methods [40, 104, 2, 59]. The Rieman-1172
nian Newton, trust-region, adaptive regularized Newton methods [120, 1, 2, 59] can used1173
when the Hessian information is available. Otherwise, the quasi-Newton types methods are1174
good alternatives [62, 61, 58].1175

The tangent space is TX := {ξ ∈ Cn×p : X∗ξ+ ξ∗X = 0}. The operator ProjX(Z) :=1176
Z − Xsym(X∗Z) is the projection of Z onto the tangent space TX and sym(A) := (A +1177
A∗)/2. The symbols ∇f(X) (∇2f(X)) and grad f(X) (Hess f(X)) denote the Euclidean1178
and Riemannian gradient (Hessian) of f at X . Using the real part of the Frobenius inner1179
product < 〈A,B〉 as the Euclidean metric, the Riemannian Hessian Hessf(X) [31, 3] can be1180
written as1181

(9.2) Hessf(X)[ξ] = ProjX(∇2f(X)[ξ]− ξsym(X∗∇f(X))),1182

where ξ is any tangent vector in TX . A retraction R is a smooth mapping from the tangent1183
bundle to the manifold. Moreover, the restrictionRX ofR to TX has to satisfyRX(0X) = X1184
and DRX(0X) = idTX , where idTX is the identity mapping on TX .1185

9.1. Regularized Newton Type Approaches. We now describe an adaptively reg-1186
ularized Riemannian Newton type method with a subspace refinement procedure [59, 58].1187
Note that the Riemannian Hessian-vector multiplication (9.2) involves the Euclidean Hessian1188
and gradient with simple structures. We construct a second-order Taylor approximation in the1189
Euclidean space rather than the Riemannian space at the k-th iteration:1190

(9.3) mk(X) := < 〈∇f(Xk), X −Xk〉+
1

2
< 〈Bk[X −Xk], X −Xk〉+

τk
2
‖X −Xk‖2F ,1191

where Bk is either ∇2f(Xk) or its approximation based on whether ∇2f(Xk) is affordable1192
or not, and τk is a regularization parameter to control the distance between X and Xk. Then1193
the subproblem is1194

(9.4) min
X∈Cn×p

mk(X) s. t. X∗X = I.1195

After obtaining an approximate solution Zk of (9.4), we calculate a ratio between the pre-1196
dicted reduction and the actual reduction, then use the ratio to decide whether Xk+1 is set to1197
Zk or Xk and to adjust the parameter τk similar to the trust region methods.1198

In particular, the model (9.4) can be minimized by using a modified CG method to solve1199
a single Riemannian Newton system:1200

(9.5) gradmk(Xk) + Hessmk(Xk)[ξ] = 0.1201
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A simple calculation yields:1202

(9.6) Hessmk(Xk)[ξ] = ProjXk (Bk[ξ]− ξsym((Xk)∗∇f(Xk)) + τkξ, ξ ∈ TXk .1203

Hence, the regularization term shifts the spectrum of the Riemannian Hessian by τk. The1204
modified CG method is a direct adaption of the truncated CG method for solving the classic1205
trust region subproblem, see [88, Chapter 5] and [2, Chapter 7] for a comparison. It is ter-1206
minated when either the residual becomes small or a negative curvature is detected since the1207
Hessian may be indefinite. During the process, two different vectors sk and dk are generated,1208
where the vector dk represents the negative curvature direction and sk corresponds to the con-1209
jugate direction from the CG iteration. The direction dk is zero unless a negative curvature is1210
detected. Therefore, a possible choice of the search direction ξk is1211

(9.7) ξk =

{
sk + τkdk if dk 6= 0,

sk if dk = 0,
with τk :=

〈dk, gradmk(Xk)〉
〈dk,Hessmk(Xk)[dk]〉

.1212

Once the direction ξk is computed, a trial point Zk is searched along ξk followed by a retrac-1213
tion, i.e.,1214

(9.8) Zk = RXk(αkξk).1215

The step size αk = α0δ
h is chosen by the Armijo rule such that h is the smallest integer1216

satisfying1217

(9.9) mk(RXk(α0δ
hξk)) ≤ ρα0δ

h 〈gradmk(Xk), ξk〉 ,1218

where ρ, δ ∈ (0, 1) and α0 ∈ (0, 1] are given constants.1219
The performance of the Newton-type method may be seriously deteriorated when the1220

Hessian is close to be singular. One reason is that the Riemannian Newton direction is nearly1221
parallel to the negative gradient direction. Consequently, the next iteration Xk+1 very likely1222
belongs to the subspace span{Xk, gradf(Xk)}, which is similar to the Riemannian gradient1223
approach. To overcome the numerical difficulty, we can further solve (9.1) in a restricted1224
subspace. Specifically, a q-dimensional subspace Sk is constructed with an orthogonal basis1225
Qk ∈ Cn×q(p ≤ q ≤ n). Then the representation of any point X in the subspace Sk is1226

X = QkM1227

for some M ∈ Cq×p. In a similar fashion to these constructions for the linear eigen-1228
value problems in section 8, the subspace Sk can be built by using the history information1229
{Xk, Xk−1, . . .}, {grad f(Xk), grad f(Xk−1), . . .} and other useful information. Once a1230
subspace Sk is given, (9.1) with an additional constraint X ∈ Sk becomes1231

(9.10) min
M∈Cq×p

f(QkM) s. t. M∗M = Ip.1232

Suppose that Mk is an inexact solution of the problem (9.10) from existing optimization1233
methods on manifold. Then Xk+1 = QkMk is a better point thanXk. For extremely difficult1234
problems, one may alternate between the Newton type method and the subspace refinement1235
procedure for a few cycles.1236

9.2. A Structured Quasi-Newton Update with Nyström Approximation. The1237
secant condition in the classical quasi-Newton methods for constructing the quasi-Newton1238
matrix Bk1239

(9.11) Bk[Sk] = ∇f(Xk)−∇f(Xk−1),1240
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where1241
Sk := Xk −Xk−1.1242

Assume that the Euclidean Hessian∇2f(X) is a summation of a relatively cheap partHc(X)1243
and a relatively expensive or even inaccessible partHe(X), i.e.,1244

(9.12) ∇2f(X) = Hc(X) +He(X).1245

Then it is reasonable to keep the cheaper part Hc(X) but approximate He(X) using the1246
quasi-Newton update Ek. It yields an approximation Bk to the Hessian ∇2f(Xk) as1247

(9.13) Bk = Hc(Xk) + Ek,1248

Plugging (9.13) into (9.11) gives the following revised secant condition1249

(9.14) Ek[Sk] = Yk,1250

where1251

(9.15) Yk := ∇f(Xk)−∇f(Xk−1)−Hc(Xk)[Sk].1252

A good initial matrix E0
k to Ek is important to ensure the convergence speed of the limited-1253

memory quasi-Newton method. We assume that a known matrix Ê0
k can approximate the ex-1254

pensive part of the Hessian He(Xk) well, a very limited number of matrix-matrix products1255
involving Ê0

k is affordable but many of them are still prohibitive. We next use the Nyström1256
approximation [117] to construct a low rank matrix. Let Ω be a matrix whose columns consti-1257
tute an orthogonal basis of a well-chosen subspace S and denote W = Ê0

k [Ω]. The Nyström1258
approximation is1259

(9.16) E0
k [U ] := W (W ∗Ω)†W ∗U,1260

where U ∈ Cn×p is any direction. When the dimension of the subspace S is small enough,
the rank ofW (W ∗Ω)†W ∗ is also small so that the computational cost of E0

k [U ] is significantly
cheaper than the original Ê0

k [U ]. Suppose the subspace S is chosen as

span{Xk−1, Xk},

which contains the element Sk. If Ê0
k [UV ] = Ê0

k [U ]V for any matrices U, V with proper1261

dimension (this condition is satisfied when Ê0
k is a matrix), then the secant condition still1262

holds at E0
k , i.e.,1263

E0
k [Sk] = Yk.1264

The subspace S can also be defined as1265

(9.17) span{Xk−1, Xk, Ê0
k [Xk]} or span{Xk−h, . . . , Xk−1, Xk}1266

with small memory length h. Consequently, we obtain a limited-memory Nyström approxi-1267
mation.1268

9.3. Electronic Structure Calculations. The density functional theory (DFT) in1269
electronic structure calculation is an important source of optimization problems with orthog-1270
onality constraints. By abuse of notation, we refer to Kohn-Sham (KS) equations with lo-1271
cal or semi-local exchange-correlation functionals as KSDFT, and KS equations with hybrid1272
functionals as HF (short for Hartree-Fock). The KS/HF equations try to identify orthogo-1273
nal eigenvectors to satisfy the nonlinear eigenvalue problems, while the KS/HF minimization1274
problem minimizes the KS/HF total energy functionals under the orthogonality constraints.1275
These two problems are connected by the optimality conditions.1276
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9.3.1. The Mathematical Models. The wave functions of p occupied states can be1277
expressed as X = [x1, . . . , xp] ∈ Cn×p with X∗X = Ip after some suitable discretization.1278
The KS total energy functional is defined as1279
(9.18)

Eks(X) :=
1

4
tr(X∗LX) +

1

2
tr(X∗VionX) +

1

2

∑
l

∑
i

ζl|x∗iwl|2 +
1

4
ρ>L†ρ+

1

2
e>n εxc(ρ),1280

where L is a discretized Laplacian operator, the charge density is ρ(X) = diag(XX∗), Vion1281
is the constant ionic pseudopotentials, wl represents a discretized pseudopotential reference1282
projection function, ζl is a constant whose value is ±1, and εxc is related to the exchange1283
correlation energy. The Fock exchange operator V(·) : Cn×n → Cn×n is usually a fourth-1284
order tensor [69] which satisfies the following properties: (i) 〈V(D1), D2〉 = 〈V(D2), D1〉1285
for any D1, D2 ∈ Cn×n; (ii) V(D) is Hermitian if D is Hermitian. Then the Fock exchange1286
energy is1287

(9.19) Ef(X) :=
1

4
〈V(XX∗)X,X〉 =

1

4
〈V(XX∗), XX∗〉 .1288

Therefore, the total energy minimization problem can be formulated as1289

(9.20) min
X∈Cn×p

E(X), s. t. X∗X = Ip,1290

where E(X) is Eks(X) in KSDFT and1291

Ehf(X) := Eks(X) + Ef(X)1292

in HF. Computing Ef(X) is very expensive since a multiplication between an n× n× n× n1293
fourth-order tensor and an n-by-n matrix is needed in V(·).1294

Denote the KS Hamiltonian Hks(X) as1295

(9.21) Hks(X) :=
1

2
L+ Vion +

∑
l

ζlwlw
∗
l + Diag((<L†)ρ) + Diag(µxc(ρ)∗en),1296

where µxc(ρ) = ∂εxc(ρ)
∂ρ . SinceHks(X) is essentially determined by the charge density ρ(X),1297

it is often written as Hks(ρ). The HF Hamiltonian is1298

(9.22) Hhf(X) := Hks(X) + V(XX∗).1299

A detailed calculation shows that the Euclidean gradient of Eks(X) is1300

(9.23) ∇Eks(X) = Hks(X)X.1301

The gradient of Ef(X) is ∇Ef(X) = V(XX∗)X . Assume that εxc(ρ(X)) is twice differen-1302
tiable with respect to ρ(X), the Hessian of Eks(X) is1303

(9.24) ∇2Eks(X)[U ] = Hks(X)U +R(X)[U ],1304

where U ∈ Cn×p andR(X)[U ] := Diag
((
<L† + ∂2εxc

∂ρ2 en
)
(X̄ � U +X � Ū)en

)
X . The1305

Hessian of Ef(X) is1306

∇2Ef(X)[U ] = V(XX∗)U + V(XU∗ + UX∗)X.(9.25)1307

This manuscript is for review purposes only.

37



9.3.2. The Self-Consistent Field (SCF) Iteration. The first-order optimality con-1308
ditions for the total energy minimization problem are1309

(9.26) H(X)X = XΛ, X∗X = Ip,1310

whereX ∈ Cn×p, Λ is a diagonal matrix andH representsHks in (9.21) orHhf in (9.22). For1311
KSDFT, one of the most popular methods is the SCF iteration. At the k-th iteration, we first1312
fix the Hamiltonian to be Hks(ρ̃k) for a given ρ̃k and solve the following linear eigenvalue1313
problem1314

(9.27) Hks(ρ̃k)X = XΛ, X∗X = Ip.1315

The eigenvectors corresponding to the p smallest eigenvalues ofHks(ρk) is denoted asXk+1,1316
which leads to a new charge density ρk+1 = ρ(Xk+1). It is then mixed with charge densities1317
from previous steps to produce the new charge density ρ̃k+1 in order to accelerate the con-1318
vergence instead of using ρk+1 directly. This procedure is repeated until self-consistency is1319
reached.1320

A particular charge mixing scheme is the direct inversion of iterative subspace (DIIS) or1321
the Pulay mixing [92, 93, 115]. Choose an integer m with m ≤ k. Let1322

W = (∆ρk,∆ρk−1, . . . ,∆ρk−m+1), ∆ρj = ρj − ρj−1.1323

The Pulay mixing generates the charge density ρ̃k by a linear combination of the previously1324
charge densities1325

ρ̃k =

m−1∑
j=0

cjρk−j ,1326

where c = (c0, c1, . . . , cm−1) is the solution to the minimization problem:1327

min
c

‖Wc‖2, s. t. c>em = 1.1328

Other types of mixing includes Broyden mixing, Kerker mixing and Anderson mixing, etc.1329
Charge mixing is widely used for improving the convergence of SCF even though its conver-1330
gence property is still not clear in few cases.1331

In HF, the SCF method at the k-th iteration solves:1332

H̃kX = XΛ, X∗X = Ip,1333

where H̃k is formed from certain mixing schemes. Note that the Hamiltonian (9.22) can be1334
written as Hhf(D) with respect to the density matrix D = XX∗. In the commutator DIIS1335
(C-DIIS) method [92, 93], the residual Wj is defined as the commutator between Hhf(Dj)1336
and Dj , i.e.,1337

(9.28) Wj = Hhf(Dj)Dj −DjHhf(Dj).1338

We next solve the following minimization to obtain a coefficient c:1339

min
c

∥∥∥∥∥∥
m−1∑
j=0

cjWj

∥∥∥∥∥∥
2

F

, s. t. c>em = 1.1340

Then, a new Hamiltonian matrix is obtained H̃k =
∑m−1
j=0 cjHk−j . Since an explicit storage1341

of the density matrix can be prohibitive, the projected C-DIIS in [60] uses projections of the1342
density and commutator matrices so that the sizes are much smaller.1343
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9.3.3. Subspace Methods For HF using Nyström Approximation. Note that1344
the most expensive part in HF is the evaluation of Ef(X) and the related derivatives. We1345
apply the limited-memory Nyström technique to approximate V (XkX

∗
k) by V̂ (XkX

∗
k). Let1346

Z = V (XkX
∗
k) Ω where Ω is an orthogonal basis of the subspace such as1347

span{Xk}, span{Xk−1, Xk} or span{Xk−1, Xk,V (XkX
∗
k)Xk}.1348

Then the low rank approximation1349

(9.29) V̂ (XkX
∗
k) := Z(Z∗Ω)†Z∗1350

is able to reduce the computational cost significantly. Note that the adaptive compression1351
method in [73] compresses the operator V(XkX

∗
k) on the subspace span{Xk}. Conse-1352

quently, we can keep the easier parts Eks but approximate Ef(X) by using (9.29). Hence, a1353
new subproblem is formulated as1354

(9.30) min
X∈Cn×p

Eks(X) +
1

4

〈
V̂ (XkX

∗
k)X,X

〉
s. t. X∗X = Ip.1355

The subproblem (9.30) can be solved by the SCF iteration, the Riemannian gradient method1356
or the modified CG method based on the following linear equation1357

ProjXk

(
∇2Eks(Xk)[ξ] +

1

2
V̂(XkX

∗
k)ξ − ξsym(X∗k∇f(Xk))

)
= −gradEhf(Xk).1358

9.3.4. A Regularized Newton Type Method. Computing the p-smallest eigenpairs1359
of Hks(ρ̃) is equivalent to a trace minimization problem1360

(9.31) min
X∈Cn×p

q(X) :=
1

2
tr(X∗Hks(ρ̃)X) s. t. X∗X = Ip.1361

Note that q(X) is a second-order approximation to the total energy Eks(X) without consid-1362
ering the second term in the Hessian (9.24). Hence, the SCF method may not converge if this1363
second term dominates. The regularized Newton in (9.1) can be applied to solve both KSDFT1364
and HF with convergence guarantees. We next explain a particular version in [138] whose1365
subproblem is1366

(9.32) min
X∈Cn×p

1

2
tr(X∗Hks(ρ̃)X) +

τk
4
‖XX> −XkX

>
k ‖2F s. t. X∗X = Ip.1367

Since Xk and X are orthonormal matrices, we have1368

‖XX> −XkX
>
k ‖2F = tr((XX> −XkX

>
k )(XX> −XkX

>
k ))

= 2p− 2tr(X>XkX
>
k X).

1369

Therefore, (9.32) is a linear eigenvalue problem:1370

(Hks(ρ̃)− τkXkX
>
k )X = XΛ,

X>X = Ip.
1371
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9.3.5. Subspace Refinement for KSDFT. The direct minimization method in [138]1372
is a kind of subspace refinement procedure using1373

Y = [Xk, Pk, Rk],1374

where Pk = Xk − Xk−1 and Rk = Hks(Xk)Xk − XkΛk. Then the variable X can be1375
expressed as X = Y G where G ∈ C3p×p. The total energy minimization problem (9.20)1376
becomes:1377

min
G

Eks(Y G), s. t. G∗Y ∗Y G = Ip,1378

whose first-order optimality condition is a generalized linear eigenvalue problem:1379

(Y ∗Hks(Y G)Y )G = Y ∗Y GΩ, G∗Y ∗Y G = Ip.1380

The subspace refinement method may help when the regularized Newton method does1381
not perform well. Note that the total energy minimization problem (9.20) is not necessary1382
equivalent to a nonlinear eigenvalue problem (9.26) for finding the p smallest eigenvalues of1383
H(X). Although an intermediate iterateX is orthogonal and contains eigenvectors ofH(X),1384
these eigenvectors are not necessary the eigenvectors corresponding to the p smallest eigen-1385
values. Hence, we can form a subspace which contains these possible target eigenvectors. In1386
particular, we first compute the first γp smallest eigenvalues for some small integer γ. Their1387
corresponding eigenvectors of H(Xk), denoted by Γk, are put in a subspace as1388

(9.33) span{Xk−1, Xk, gradE(Xk),Γk}.1389

Numerical experience shows that the refinement scheme in subsection 9.1 with this subspace1390
is likely escape a stagnated point.1391

10. Semidefinite Programming (SDP). In this section, we present two specialized1392
subspace methods for solving the maxcut SDP and the maxcut SDP with nonnegative con-1393
straints from community detection.1394

10.1. The Maxcut SDP. The maxcut problem partition the vertices of a graph into1395
two sets so that the sum of the weights of the edges connecting vertices in one set with these1396
in the other set is maximized. The corresponding SDP relaxation [46, 16, 56, 8] is1397

(10.1)

min
X∈Sn

〈C,X〉

s. t. Xii = 1, i = 1, · · · , n,
X � 0.

1398

We first describe a second-order cone program (SOCP) restriction for the SDP prob-1399
lem (10.1) by fixing all except one row and column of the matrix X . For any integer1400
i ∈ {1, . . . , n}, the complement of the set {i} is ic = {1, . . . , n}\{i}. Let B = Xic,ic1401
be the submatrix of X after deleting its i-th row and column, and y = Xic,i be the ith col-1402
umn of the matrix X without the element Xi,i. Since Xii = 1, the variable X of (10.1) can1403
be written as1404

X :=

(
1 y>

y B

)
:=

(
1 y>

y Xic,ic

)
1405

without loss of generality. Suppose that the submatrix B is fixed. It then follows from the1406
Schur complement theorem that X � 0 is equivalent to1407

ξ − y>B−1y ≥ 0.1408
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In order to maintain the strict positive definiteness of X , we require 1 − y>B−1y ≥ ν for a1409
small constant ν > 0. Therefore, the SDP problem (10.1) is reduced to a SOCP:1410

(10.2)
min

y∈Rn−1
ĉ>y

s. t. 1− y>B†y ≥ ν, y ∈ Range(B),
1411

where ĉ := 2Ci
c,i. If γ := ĉ>Bĉ > 0, an explicit solution of (10.2) is given by1412

(10.3) y = −
√

1− ν
γ

Bĉ.1413

Otherwise, the solution is y = 0.1414
We next describe the RBR method [130]. Starting from a positive definite feasible so-1415

lution X1, it updates one row/column of X at each of the inner steps. The operations from1416
the first row to the last row is called a cycle. At the first step of the k-th cycle, the matrix B1417

is set to X1c,1c

k and y is computed by (10.3). Then the first row/column of Xk is substituted1418

by X1c,1
k := y. Other rows/columns are updated in a similar fashion until all row/column1419

are updated. Then we set Xk+1 := Xk and this procedure is repeated until certain stopping1420
criteria are met.1421

The RBR method can also be derived from the logarithmic barrier problem1422

(10.4)
min
X∈Sn

φσ(X) := 〈C,X〉 − σ log detX

s. t. Xii = 1,∀i = 1, · · · , n, X � 0.
1423

Fixing the block B = Xic,ic gives1424

det(X) = det(B)(1− (Xic,i)>B−1Xic,i).1425

Therefore, the RBR subproblem for (10.4) is1426

(10.5) min
y∈Rn−1

ĉ>y − σ log(1− y>B−1y).1427

If γ := ĉ>Bĉ > 0, the solution of problem (10.5) is1428

(10.6) y = −
√
σ2 + γ − σ

γ
Bĉ.1429

Consequently, the subproblem (10.2) has the same solution as (10.5) if ν = 2σ

√
σ2+γ−σ
γ .1430

10.1.1. Examples: Phase Retrieval. Given a matrix A ∈ Cm×n and a vector b ∈1431
Rm, the phase retrieval problem can be formulated as a feasibility problem:1432

find x, s. t. |Ax| = b.1433

An equivalent model in [122] is1434

min
x∈Cn,y∈Rm

1

2
‖Ax− y‖22

s. t. |y| = b,

1435
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which can be further reformulated as1436

(10.7)
min

x∈Cn,u∈Cm
1

2
‖Ax− diag(b)u‖22

s. t. |ui| = 1, , i = 1, . . . ,m.

1437

By fixing the variable u, it becomes a least squares problem with respect to x, whose explicit1438
solution is x = A†diag(b)u. Substituting x back to (10.7) yields a general maxcut problem:1439

min
u∈Cm

u∗Mu

s. t. |ui| = 1, i = 1, . . . ,m,
1440

where M = diag(b)(I − AA†)diag(b) is positive semidefinite. Hence, the corresponding1441
SDP relaxation is1442

min
U∈Sm

tr(UM)

s. t. U ii = 1, i = 1, · · · ,m, U � 0.
1443

The above problem can be further solved by the RBR method.1444

10.2. Community Detection. Suppose that the nodes [n] = {1, . . . , n} of a network1445
can be partitioned into r ≥ 2 disjoint sets {K1, . . . ,Kr}. A binary matrix X is called a1446
partition matrix if Xij = 1 for i, j ∈ Kt, t ∈ {1, ..., r} and otherwise Xij = 0. Let A be the1447
adjacency matrix and d be the degree vector, where di =

∑
j A

ij , i ∈ [n]. Define the matrix1448

(10.8) C = −(A− λdd>),1449

where λ = 1/‖d‖1. A popular method for the community detection problem is to maximize1450
the modularity [86] as:1451

(10.9) min
X
〈C,X〉 s. t. X ∈ Prn,1452

where Prn is the set of all partition matrices of n nodes with no more than r subsets. Since1453
the modularity optimization (10.9) is NP-hard, a SDP relaxation proposed in [25] is:1454

(10.10)

min
X∈Rn×n

〈C,X〉

s. t. Xii = 1, i = 1, . . . , n,

0 ≤ Xij ≤ 1,∀i, j,
X � 0.

1455

The RBR method in subsection 10.1 can not be applied to (10.10) directly due to the compo-1456
nentwise constraints 0 ≤ Xij ≤ 1.1457

Note that the true partition matrix X∗ can be decomposed as X∗ = Φ∗(Φ∗)>, where1458
Φ∗ ∈ {0, 1}n×r is the true assignment matrix. This decomposition is unique up to a permu-1459
tation of the columns of Φ∗. The structures of Φ∗ leads to a new relaxation of the original1460
partition matrix X [146]. Define a matrix1461

U =
[
u1, ..., un

]> ∈ Rn×r.1462

We can consider a decomposition X = UU>. The constraints Xii = 1 and Φ∗ ∈ {0, 1}n×r1463
imply that1464

‖ui‖2 = 1, U ≥ 0, ‖ui‖0 ≤ p,1465
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where the cardinality constraints are added to impose sparsity of the solution. Therefore, an1466
alternative relaxation to (10.9) is1467

(10.11)

min
U∈Rn×r

〈
C,UU>

〉
s. t. ‖ui‖2 = 1, i = 1, . . . , n,

‖ui‖0 ≤ p, i = 1, . . . , n,

U ≥ 0.

1468

Although (10.11) is still NP-hard, it enables us to develop a computationally efficient1469
RBR method. The feasible set for each block ui is1470

U = {u ∈ Rr | ‖u‖2 = 1, u ≥ 0, ‖u‖0 ≤ p}.1471

Then, problem (10.11) can be rewritten as1472

(10.12) min
U∈Rn×r

f(U) ≡
〈
C,UU>

〉
, s. t. ui ∈ U .1473

For the i-th subproblem, we fix all except the i-th row of U and formulate the subproblem as

ui = arg min
x∈U

f(u1, ..., ui−1, x, ui+1, ..., un) +
σ

2
‖x− ūi‖2,

where the last part in the objective function is the proximal term and σ > 0 is a parameter.1474
Note that the quadratic term ‖x‖2 is eliminated due to the constraint ‖u‖2 = 1. Therefore,1475
the subproblem becomes1476

(10.13) ui = arg min
x∈U

b>x,1477

where b = 2Ci,i
c

U−i − σūi, and Ci,i
c

is the i-th row of C without the i-th component, U−i1478
is the matrix U without the i-th row. Define b+ = max{b, 0}, b− = max{−b, 0}, where the1479
max is taken component-wisely. Then the closed-form solution of (10.13) is given by1480

(10.14) u =

{
bp−
‖bp−‖

, if b− 6= 0,

ej0 , with j0 = arg minj b
j , otherwise,

1481

where bp− is obtained by keeping the largest p components in b− and letting the others be1482
zero, and when ‖b−‖0 ≤ p, bp− = b−. Then the RBR method goes over all rows of U by1483
using (10.14).1484

We next briefly describe the parallelization of the RBR method on a shared memory1485
computer with many threads. The variable U is stored in the shared memory so that it can be1486
accessed by all threads. Even when some row ui is updating in a thread, the other threads can1487
still access U whenever necessary. In the sequential RBR method, the main cost of updating1488
one row ui is the computation of b = 2Ci,i

c

U−i − σūi, where ūi and U are the current1489
iterates. The definition of C in (10.8) gives1490

(10.15) b> = −2Ai,i
c

U−i + 2λdi(di
c

)>U−i − σūi,1491

where Ai,i
c

is the i-th row of A without the i-th component. The parallel RBR method is1492
outlined in Figure 10.1 where many threads are working simultaneously. The vector d>U1493
and matrix U are stored in the shared memory and all threads can access and update them.1494
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Fig. 10.1 An illustration of the asynchronous parallel proximal RBR method

Every thread picks up their own row ui at a time and then reads U and the vector d>U . Then,1495
a private copy of b> is computed. Thereafter, the variable ui is updated and d>U is set to1496
d>U ← d>U + di(ui − ūi) in the shared memory. It immediately proceeds to another row1497
without waiting for other threads to finish their tasks. Therefore, when a thread is updating1498
its variables, other blocks of variables uj , j 6= i are not necessarily the most new version.1499
Moreover, if this thread is reading some row uj or the vector d>U from memory and another1500
thread is just modifying them, the data of ui will be partially updated. Since the memory1501
locking is removed, the parallel RBR method may be able to provide near-linear speedups.1502
See also the HOGWILD! [94] and CYCLADES [89] for the asynchronous methods.1503

11. Low Rank Matrix Optimization. Optimization problems whose variable is re-1504
lated to low-rank matrices arise in many applications, for example, semidefinite programming1505
(SDP), matrix completion, robust principle component analysis, control and systems theory,1506
model reduction [76], phase retrieval, blind deconvolution, data mining, pattern recognitions1507
[33], latent semantic indexing, collaborative prediction and low-dimensional embedding.1508

11.1. Low Rank Structure of First-order Methods. A common feature of many1509
first-order methods for the low rank matrix optimization problems is that the next iterate xk+11510
is defined by the current iterate xk and a partial eigenvalue decomposition of certain matrix.1511
They can be unified as the following fixed-point iteration scheme [71]:1512

(11.1) xk+1 = T (xk,Ψ(B(xk))), xk ∈ D,1513

where B : D → Sn is a bounded mapping from a given Euclidean space D to the n-1514
dimensional symmetric matrix space Sn, and T is a general mapping from D × Sn to D.1515
The spectral operator Ψ : Sn → Sn is given by1516

(11.2) Ψ(X) = VDiag(ψ(λ(X)))V >,1517
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where X = VDiag(λ1, . . . , λn)V > is the eigenvalue decomposition of X with eigenvalues1518
in descending order λ1 ≥ λ2 · · · ≥ λn, λ(X) = (λ1, . . . , λn)T , the operator ψ : Rn → Rn1519
is a vector-valued symmetric mapping, i.e., ψ(Pλ) = Pψ(λ) for any permutation matrix P .1520
The orthogonal projection of a symmetric matrix X on to a given Range(Q) with Q>Q = I1521
is defined as:1522

(11.3) PQ(X) := arg min
Y ∈Sn, Range(Y )=Range(Q)

‖Y −X‖2F = QQ>XQQ>.1523

The operator Ψ has the low-rank property at X if there exists an orthogonal matrix VI ∈1524
Rn×p (p � n) that span a p-dimensional eigen-space corresponding to λi(X), i ∈ I, such1525
that Ψ(X) = Φ(PVI (X)), where Φ is either the same as Ψ or a different spectral operator1526
induced by φ, and I is an index set depending on X . The low-rank property ensures that the1527
full eigenvalue decomposition is not needed.1528

The scheme (11.1) is time-consuming for large scale problems since first-order methods1529
often take thousands of iterations to converge and each iteration requires at least one full1530
or partial eigenvalue decomposition for evaluating Ψ. However, Ψ(B(xk)) often lives in a1531
low-dimensional eigenspace in practice. A common practice is to use inexact method such as1532
the Lanczos method, LOBPCG, and randomized methods with early stopping rules [149, 6,1533
106]. The so-called subspace method performs refinement on a low-dimensional subspace for1534
univariate maximal eigenvalue optimization problem [66, 102, 63] and in the SCF iteration1535
for KSDFT [151]. In the rest of this section, we present approaches [71] which integrate1536
eigenvalue computation coherently with the underlying optimization methods.1537

11.2. A Polynomial-filtered Subspace Method. We now describe a general sub-1538
space framework for the scheme (11.1) using Chebyshev polynomials ρk(·) defined in (8.5).1539
Assume that x∗ is a limit point of the fixed-point iteration (11.1) and the low-rank property1540
holds for every B(xk) in (11.1). Consequently, the scheme (11.1) is equivalent to1541

(11.4) xk+1 = T (xk,Φ(PVIk (B(xk)))),1542

where VIk is determined by B(xk). Although the exact subspace VIk usually is unknown,1543
it can be approximated by an estimated subspace Uk so that the computational cost of Ψ1544
is significantly reduced. After the next point xk+1 is formed, a polynomial filter step is1545
performed in order to extract a new subspace Uk+1 based on Uk. Therefore, combining the1546
two steps (8.6) and (11.4) together gives1547

xk+1 = T (xk,Φ(PUk(B(xk)))),(11.5)1548

Uk+1 = orth(ρ
qk+1

k+1 (B(xk+1))Uk),(11.6)15491550

where qk is a small number (e.g. 1 to 3) of the polynomial filter ρk(·) applied to Uk. The1551
Chebyshev polynomials are suitable when the targeted eigenvalues are located within an inter-1552
val, for example, finding a few largest/smallest eigenvalues in magnitude or all positive/neg-1553
ative eigenvalues.1554

The main feature is that the exact subspace VIk is substituted by its approximation Uk1555
in (11.5). The principle angle between the true and extracted subspace is controlled by the1556
polynomial degree. Then the error between one exact and inexact iteration is bounded. When1557
the initial space is not orthogonal to the target space, the convergence of (11.5)-(11.6) is1558
established under mild assumptions. In fact, the subspace often becomes more and more1559
accurate so that the warm start property is helpful, i.e., the subspace of the current iteration1560
can be refined from the previous one.1561
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11.3. The Polynomial-filtered Proximal Gradient Method. We next show how1562
to apply the subspace update (11.5) and (11.6) to the proximal gradient method on a set of1563
composite optimization problems1564

(11.7) min h(x) := F (x) +R(x),1565

where F (x) = f ◦ λ(B(x)) with B(x) = G+A∗(x) and R(x) is a regularization term with1566
simple structures but need not be smooth. HereG is a known matrix in Sn, the linear operator1567
A and its adjoint operator A∗ are defined as1568

(11.8) A(X) = [〈A1, X〉 , . . . , 〈Am, X〉]T , A∗(x) =

m∑
i=1

xiAi,1569

for given symmetric matrices Ai ∈ Sn. The function f : Rn → R is smooth and absolutely1570
symmetric, i.e., f(x) = f(Px) for all x ∈ Rn and any permutation matrix P ∈ Rn×n.1571

Let Ψ be a spectral operator induced by ψ = ∇f . It can be verified that the gradient of1572
F in (11.7) is1573

(11.9) ∇F (x) = A(Ψ(B(x))).1574

The proximal operator is defined by1575

(11.10) proxtR(x) = arg min
u

R(u) +
1

2t
‖u− x‖22.1576

Consequently, the proximal gradient method is1577

(11.11) xk+1 = proxτkR(xk − τkA(Ψ(B(xk)))),1578

where τk is the step size. Therefore, the iteration (11.11) is a special case of (11.1) with1579

T (x,X) = proxτkR(x−A(X)),

Ψ(X) = VDiag(∇f(λ(X)))V >.
1580

Assume that the low-rank property holds at every iteration. The corresponding polynomial-1581
filtered method can be written as1582

xk+1 = proxτkR(xk − τkA(Φ(PUk(B(xk)))),(11.12)1583

Uk+1 = orth(ρ
qk+1

k+1 (B(xk+1))Uk).(11.13)15841585

11.3.1. Examples: Maximal Eigenvalue and Matrix Completion. Consider the1586
maximal eigenvalue optimization problem:1587

(11.14) min
x
F (x) +R(x) := λ1(B(x)) +R(x),1588

where B(x) = G+A∗(x). Certain specific formulations of phase recovery and blind decon-1589
volution are special case of (11.14). The subgradient of F (x) is1590

∂F (x) = {A(U1SU
T
1 ) | S � 0, tr(S) = 1},1591

where U1 ∈ Rn×r1 is the subspace spanned by eigenvectors of λ1(B(x)) with multiplicity1592
r1. For simplicity, we assume r1 = 1 and λ1(B(x)) > 0, which means that ∂F (x) has only1593
one element and the function F (x) is differentiable. Then the polynomial-filtered method is1594

xk+1 = proxτR(xk − τA(u1u
T
1 )),1595
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where u1 is the eigenvector of λ1(B(xk)). Hence, we have1596

T (x,W ) = proxτR(x− τA(W )), Ψ(X) = u1u
T
1 .1597

In addition, Ψ(·) satisfies the low-rank property around x∗ with I = {1} and1598

(ψ(λ))i = (φ(λ))i =

{
1, i = 1,

0, otherwise.
1599

Another example is the penalized formulation of the matrix completion problem:1600

(11.15) min ‖X‖∗ +
1

2µ
‖PΩ(X −M)‖2F ,1601

where Ω is a given index set of the true matrix M , and PΩ : Rm×n → Rm×n denotes1602
the projection operator onto the sparse matrix space with non-zero entries on Ω. Problem1603
(11.15) can be solved by the proximal gradient method. At the k-th iteration, the main cost1604
is to compute the truncated SVD of a matrix. Although (11.15) is not a direct special case of1605
(11.7), we can still insert the polynomial filter into the proximal gradient method to reduce1606
the cost of SVD.1607

11.4. The Polynomial-filtered ADMM Method. Consider the standard SDP:1608

(11.16)

min 〈C,X〉 ,
s. t. AX = b,

X � 0,

1609

where C, A and b are given, the linear operator A and its adjoint are defined in (11.8).1610
Note that the ADMM on the dual problem of (11.16) is equivalent to the Douglas-Rachford1611
Splitting (DRS) method [30] on the primal SDP (11.16). Define F (X) = 1{X�0}(X) and1612
G(X) = 1{AX=b}(X) + 〈C,X〉, where 1Ω(X) is the indicator function on a set Ω. The1613
proximal operators proxtF (Z) and proxtG(Y ) can be computed explicitly as1614

proxtF (Z) = P+(Z),1615

proxtG(Y ) = (Y + tC)−A∗(AA∗)−1(AY + tAC − b),1616

where P+(Z) is the projection operator onto the positive semi-definite cone. Hence, DRS1617
can be formulated as1618

Zk+1 = TDRS(Zk)
∆
= proxtG(2proxtF (Zk)− Zk)− proxtF (Zk) + Zk,1619

which is also a special case of (11.1) with1620

T (x,X) = proxtG(2X − x)−X + x,

Ψ(X) = P+(X).
1621

Note that P+(X) is a spectral operator induced by ψ with the form1622

(ψ(λ))i = max{λi, 0}, ∀i.1623

It can be verified that Ψ(X) = Ψ(PVI (X)), where I contains all indices of the positive1624
eigenvalues λi(X). The operator Ψ(X) satisfies the low-rank property if X only has a few1625
positive eigenvalues. Hence, the polynomial-filtered method method can be written as1626

Zk+1 = proxtG(2P+(PUk(Zk))− Zk)− P+(PUk(Zk)) + Zk,(11.17)1627

Uk+1 = orth(ρ
qk+1

k+1 (Zk+1)Uk).(11.18)1628
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11.4.1. Examples: 2-RDM and Cryo-EM. The two-body reduced density matrix1629
(2-RDM) problem can be formulated as a standard SDP. It has a block diagonal structure1630
with respect to the variable X , where each block is a low rank matrix. Hence, the polynomial1631
filters can be applied to each block to reduce the cost. As an extension, we can plug poly-1632
nomial filters into multi-block ADMM for the nonlinear SDPs from the weighted LS model1633
with spectral norm constraints and least unsquared deviations (LUD) model in orientation de-1634
termination of cryo-EM images [124]. For these examples we only introduce the formulation1635
of the corresponding model. The details of the multi-block ADMM can be found in [124].1636

Suppose K is a given integer and S and W are two known matrices, the weighted LS1637
model with spectral norm constraints is1638

(11.19)

max 〈W � S,G〉 ,
s.t. Gii = I2,

G � 0,
‖G‖2 ≤ αK,

1639

where G = (Gij)i,j=1,...,K ∈ S2K is the variable, with each block Gij being a 2-by-2 small1640
matrix, and ‖ · ‖2 is the spectral norm. A three-block ADMM is introduced to solve (11.19).1641
The cost of the projection onto the semidefinite cone can be reduced by the polynomial filters.1642

The semidefinite relaxation of the LUD problem is1643

(11.20)

min
∑

1≤i<j≤K ‖cij −Gijcji‖2,
s.t. Gii = I2,

G � 0,
‖G‖2 ≤ αK,

1644

where G, Gij , K are defined the same in (11.19), and cij ∈ R2 are known vectors. The1645
spectral norm constraint in (11.20) is optional. A four-block ADMM is proposed to solve1646
(11.20). Similarly, the polynomial filters can be inserted into the ADMM update to reduce1647
the computational cost.1648

12. Conclusion. In this paper, we provide a comprehensive survey on various sub-1649
space techniques for nonlinear optimization. The main idea of subspace algorithms aims1650
to conquer large scale nonlinear problems by performing iterations in a lower dimensional1651
subspace. We next summarize a few typical scenarios as follows.1652

• Find a linear combination of several known directions. Examples are the linear and1653
nonlinear conjugate gradient methods, the Nesterov’s accelerated gradient method,1654
the Heavy-ball method and the momentum method.1655

• Keep the objective function and constraints, but add an extra restriction in a cer-1656
tain subspace. Examples are OMP, CoSaMP, LOBPCG, LMSVD, Arrabit, subspace1657
refinement and multilevel methods.1658

• Approximate the objective objective function but keep the constraints. Examples are1659
BCD, RBR, trust region with subspaces and parallel subspace correction.1660

• Approximate the objective objective function and design new constraints. Examples1661
are trust region with subspaces and FPC AS.1662

• Add a postprocess procedure after the subspace problem is solved. An example is1663
the truncated subspace method for tensor train.1664

• Use subspace techniques to approximate the objective functions. Examples are sam-1665
pling, sketching and Nyström approximation.1666

• Integrate the optimization method and subspace update in one framework. An ex-1667
ample is the polynomial-filtered subspace method for low-rank matrix optimization.1668
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The competitive performance of the methods adopting the above mentioned subspace1669
techniques in the related examples implies that the subspace methods are very promising1670
tools for large scale optimization problems. In fact, how to choose subspaces, how to con-1671
struct subproblems, and how to solve them efficiently are the key questions of designing a1672
successful subspace method. A good tradeoff between the simplicity of subproblems and the1673
computational cost has to be made carefully. We are confident that many future directions are1674
worth to be pursued from the point view of subspaces.1675
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