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and

We then consider the following relaxation,

U(cj) 2 Zj Vcj = %?,l(cj) = 2

Thus, if we set xi to be true with probability U(xi) for the optimal solution to

the corresponding semidefinite program, then by the arguments of Goemans

and Williamson [1994b], we satisfy a clause Cj of length k with probability at

least (1 – (1 – (l\k))~)zj.

To obtain the improved bound, we consider three algorithms: (1) set xi true

independently with probability ~; (2) set xi true independently with probability

U(xi) (given the optimal solution to the program); (3) pick a random unit vector

r and set xi true iff sgn( Ui “ r) = sgn( UO“ r). Suppose we use algorithm i with

probability pi, where pl + pz + pq = 1. From the previous section, for algo-

rithm (3) the probability that a clause Cj of length 1 or 2 is satisfied is at least

a u(Cj) > CYZj. Thus the expected value of the solution is at least

~ ‘j(-5~~ + (p,+ ap’3)zj) + ~ ‘j(.75p~ + (.75~~+ a~~)zj)

j:l(Cj)= 1 j:l(Cj)=2

If we set pl = p, = .4785 and p~ = .0430, then the expected value is at least

.7554 zj wjzj, yielding a .7554-approximation algorithm. To see this, we check

the value of the expression for lengths 1 through 4, and notice that

‘4-(1-3’)-+
and

( ).4785 (1 – 2-5) + 1 – ~ > .7554.
e

We can obtain even a slightly better approximation algorithm for the MAX

SAT problem. The bottleneck in the analysis above is that algorithm (3)

contributes no expected weight for clauses of length 3 or greater. For a given

clause Cj of length 3 or more, let Pj be a set of length 2 clauses formed by
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taking the literals of Cj two at a time; thus, ~ will contain
()

l(cj)
clauses. If at

least one of the literals in Cj is set true, then at least l(cj) –21 of the clauses

in pi will be satisfied. Thus, the following program is a relaxation of the IWAX

SAT problem:

subject to:

~ ‘(x,) + ~ ‘(z,) > ‘j Vcj e f7
i ● 11+ i ● Ij–

U(cj) > Zj Vcj e %’, l(cj) = 2

Vcj e %’,l(cj) >3

Algorithm (3) has expected value of au(C) for each C = Pj for any j, so tlhat

its expected value for any clause of length 3 or more becomes at least

a“ & ~;,u(c) = a oJ 1
()

~u(c)
l(Cj) l(C’j) – 1 ~GPj

1

2]

2
.—

2a l(Cj)zj’

so that the overall expectation of the algorithm will be at least

~ Wj(-5~~ + (~’2+ a~~)zj) + ~ wj(.75p, + (.75p2 + a!p,)zj)

j:l(Cj)= 1 j:l(Cj) = 2

[

+ ~ Wj (1 - 2-’(cJ)p1

j:l(Cj)>3

‘[(1-(1-*]’(c’))P2+ a&P3)zj)

By setting pl = pz = .467 and p~ = .066, we obtain a .7584-approximation

algorithm, which can be verified by checking the expression for lengths 1

through 6, and noticing that

((
.467 1 –

Other small improvements are

1
.

)
+(1–

e

possible by

)2-7) ? .7584.

tightening the analysis.
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7.3 MAX DICUT. Suppose we are given a directed graph G = (V, xl) and

weights Wij on each directed arc (i, j) = A, where i is the tail of the arc and j

k the head. The maximum directed cut problem is that of finding the set of

vertices S that maximizes the weight of the edges with their tails in S and their

heads in ~. The problem is NP-hard via a straightforward reduction from MAX

CUT. The best previously known approximation algorithm for MAX DICUT

has a performance guarantee of ~ [Papadimitriou and Yannakakis 1991].

To model MAX DICUT, we consider the integer quadratic program

+dij~(l – yiyj + y~Y~ + YjY~)]

(Q” ) subject to: y, = { –1, 1} ‘di ~ V,

where Cij~ and dij~ are nonnegative. Observe that 1 – y, yj – yi y~ + yj y~ can

also be written as (1 – yiyj)(l – yiy~) (or as (1 – yiyj)(l + yjy~)), and, thus, the

objective function of (Q”) can be interpreted as a nonnegative restricted

quadratic form in 1 i yiyj. Moreover, 1 – yiyj – yiy~ + yjy~ is equal to 4 if

Yi = ‘Yj = ‘Yk and O othe~ise~ while 1 + YiYj + Yiyk + Yjyk is 4 if Yi = yj = Y~
and is O otherwise.

We can model the MAX DICUT problem using the program (Q”) by

introducing a variable y, for each i G V, and, as with the MAX 2SAT program,

and introducing a variable yO that will denote the S side of the cut. Thus, i = S

iff yi = yO. Then arc (i, j) contributes weight

1 1
~w~j(l + YiY())(l – YjYO) = ~wij(l + YiYO – YjYO – YiYj)

to the cut. Summing over all arcs (i, j) = A gives a program of the same form

as (Q”). We observe that if the directed graph has weighted indegree of every

vertex equal to weighted outdegree, the program (Q”) reduces to one of the

form (Q ‘), and therefore our approximation algorithm has a performance

guarantee of ( a – 6).

We relax (Q”) to:

+dijk(l + U1. u, + Vi- Uk + u, . Vk)]

(P”) subject to: Ui = S. Vi ~ V.

We approximate (Q”) by using exactly the same algorithm as before. The

analysis is somewhat more complicated. As we will show, the performance

guarantee /3 is slightly weaker, namely

2 2v–36
p= min >0.79607.

0S9<arcc0s(- 1/3) ~ 1 + 3cos d
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Given a vector r drawn uniformly from the unit sphere S., we know by the

linearity of expectation that the expected value E[u] of the solution output is

4 X [Cijk “ Pr[f%n(ui “ ‘) # ‘EJn(uj“ ‘) = ‘gn(uk“ ‘)]
i,j, k

+dij~ “ Pr[sgn(ui” r) = sgn(uj “r) = sgn(uk “ r)]].

Consider any term in the sum, say ~ij~ “ Pr[sgn(ui . r) = sgn( ~j “r) = sgn(u~ “ r)].

The cij~ terms can be dealt with similarly by simply replacing vi by – vi. The

perfclrmance guarantee follows from the proof of the following two lemmas,

LEMMA 7.3.1

Pr[sgn(ui “r) = Sgn(uj or) = sgn(u~ “ r)]

= 1- &(arccos(ui . Z)j) + arccos(ui . Uk) + arCCOS(Uj . Uk)).

LEMMA 7.3.2. For any vi, Vj, v~ e S.,

1- #_(a~CCOS(Ui - Uj) + arccos(ui eU,) + a~CCOS(Uj - U,))

PROOF OF LEMMA 7.3.1. A very short proof can be given relying on

spherical geometry. The desired probability can be seen to be equal to twilce

the area of the spherical triangle polar to the spherical triangle defined by vi,

Vj, and v~. Stated this way, the result is a corollary to Girard’s [1629] formula

(see Rosenfeld [1988]) expressing the area of a spherical triangle with angles
@l, 6J, and tl~ as its excess @l + Oz i- OS – z-.

We also present a proof of the lemma from first principles. In fact, our proof

parallels Euler’s [1781] proof (see Rosenfeld [1988]) of Girard’s formula. We

define the following events:

A: Sgn(Ui . r) = Sgn(.lJj “r) = sgn(uk “r)

Bi : Sgn(lli - r) # Sgn(Uj “ r) = sgn(uk “ r)

Ci : sgn(vj or) = sgn(uk or)

Cj : Sgll(Vi “ r) = sgn(u~ “ r)

Ck : Sgll(L’i “ r) = Sgn(Uj “ r).

Note that Bi = Ci – A. We define Bj and B~ similarly, so that Bj = Cj – .A

and Ek = ck – A. Clearly,

Pr[A] + Pr[Bi] + Pr[Bj] + Pr[B~] = 1. (1)

Also, Pr[Ci] = Pr[ A ] + Pr[Bi] and similarly for j and k. Adding up these

equalities and subtracting (l), we obtain

Pr[Ci] + Pr[Cj] + Pr[C~] = 1 + 2Pr[A]. (2!)
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By Lemma 3.2, Pr[Ci] = 1 – I/z- arccos(~j . ~~) and

Together with (2), we derive

Pr[A] = 1 – ~ (arccos(ui “ Uj) + arccos(ui “ u~)

proving the lemma. ❑

AND D. P. WILLIAMSON

similarly for j and k.

+ arccos(uj ou~)),

PROOF OF LEMMA 7.3.2. One can easily verify that the defined value of ~ is

greater than 0.79607. Let a = arccos( u, “ Uj), b = arccos(ui “ u~), and c =

arccos( Uj. u~). From the theory of spherical triangles, it follows that the

possible values for (a, b, c) over all possible vectors Ui, Uj, and v~ define the set

S={(a, b,c):O<a<n, O<bs T,Osc S7r,

c<a+b, bga+c, a<b+ c,a+b+c S2~}.

(see Berger [1987, Corollary 18.6.12.3]). The claim can thus be restated as

1 – &(a + b + c) > ~(1 + cos(a) + cos(b) + cos(c))

for all (a, b, c) C S.

Let (a, b, c) minimize

h(a, b,c) = 1 – -&(a + b + c) – :(1 + cos(a) + COS(b) + COS(C))

over all (a, b, c) = S. We consider several cases:

(l)a-tb+c=27r. We

hand,

1 + cos(a)

=1+

=1+

have 1 – (l\2w)(a + b + c) = O. On the other

+ Cos(b) + Cos(c)

cos(a) + cos(h) + cos(u + b)

cOs(a+b’+2c0s(%c0s(=
= 2COS2

(+)+2c0s(+]c0s(+!

.2COS(+)[COS(+) +Cos( :)].

We now derive that

lz(a,b,c)> -; COS(+)[COS(+)+COS(+] 20,

the last inequality following from the fact that

(3)

T a+b a–b
—< —<v— —
2 2 2
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(2)

(3)

(4)

(5)

and thus

()
a+b

Cos —
2

<0

and [C”s(+)+cosrwl’o

a= b+corb=a+corc =a+b. Bysymmetry, assume thatc= a

+ b. Observe that

a+b
l– &(a+b+c)=l– —.

T

On the other hand, by (3) we have that

1 + cos(a) + cos(b) + COS(C)

.2COS(+)(COS(9) +COS(*))

( )(a+b
S2COS —

2
1

Letting x = (a + b)/2, we observe

1

( ))a+b
+ Cos —

2“

that the claim is equivalent to

. — 2 ; Cos(.x)(l + Cos(x))
,11 z.

One can in fact verify that

2x 0.81989
—->

2
Cos(x)(l + Cos(x))

T

implying the claim.

l–

for any O < x < r/2,

~z = O or b = O or c =’ O: Without loss of generality, let a = O. The

definition of S implies that b = c, and thus b = a + c. This case therefore

reduces to the previous one.

(z = n or b = n or c = rr. Assume a = m. This implies that b + c =’ n

and, thus, a + b + c = 2m. We have thus reduced the problem to case (1).

l[n the last case, (a, b, c) belongs to the interior of S. This implies that the.,.
gradient of h must vanish and-the hessian of h must be posi~ive semidefi-

nite at (a, b, c). In other words,

2
sina=sinb=sinc=—,

pn

and cos a 2 0, cos b z O and cos c > 0, From this, we derive that a =

b = C. But

h(a, a,a) = 1 – ~ – :(1 + 3cos(a)).

The lemma now follows from the fact that a s 2T/3, the definition of ~
and the fact that 1 + 3 cos a < 0 for a > arccos – 1/3. ❑

Thus, we obtain a ( ~ – e)-approximation algorithm for ( Q“ ) and for the

MAX DICUT problem.
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8. Concluding Remarks

Our motivation for studying semidefinite programming relaxations came from

a realization that the standard tool of using linear programming relaxations for

approximation algorithms had limits which might not be easily surpassed (see

the conclusion of Goemans and Williamson [1994b]). In fact, a classical linear

programming relaxation for the maximum cut problem can be shown to be

arbitrarily close to twice the value of the maximum cut in the worst case. Given

the work of LOV6SZ and Schrijver [1989; 1990], which showed that tighter and

tighter relaxations could be obtained through semidefinite programming, it

seemed worthwhile to investigate the power of such relaxations from a worst-

case perspective. The results of this paper constitute a first step in this

direction. As we mentioned in the introduction, further steps have already

been made, with improved results for MAX 2SAT and MAX DICUT by Feige

and Goemans, and for coloring by Karger, Motwani, and Sudan. We think that

the continued investigation of these methods is promising.

While this paper leaves many open questions, we think there are two

especially interesting problems. The first question is whether a .878 -approxima-

tion algorithm for MAX CUT can be obtained without explicitly solving the

semidefinite program. For example, the first 2-approximation algorithms for

weighted vertex cover involved solving a linear program [Hochbaum 1982], but

later Bar-Yehuda and Even [1981] devised a primal-dual algorithm in which

linear programming was used only in the analysis of the algorithm. Perhaps a

semidefinite analog is possible for MAX CUT. The second question is whether

adding additional constraints to the semidefinite program leads to a better

worst-case bound. There is some reason to think this might be true. Linear

constraints are known for which the program would find an optimal solution on

any planar graph, whereas there is a gap of 32/(25 + 5fi) for the current

semidefinite program for the 5-cycle.

One consequence of this paper is that the situation with several MAX SNP

problems is no longer clear-cut. When the best-known approximation results

for MAX CUT and MAX SAT had such long-standing and well-defined

bounds as ~ and ~, it was tempting to believe that perhaps no further work

could be done in approximating these problems, and that it was only a matter

of time before matching hardness results would be found. The improved results

in this paper should rescue algorithm designers from such fatalism. Although

MAX SNP problems cannot be approximated arbitrarily closely, there still is

work to do in designing improved approximation algorithms.
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