Gradient method

Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes

@ gradient method, first-order methods
@ quadratic bounds on convex functions

@ analysis of gradient method
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Algorithms will be covered in this course

first-order methods

@ gradient method, line search

@ subgradient, proximal gradient methods

@ accelerated (proximal) gradient methods
decomposition and splitting

@ first-order methods and dual reformulations

@ alternating minimization methods
interior-point methods

@ conic optimization

@ primal-dual methods for symmetric cones

semi-smooth Newton methods
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Gradient method

To minimize a convex function differentiable function 7: choose x(¥)
and repeat

B = k=D vy, k=1,2,...

Step size rules
@ Fixed: 7, constant
@ Backtracking line search
@ Exact line search: minimize f(x — tVf(x)) over t

Advantages of gradient method
@ Every iteration is inexpensive
@ Does not require second derivatives
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Quadratic example

flx) =

with exact line search, x(0) = (v, 1)

[x® =2l Y=l § 0
@ —xfla Ty +1

Disadvantages of gradient method
@ Gradient method is often slow
@ Very dependent on scaling
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Nondifferentiable example

fx) = \/x% + 5 (jx| <x1),  flx) = ﬁﬂxzf > x1)

with exact line search, x(¥) = (v, 1), converges to non-optimal point

2=

gradient method does not handle nondifferential problems
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First-order methods

address one or both disadvantages of the gradient method

methods with improved convergence
@ quasi-Newton methods
@ conjugate gradient method
@ accelerated gradient method
methods for nondifferentiable or constrained problems
@ subgradient methods
@ proximal gradient method
@ smoothing methods
@ cutting-plane methods
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Outline

@ gradient method, first-order methods
@ quadratic bounds on convex functions

@ analysis of gradient method
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Convex function

fis convex if dom f is a convex set and Jensen’s inequality holds:
f0x+ (1 =0)y) <0f(x) + (1 =0)f(y) Vx,y € domf

First-order condition

for (continuously) differentiable f, Jensen’s inequality can be replaced
with
fO) 2 f@) +Vf(x) (y —x) Vx,y € domf

Second-order condition
for twice differentiable f, Jensen’s inequality can be replaced with

V?f(x) =0 Vx € domf
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Strictly convex function

f is strictly convex if dom f is convex set and

FOx+ (1 —=0)y) <0f(x)+ (1 —0)f(y) Vx,yedomf,x#y0¢€c(01)

hence, if a minimizer of f exists, it is unique

First-order condition
for differentiable f, Jensen’s inequality can be replaced with

fO) > f(x) + VFx) " (y—x) VYr,y€domf,x#y

Second-order condition
note that V2f(x) = 0 is not necessary for strict convexity(cf.,f(x) = x*)
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Monotonicity of gradient

differentiable f is convex if and only if dom f is convex and
(Vf () = Vf) (x=y) 20 Vx,y€domf

i.e.,Vf:R" — R" is a monotone mapping

differentiable f is strictly convex if and only if dom f is convex and

(VF(x) = V() (x=y) >0 Vx,yedomf,x#y

i.e.,Vf:R" — R"is a strictly monotone mapping
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Proof.
e if f is differentiable and convex, then

fO) 2f0) + V@) =), f&x)2f0)+ V) (x~y)
combining the inequalities gives (Vf(x) — Vf(y)) T (x —y) >0

@ if Vf is monotone, then g/(r) > ¢’(0) for 7 > 0 and 7 € dom g,
where

(1) =flx+1(y—x)), &0 =Vflx+1y—x) (-2

hence,




Lipschitz continuous gradient

gradient of f is Lipschitz continuous with parameter L > 0 if

IVf(x) = VfO)ll2 < Lllx = ylla Vx,y € dom f

@ Note that the definition does not assume convexity of f
@ We will see that for convex f with dom f = R”, this is equivalent to

L
=x'x—f(x) is convex

2

(i.e., if f is twice differentiable, Vf(x) < LI for all x)
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Quadratic upper bound

suppose V7 is Lipschitz continuous with parameter L and dom f is
convex

@ Then g(x) = (L/2)x"x — f(x), with dom g, is convex
@ convexity of g is equivalent to a quadratic upper bound on f:

) <fE)+ V)T (v —x) + élly — x|} Vx,y€domf
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Proof.
@ Lipschitz continuity of Vf and Cauchy-Schwarz inequality imply

(Vf(x) = V()" (x =) < Lx = y[l3 ¥x.y € dom f
this is monotonicity of the gradient Vg(x) = Lx — Vf(x)
@ hence, g is a convex function if its domain dom g = dom f

@ the quadratic upper bound is the first-order condition for the
convexity of g

g(y) > g(x) + Vg(x) (y—x) Vr,y €domyg
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Consequence of quadratic upper bound
if dom f = R" and f has a minimizer x*, then
VB <00 F() < Sl -2 W
STV < £ —f() < Sl =3 v
@ Right-hand inequality follows from quadratic upper bound at

x=x*
@ Left-hand inequality follows by minimizing quadratic upper bound

foy< it (700 + W00 70— 0+ Sl - x13)
= ()~ 57 IVFWI

minimizer of upper bound is y = x — (1/L)Vf(x) because
dom f = R”
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Co-coercivity of gradient

if f is convex with dom f = R” and (L/2)x"x — f(x) is convex then

(Vf(x) = V) (x=y) 2 %IIVf(X) VIOl Vay

this property is known as co-coercivity of Vf(with parameter 1/L)
@ Co-coercivity implies Lipschitz continuity of Vf(by
Cauchy-Schwarz)
@ Hence, for differentiable convex f with domf = R”

Lipschitz continuity of Vf = convexity of (L/2)x" x — f(x)
= co-coervivity of Vf
= Lipschitz continuity of Vf

therefore the three properties are equivalent.
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proof of co-coercivity: define convex functions f,, f, with domain R":

K@) =) =Vf() 'z filz) =f(2) = V() 'z
the functions (L/2)z"z — f.(z) and (L/2)z"z — f,(z) are convex
@ z = x minimizes f,(z); from the left-hand inequality on page 16,
FO)=f() = V@) " (v = 2) =) = ()
> VAR
= 217 0) ~ VF W

@ similarly, z =y minimizes f,(z); therefore

1
F) =f ) = V) (=) = 57 INF0) = VIl
combining the two inequalities shows co-coercivity
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Strongly convex function

f is strongly convex with parameter m > 0 if
m T .
g(x)=f(x) — ZX x s convex
Jensen’s inequality: Jensen’s inequality for g is
m
JOx+(1=0)y) < 0f(x) + (1 = 0)f (y) = 0(1 = O)[lx — M
monotonicity: monotonicity of Vg gives
(VF(x) = V() T (x—y) = mlx =yl Vx,y € domf

this is called strong monotonicity(covercivity) of Vf

second-order condition: V?f(x) = ml for all x € dom f
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Quadratic lower bound

form 1st order condition of convexity of g:

F0) 2 () + V)T =x) + Ty = x|} ¥y € domf

f(y)

@ Implies sublevel sets of f are bounded
@ If fis closed(has closed sublevel sets), it has a unique minimizer
x* and
m . N 1
Sl =33 <) —f") < -IVF)[3 - x € dom f
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Extension of co-coercivity

if f is strongly convex and V¥ is Lipschitz continuous, then
m
g(x) =f(x) = 3 [Ixll3

is convex and Vg is Lipschitz continuous with parameter L — m.

co-coercivity of g gives

(VF(x) = VF () T (x =)

mL 2 1 2
> — - —
> eyl + —— V@)~ YOI

for all x,y € dom f
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Outline

@ gradient method, first-order methods
@ quadratic bounds on convex functions

@ analysis of gradient method
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Analysis of gradient method

xB = x*=D g vr*Dy, k=1,2,. ..

with fixed step size or backtracking line search

assumptions
1. f is convex and differentiable with dom f = R”
2. Vf(x) is Lipschitz continuous with parameter L > 0

3. Optimal value f* = inf, f(x) is finite and attained at x*
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Analysis for constant step size

from quadratic upper bound with y = x — Vf(x):

Flox = 1VF() < F&) — 11— S IVF (0B

therefore, if x™ = x — rVf(x) and 0 < ¢t < 1/L,

Fh) ) = 21913
<+ Vf( )T (e =) = IVr 13
=+ 5. (=213~ e —x" — T I3)

=+ (IIX—X*Hz e = x*]13)
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take x = x(=D xt = x 1, = ¢, and add the bounds for i = 1, - - ,k:

k k

conclusions: iterations to reach f(x*)) — f* < eis O(1/¢)
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Backtracking line search

initialize #, at 7 > O(for example, = 1); take 7, := St until

fx =t Vf(x) < f(x) — ate|[VF()|13

o @ =tV @)

N T

@) — at| V@)
t

0 < B < 1; we will take o« = 1/2(mostly to simplify proofs)
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Analysis for backtracking line search

line search with a = 1/2 if f has a Lipschitz continuous gradient

Jr@ =1 = v
F@) = IV @I

flz =tV f(z))

t=1/L

selected step size satisfies 7 > fyin = min{z, 3/L}
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Convergence analysis

@ from page 24:

>k 1 i— * i *
£t 5 (8D =) = 6 - 3)

i

£y

IN
=

* 1 i— * i *
5 (IR0 =3 = 60 = 3)

IN

@ add the upper bounds to get

k
1 ; 1
(k)Y _ p* « _ DY ) <« |50 _ =12
SO =17 < 1 YU ) < 3R - B

conclusion: same 1/k bound as with constant step size
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Gradient method for strongly convex function

better results exist if we add strong convexity to the assumptions

analysis for constant step size
ifxt =x—1Vf(x)and 0 <t <2/(m+ L):
™ = x*[3 = [l — 1V (x) — 2|13

= [l — 213 = 2097 () T (x = x*) + 2 VF ()13

2mL 2
<(1—t — Xt — ——— 2
<O 2 e i I
2mL
<(1- fm)HX—X*”%

(step 3 follows from result on page 21)
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distance to optimum

® = x5 < H©@ =273, =1~ ML

@ implies (linear) convergence

2
o forr= 2 getc= 818 with v = L/m

bound on function value(from page 16),
®) ®) *L 12
J&H) =f < fo —x*||3 < 7|| —x*|l3

conclusion: iterations to reach f(x*)) — f* < e is O(log(1/¢))
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Limits on convergence rate of first-order methods

first-order method: any iterative algorithm that selects x*) in

X0 4 span{Vf(x(O))7 Vf(x(l)), - Vf(x(k—l))}
problem class: any function that satisfies the assumptions on p. 23

theorem(Nesterov): for every integer k < (n — 1)/2 and every x(0,
there exist functions in the problem class such that for any first-order

method

3 LHx(O) —x*|3
(k) _ *>772
FER) =1 25 (k+ 1)

@ suggests 1/k rate for gradient method is not optimal
@ recent fast gradient methods have 1/k> convergence(see later)
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Barzilar-Borwein (BB) gradient method

Consider the problem

min f(x)

@ Steepest gradient descent method: x**1 := x* — afgk:

d* ;= argminf(x* — agk)
(0%

@ Letsi 1 :=xk —xland y*! := gk — gk 1.
@ BB: choose o so that D = «of satisfies Dy =~ s:

o =

argmin |lay — s> = a =
(0%

argmin ||y — s/a|* = o =
[e%

STy

SN

<
<

_|

s 8

-
<

N
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Globalization strategy for BB method

Bd T BFRGTHET G, M > 0% T E8E.

ky < k—j N
fO* +ad) < oggﬁgﬁk,M}ﬂx ) + c1aVf(x") d,

Hbe e (0, ) ALEHF
Algorithm 1: Raydan’s method
1 Givenx, seta > 0,M >0, 0,0,¢ € (0,1), k = 0.
2 while ||g*|| > ¢ do
3 Wh"ef(xk - (Ygl\) > InaXOSjgmin(k,M)ﬁ(*j - O-OéHngz do
4 L set a = da
5 Set xt1 .= x* — agk.

6 Set o := max (min ( (fgik))Tykk,aM) am>, k:=k+1.
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Globalization strategy for BB method

kR BT 6, M > 044 %89 E 5

FO* 4+ ad") < CF 4 caVF (b T,

AP CHmREAERC = f(xX0), O = Zr(n@FCh + 7 (M) Q0 =

- Qk+]

Q! =nO* + 1. %%, c; €(0,1)-

Algorithm 2: Hongchao and Hagger’s method

1 Given x°, seta > 0, 0,6,m,¢ € (0,1), k = 0.

2 while ||g*|| > ¢ do

3 while /(x* — ag") > C* — ca|/gk|* do

4 | seta=éa

5 Set X1 :=xk — agh, 0! = nO*f + 1 and

Ck+l _ (anck _|_f(x/\’+l))/Qk+l_

6 Set o := max (min (— O‘(ii];)TTyﬁk,aM) ,am>, k:=k+1.
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FAE L3R

B =R EBES (x,y) = x> + 10y%
A(—10,—1), &R THEHT. AT FE0, KINELALE TR

T M /iéﬁlﬂ’akﬁi STARI B A B BB ke s Ak, A%

15 RERBCEFLRMMAE . NFHERLTARE BB 7 % &4

$RT 5

AL A BB 7 ik i

TR, 4 &

—o— BRETFHEIE |
—e— BB F¥% 1

Figure: # & % 5BB 7 & 69 a15 R & A
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LASSO: 5t iF b &k =%
LASSO ¢ #: .
min  f(x) = EIIAX— bl + pllx])s.
SR AR IR AL 9] R

: 1 .
min  f5(x) = §||Ax—b||2+ﬂzlé(xi)7
i=1

4, H
— B B T 1
1.2 >
Is(x) = 25% ’6 x| <9, 2r i
| -2, H,
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