Disciplined Convex Programming and CVX

Stephen Boyd and Michael Grant

Electrical Engineering Department
Stanford University

Convex Optimization, Boyd & Vandenberghe

Outline

e convex optimization solvers
e modeling systems

e disciplined convex programming

o CVX

Convex Optimization, Boyd & Vandenberghe

Convex optimization solvers

e LP solvers
— lots available (GLPK, Excel, Matlab’s linprog, . . .)
e cone solvers

— typically handle (combinations of) LP, SOCP, SDP cones
— several available (SDPT3, SeDuMi, CSDP, .. .)

e general convex solvers
— some available (CVXOPT, MOSEK, .. .)
e plus lots of special purpose or application specific solvers

e could write your own

Convex Optimization, Boyd & Vandenberghe

Transforming problems to standard form

e there are lots of tricks for transforming a problem into an equivalent one
that has a standard form (e.g., LP, SDP)

— introducing slack variables
— introducing new variables that upper bound expressions

e these tricks greatly extend the applicability of standard solvers
e writing code to carry out this transformation is often painful

e modeling systems can partly automate this step

Convex Optimization, Boyd & Vandenberghe 3

Modeling systems

a typical modeling system
e automates most of the transformation to standard form; supports

— declaring optimization variables

— describing the objective function

— describing the constraints

— choosing (and configuring) the solver

e when given a problem instance, calls the solver
e interprets and returns the solver’s status (optimal, infeasible, . . .)

e (when solved) transforms the solution back to original form

Convex Optimization, Boyd & Vandenberghe

Some current modeling systems

e AMPL & GAMS (proprietary)

— developed in the 1980s, still widely used in traditional OR
— no support for convex optimization

e YALMIP (‘Yet Another LMI Parser')

— first object-oriented convex optimization modeling system
— supports many solvers; handles some nonconvex problems

o CVX

— matlab based, GPL, uses SDPT3/SeDuMi
— supports several solvers, handles some nonconvex problems

o CVXPY/CVXOPT (in alpha)

— python based, completely GPLed
— cone and custom solvers

Convex Optimization, Boyd & Vandenberghe

Disciplined convex programming

e describe objective and constraints using expressions formed from

— a set of basic atoms (convex, concave functions)
— a restricted set of operations or rules (that preserve convexity)

e modeling system keeps track of affine, convex, concave expressions

e rules ensure that

— expressions recognized as convex (concave) are convex (concave)
— but, some convex (concave) expressions are not recognized as convex
(concave)

e problems described using DCP are convex by construction

Convex Optimization, Boyd & Vandenberghe 6

CvX

e uses DCP

e runs in Matlab, between the cvx_begin and cvx_end commands
e relies on SDPT3 or SeDuMi (LP/SOCP /SDP) solvers

e refer to user guide, online help for more info

e the CVX example library has more than a hundred examples

Convex Optimization, Boyd & Vandenberghe

Example: Constrained norm minimization

=
I

randn(5, 3);

randn(5, 1);

cvx_begin

variable x(3);

minimize (norm(A*x - b, 1))

o
I

subject to
-0.5 <= x;
x <= 0.3;
cvx_end

e between cvx_begin and cvx_end, x is a CVX variable
e statement subject to does nothing, but can be added for readability

e inequalities are intepreted elementwise

Convex Optimization, Boyd & Vandenberghe

What CVX does

after cvx_end, CVX

e transforms problem into an LP

e calls solver SDPT3

e overwrites (object) x with (numeric) optimal value
e assigns problem optimal value to cvx_optval

e assigns problem status (which here is Solved) to cvx_status

(had problem been infeasible, cvx_status would be Infeasible and x
would be NaN)

Convex Optimization, Boyd & Vandenberghe

Variables and affine expressions

e declare variables with variable name[(dims)] [attributes]

— variable x(3);

— variable C(4,3);

— variable S(3,3) symmetric;
— variable D(3,3) diagonal;
— variables y z;

e form affine expressions

— A = randn(4, 3);

— variables x(3) y(4);
— 3%x + 4

— Axx -y

— x(2:3)

— sum(x)

Convex Optimization, Boyd & Vandenberghe

10

Some functions

function meaning attributes
norm(x, p) |||, CVX
square (x) 2 CVX
square_pos (x) (4)? cvx, nondecr
pos (x) Ty cvx, nondecr
sum_largest (x,k) T+ X cvx, nondecr
sqrt (x) v (x>0) ccv, nondecr
inv_pos (x) 1/xz (x> 0) CvX, nonincr
max (x) max{xy,...,Tn} cvx, nondecr
quad_over_lin(x,y) | z%/y (y > 0) cvx, nonincr in y
lambda_max (X) Amax(X) (X = XT) | cwx
huber (x) { z* 2l =1 cvX

ol — 1, |z|>1

Convex Optimization, Boyd & Vandenberghe

11

Composition rules

e can combine atoms using valid composition rules, e.g.:

— a convex function of an affine function is convex

— the negative of a convex function is concave

— a convex, nondecreasing function of a convex function is convex

— a concave, nondecreasing function of a concave function is concave

Convex Optimization, Boyd & Vandenberghe

12

Composition rules — multiple arguments

e for convex h, h(gi,...,gx) is recognized as convex if, for each i,

— g; is affine, or
— g; is convex and h is nondecreasing in its ith arg, or
— g, iIs concave and h is nonincreasing in its ith arg

e for concave h, h(gi,...,gx) is recognized as concave if, for each i,

— g, is affine, or
— ¢, Is convex and h Is nonincreasing in ith arg, or
— ¢, Is concave and h is nondecreasing in ith arg

Convex Optimization, Boyd & Vandenberghe

13

Valid (recognized) examples

u, v, X, y are scalar variables; X is a symmetric 3 X 3 variable

® COonvex:

— norm(A*x - y) + O.1xnorm(x, 1)

— quad_over_lin(u - v, 1 - square(v))
— lambda_max (2*xX - 4x*eye(3))

— norm(2*X - 3, ’fro’)

® COoncCave:

— min(1l + 2*%u, 1 - max(2, v))
— sqrt(v) - 4.55%inv_pos(u - v)

Convex Optimization, Boyd & Vandenberghe

14

Rejected examples

u, v, X, y are scalar variables
e neither convex nor concave:

— square(x) - square(y)

— norm(A*x - y) - O.1xnorm(x, 1)

e rejected due to limited DCP ruleset:

— sqrt(sum(square(x))) (is convex; could use norm(x))

— square(1 + x72) (is convex; could use square_pos(1 + x~2), or
1 + 2xpow_pos(x, 2) + pow_pos(x, 4))

Convex Optimization, Boyd & Vandenberghe 15

Sets

e some constraints are more naturally expressed with convex sets
e sets in CVX work by creating unnamed variables constrained to the set

e examples:

— semidefinite(n)
— nonnegative(n)
— simplex(n)
— lorentz(n)

e semidefinite(n), say, returns an unnamed (symmetric matrix)
variable that is constrained to be positive semidefinite

Convex Optimization, Boyd & Vandenberghe 16

Using the semidefinite cone

variables: X (symmetric matrix), z (vector), t (scalar)
constants: A and B (matrices)

e X == semidefinite(n)

— means X € S” (or X = 0)

o AxX*A’ - X == Bxsemidefinite(n)*B’

— means 3 Z >~ 0 so that AXAT — X = BZBT

o [X z; z2 t] == semidefinite(n+1)
X z
—means[T]tO
Z t

Convex Optimization, Boyd & Vandenberghe

17

Objectives and constraints

e objective can be

— minimize(convex expression)
— maximize(concave expression)
— omitted (feasibility problem)

e constraints can be

— convex expression <= concave expression
— concave expression >= convex expression
— affine expression == affine expression
— omitted (unconstrained problem)

Convex Optimization, Boyd & Vandenberghe

18

More involved example

A = randn(5);
A = A’xA;
cvx_begin
variable X(5, 5) symmetric;
variable y;
minimize (norm(X) - 10*sqrt(y))
subject to
X - A == semidefinite(5);
X(2,5) == 2%y;
X(3,1) >= 0.8;
y <= 4;
cvx_end

Convex Optimization, Boyd & Vandenberghe

19

Defining new functions

e can make a new function using existing atoms
e example: the convex deadzone function

0, [z <1
f(x) =max{|z| - 1,0} =¢ x—1, z>1
l—x, z< -1

e create a file deadzone.m with the code

function y = deadzone(x)
y = max(abs(x) - 1, 0)

e deadzone makes sense both within and outside of CVX

Convex Optimization, Boyd & Vandenberghe

20

Defining functions via incompletely specified problems

suppose fo, ..., fm are convex in (z, 2)

let ¢(x) be optimal value of convex problem, with variable z and
parameter x

minimize fo(z, 2)
subject to fi(x,2) <0, i=1,....m
Ala: + AQZ =b

@ Is a convex function

problem above sometimes called incompletely specified since x isn't
(yet) given

an incompletely specified concave maximization problem defines a
concave function

Convex Optimization, Boyd & Vandenberghe

21

CVX functions via incompletely specified problems

implement in cvx with
function cvx_optval = phi(x)
CvX_begin
variable z;
minimize (f0(x, z))
subject to
fi1(x, z) <= 0;
Al*xx + A2%z == D;
cvx_end

e function phi will work for numeric x (by solving the problem)

e function phi can also be used inside a CVX specification, wherever a
convex function can be used

Convex Optimization, Boyd & Vandenberghe 22

Simple example: Two element max

e create file max2.m containing

function cvx_optval = max2(x, y)
cvx_begin

variable t;

minimize (t)

subject to

X <= t;

y <= t;
cvx_end

e the constraints define the epigraph of the max function

e could add logic to return max(x,y) when x, y are numeric
(otherwise, an LP is solved to evaluate the max of two numbers!)

Convex Optimization, Boyd & Vandenberghe 23

A more complex example

o f(z)=a+2!°+ 227 with dom f = R_, is a convex, monotone
increasing function

e its inverse g = f~ ! is concave, monotone increasing, with dom g = R,

e there is no closed form expression for g
e g(y) is optimal value of problem

maximize t
subject to ¢4 +t1° + 37 <y

(for y < 0, this problem is infeasible, so optimal value is —o0)

Convex Optimization, Boyd & Vandenberghe

24

e implement as
function cvx_optval = g(y)

Ccvx_begin
variable t;
maximize (t)
subject to
pos(t) + pow_pos(t, 1.5) + pow_pos(t, 2.5) <= y;
cvx_end

e use it as an ordinary function, as in g(14.3), or within CVX as a

concave function:
cvx_begin

variables x y;
minimize(quad_over_lin(x, y) + 4*x + bxy)
subject to
g(x) + 2xg(y) >= 2;
cvx_end

Convex Optimization, Boyd & Vandenberghe 25

Example

e optimal value of LP
f(c) =inf{c'z | Az < b}
is concave function of ¢
e by duality (assuming feasibility of Az < b) we have

flc) =sup{-A'b| A" X +c=0, A =0}

Convex Optimization, Boyd & Vandenberghe

26

o define f in CVX as

function cvx_optval = lp_opt_val(A,b,c)
cvx_begin
variable lambda(length(b));
maximize (-lambda’*b) ;
subject to
A’*]lambda + ¢ == 0; lambda >= O;
cvx_end

e in 1p_opt_val(A,b,c) A, b must be constant; ¢ can be affine

Convex Optimization, Boyd & Vandenberghe

27

CVX hints/warnings

e watch out for = (assignment) versus == (equality constraint)
e X >= 0, with matrix X, is an elementwise inequality

e X >= semidefinite(n) means: X is elementwise larger than some
positive semidefinite matrix (which is likely not what you want)

e writing subject to is unnecessary (but can look nicer)

e use brackets around objective functions:
use minimize (c’*x), not minimize c’*x

e double inequalities like 0 <= x <= 1 don't work;
use 0 <= x; x <= 1 instead

Convex Optimization, Boyd & Vandenberghe

28

e many problems traditionally stated using convex quadratic forms can
posed as norm problems (which can have better numerical properties):

x’*P*x <= 1 can be replaced with norm(chol (P)*x) <= 1

e log, exp, entropy-type functions implemented using successive
approximation method, which can be slow, unreliable

Convex Optimization, Boyd & Vandenberghe 29

