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Why Optimization in Machine Learning?

Many problems in ML can be written as

N

. 1 T 2 . .
min Z§||xi9—yi\|%+u||9||2 linear regression

=

N

1 - - .

min E] log(1 + exp(—yx; 0)) + |05 logistic regression
i

N
i L(h(0,x;), v 0 eneral formulation
min ; (h(6,x:), 1) + pe(6) g
@ The pairs (x;,y;) are given data, y; is the label of the data point x;
@ /(-): measures how model fit for data points (avoids under-fitting)
@ ©(0): regularization term (avoids over-fitting)

@ h(6,x): linear function or models constructed from deep neural
networks
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Sparse Logistic Regression

The logistic regression problem:

N
o ,
min 21 log(1 + exp(—yix; 0)) + 1]|6]]3-

@ The data pair {x;,y;} € R" x {—1,1},i € [N],

Data Set | #dataN  #featuresn sparsity(%)
cina 16,033 132 70.49
ad%a 32,561 123 88.72

ijcnn1 49,990 22 40.91
covtype 581,012 54 77.88
url 2,396,130 3,231,961 99.99
susy 5,000,000 18 1.18
higgs 11,000,000 28 7.89

news20 19,996 1,355,191 99.97
rcvi 20,242 47,236 99.84
kdda 8,407,752 20,216,830 99.99
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Deep Learning

The objective function is the CrossEntropy function plus
regularization term:

S N exp(h(0, xi) [yi]) 2
mn -y 2 log(z,expw(e,xi)[yn ol

where h(0, x;) is output from network, and (x;,y;) are data points.

| Cifar-10  Cifar-100

# num_class 10 100
# number per class (training set) 5,000 500
# number per class (testing set) 1,000 100

# Total parametes of VGG-16 15,253,578 15,299,748
# Total parameters of ResNet-18 11,173,962 11,220,132

Table: A description of datasets used in the neural network experiments
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ResNet Architecture

@ Kaiming He, Xiangyu Zhang,
Shaoqing Ren, Jian Sun, Cited by
114474 since 2015 at Google
scholar

@ Stack residual blocks. Every residual Fo0+ x [ ot
block has two 3x3 conv layers. 6?

@ Make networks from shallow to deep. &y how ) X
identity

@ Fancy network architecture. Many
Applications. .
Residual block

@ High-computationally-cost ! _

@ ResNet-50 on ImageNet, 29 hours
using 8 Tesla P100 GPUs

5/96



Outline

0 Problem Description
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Machine Learning Model

Machine learning model:
@ (x,y) ~ P, P is a underlying distribution.

@ Given a dataset D = {(xl,yl), ()Q,yz), cee (xn,yn)}. (x[,yl-) ~ P

i.i.d.
@ Our goal is to find a hypothesis /(6, x) with the smallest expected
risk, i.e.,
inR[h] := E 1
min R[] := E[¢(h(9, 1), y)] (1)

where H is hypothesis class.
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Machine Learning Model

@ In practice, we don not know the exact form of the underlying
distribution P.

@ Empirical Risk Minimization (ERM)

R 0(R(8, %), i) 2
min R, Z Xi), i) (2)

@ We care about two questions on ERM:
@ When does the ERM concentrate around the true risk?

e How does the hypothesis class affect the ERM?
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Machine Learning Model

@ Empirical risk minimizer i* € argminR, [A]
heH

@ Expected risk minimizor i* € argminR|[A]
heM

@ The concentration means thatforany e > 0,0 < § < 1,ifnis
larger enough, we have

P(RIk,) —R[H]| <€) > 1 -6 (3)
@ It just means that R[i*] convergences to R[i*] in probability.

@ The concentration will fail in some cases
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Hoeffding Inequality

Let X1, X>, - -- be a sequence of i.i.d. random variables and assume
that for all i, E(X;) = pand P(a < X; <b) = 1. Then forany e > 0

1 2ne?
P<|;;Xi—ﬂ| Ze> < 2exp <—m> (4)

v

@ The Hoeffding Inequality describes the asymptotic property that
sampling mean convergences to expectation.

@ Azuma-Hoeffding inequality is a martingle version. Let X;, X5, - --
be a martingale difference sequence with |X;| < B for all
i=1,2,... Then



@ To make the exposition simpler, we assume that our loss
function, 0 < ¢(a,b) < 1,Va,b.

@ By Hoeffding Inequality, fixed &

P(|Ra[h] — RA)| > €) < 2¢72¢ (7)
@ Union Bound
P(th{IRn[h] — R[] > €}) < 2[H|e (8)

@ |f we want to bound P(thﬂRn[h] — R[h]| > €}) < 6, we need the
size of sample

2o g <2ny|> :0<log|7-[|+log(5_1)) o

2¢2 5 €2
@ What if |H| = 0co? This bound doesn’t work
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@ If nis large enough, with a probability 1 — §, we have

RI;) = RIK] = (R[R3) — Rulh}]) + (Ru[hy]) — Ra[h*])
+ (R[] — R[I*]).
< e+0+e

@ For a two label classification problem, with a probability 1 — §, we
have

oo (T _ oo(L
sup|R,[h] — R[H)| < O (\/ VC[H] log () +1 g<5>>) (10)

heH n

where VC[H] is a VC dimension of H.

@ Finite VC dimension is sufficient and necessary condition of
empirical risk concentration for two label classification.
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VC dimension

@ VC dimension of a set-family: Let H be a set family (a set of sets)
and C a set. Their intersection is defined as the following
set-family:

HNC:={hNC|hecH}

We say that a set C is shattered by H if Hn C = 2€.
The VC dimension of H is the largest integer D such that there
exists a set C with cardinality D that is shattered by H.

@ A classification model f with some parameter vector ¢ is said to
shatter a set of data points (x;,x,, ..., x,) if, for all assignments
of labels to those points, there exists a 6 such that the model f
makes no errors when evaluating that set of data points.

The VC dimension of a model f is the maximum number of
points that can be arranged so that f shatters them. More
formally, it is the maximum cardinal D such that some data point
set of cardinality D can be shattered by f.
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VC dimension

@ example:

o Ifvnand {(xi,y1), -, (x4, y)}, there exits h € H s.t. h(x;) = y;,
then VC[H] = oo

e For a neural network whose activation functions are all sign
functions, then VC[H] < O(wlog(w)), where w is the number of
parameters.

@ We must use prior knowledge and choose a proper hypothesis
class.

@ Suppose a is the true model

RIi,) — Rla] = (R[k,) — R[h*]) + (R[h"] — Rla])

A B

@ If the hypothesis class is too large, B will be small but A will be
large. (overfitting)

@ If the hypothesis class is too small, A will be small but B will be
large. (underfitting)

14/96



Outline

9 Subgradient Methods
@ The gradient and subgradient methods
@ Stochastic subgradient methods
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The gradient and subgradient methods

@ Consider the problem

min £(x)

@ gradient methods
X1 = xx — g Vf (%)
@ subgradient methods
X1 = Xk — 8k, 8k € Of (xk)

@ the update is equal to

i 1
X1 = arg minf () + (g, — ) + 5—|lx — xl[3
X Zak
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Convergence guarantees

Assumption
@ There is at least one minimizing point x* € arg minf(x) with
f(x*) > —o0

@ The subgradients are bounded: ||g||» < M < oo for all x and all
g € Of (x).

Theorem 1: Convergence of subgradient

Let o > 0 be any non-negative sequence of stepsizes and the

preceding assumptions hold. Let x; be generated by the subgradient
iteration. Then for all K > 1,

K K
S aulf ) —F&] < Sl — B+ 5 adME (15)
k=1

k=1

v
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Proof of Theorem 1

@ By convexity

(g, ¥ —x1) < f(xX) = fx)

°
1 1
5!\Xk+1—X*H%ZEHXk—Oékgk—X*H%

1 a?
= EHXk—x*H%JraMgk?x*—xw+7k|!ng§
1 €112 * 0‘% 2
< EHXk—X |12 — au(f () — f(x ))+7M
°

* 1 * 1 * 042
an(f () £ (7)) < 5l =571 = 5 ey — |3 + TEm?
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Convergence guarantees

Let A4, = 3K | o; and define xx = i SN g

fO) —f(x) <

K
[ler — X3 + 3y agM?

23 %

K 2
@ Convergence: ) .2, ax = oo and % —0
k=1 %k

@ Let ||x; —x*|| < R. For a fixed stepsize oy = a:

R*>  aM?
b — * < — -
FR) () < S+ 5
i _ R .
@ For a given K, take o = TR
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Projected subgradient methods

@ Consider the problem
min f(x)

xeC
@ subgradient methods
X1 = Te (o — augr), gk € Of (xx)
@ projection: m¢(x) = argmin||x — y||3
yeC

@ the update is equal to

. 1
et = argain o) + (g —5) + 5l — B
xeC Qg
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Convergence guarantees

Assumption

@ The set C C R" is compact and convex, and ||x — x*|| < R < oo
for all x € C.

@ The subgradients are bounded: ||g||» < M < oo for all x and all
8 € Of (x).

Theorem 2: Convergence of projected subgradient method

Let o > 0 be any non-negative sequence of stepsizes and the
preceding assumptions hold. Let x; be generated by the projected
subgradient iteration. Then for all K > 1,

K K
S aulfw) —f() < gl —xlB + 3 DM (20)
k=1

k=1

4
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Proof of Theorem 2

@ By non-expansiveness of 7¢(x)

it = x5 = llmelu — age) = x| < [l — age — |

°
1 *112 1 * (2
5|\xk+1 —x3 < E\ka—ozkgk—x |2
1 . N o?
= Slh—x 15+ ou (gu,x —Xk>+7k|!ng§
1 %112 * al% 2
< Eka_x |12 — au(f(x) — f(x ))+7M
°

2
Y

au(f () =) < 5l =51 = S b =273 + a2
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Convergence guarantees

k e 1 K
Let Ay = > i, o and define xg = 7-> i cuxe

K
- |lxr — x*[13 + Yoy ogM?

fGk) —f(x") < 3y

K 2
@ Convergence: Y 2, ax = oo and % -0

k=1 %k

@ a fixed stepsize oy = a:
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Stochastic subgradient methods

@ the stochastic optimization problem

rxréiél f(x) :=Ep[F(x;S)] (22)

@ Sis arandom space is a random variable on the space S with
distribution P.

@ for each s, x — F(x;s) is convex.
@ The subgradient Ep[g(x; S)] € 9f(x), where g(x;s) € OF(x;s).

o) = Ep[F(y;8)] = Ep[F(x;S) + (8(x,5),y — x)]
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Stochastic subgradient methods

@ the deterministic optimization problem

) 1
min f(x) = . > F(x;s1) (23)
@ Why Stochastic?

e Ep[F(x;S)] is generally intracktable to compute

e Small complexity: only one subgradient g(x;s) € 9F(x;s) needs to
be computed in one iteration.

e More possible to get global solution for non-convex case.

@ stochasitic subgradient method

Xk1 = me(xe — ougr), Elgrlx] € 0f (xi)
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Convergence guarantees

Assumption
@ The set C C R" is compact and convex, and ||x — x*|[, < R < oo
forall x € C.

@ The variance are bounded: E||g(x, S)||3 < M? < o for all x.

Theorem 3: Convergence of stochastic subgradient method

Let o > 0 be any non-negative sequence of stepsizes and the
preceding assumptions hold. Let x; be generated by the stochastic
subgradient iteration. Then for all K > 1,

K
> k=1 a/%M :

: (24)

K
> e (f(w) ~ Fx°)) < 3Elbet — 23 +
k+1

v
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Proof of Theorem 2
o Let f'(xx) = E[g|xx] and & = gk — f (xx),

1 *112 1 *112
§\|Xk+1 — x|z < QHXk — gk — X3
1 *112 * Oé]% 2

= EHXk_x |12 + o (gx, x —xk>+7H8kHz
1 * |12 / * Oé/% 2 *

= §\|Xk—x 115 + o (F (xi), x —Xk>+7|\gkllz+ak<§k,x — xg)

< §||Xk*x 115 — owlf (x) — f(x ))+7k|!gk||§+04k (ko X™ — xi)

°
E[(§k, x* — xi)] = E[E[(§, X" — xi) [x]] = 0.
°
. 1 w2 1 a2 L
aE(f(xx) — f(x")) < §E||xk - x|l = §E||xk+1 — x|z + 7M
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Convergence guarantees

k e 1 K
Let Ay = > i, o and define xg = 7-> i cuxe

R+ 3% alm?

Blf) — )] <~ =L

K 2
@ Convergence: Y 2, ax = oo and % -0

k=1 %k

@ a fixed stepsize oy = a:

2 a 2
E(f(w) /() < 50—+ 230

E(f(xg) —f(x%)) <

=IE
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Theorem 5: Convergence of stochastic subgradient method

Let ax > 0 be non-increasing sequence of stepsizes and the
preceding assumptions hold. Let x = % Zszl x¢. Then,

Elf () ~ (7)) < 5o+ ZakMz (26)

. 1 1 oz
aB(f(xe) = f(x7)) < SEllx — x5 - S Ellxicr1 — x| + 7"M2

* 1 . 1 . u
E(f(x) —f(x")) < EEHX}{ — x| - EEHMH — x5+ 7M2
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Let the conditions of Theorem 5 hold, and let o, = lef for each k.
Then,

(27)

@ proof

Let oy be chosen such that E[f (xx) — f(x*)] — 0. Then
f(xk) —f(x*) L 0as K — o, that is, for all e > 0 we have

lim sup P(f(xx) —f(x*) > ¢€) = 0. (28)

k—00
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@ By markov inequality: P(X > o) < 2 ifX >0and a > 0

P(f(xk) — /() > ) < TB[f() —f(x")] = 0

Theorem 6: Convergence of stochastic subgradient method

In addition to the conditions of Theorem 5, assume that ||g||, < M for
all stochastic subgradients g, Then for anything e > 0,

f@Ex) —f(x*) < Z aM* + —e (29)

2KaK

with probability at least 1 — e~2¢

. . _1
@ Taking oy = ﬁ and setting § = e~ 2¢
3RM RM 2log%
SN e n .
f(XK) f(x ) = 2\/[? \/E
with probability at least 1 — §
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Azuma-Hoeffding Inequality

@ martingle: A sequence X, X,, - -- of random vectors is a
martingale if there is a sequence of random vectors Z;,7,, - - -
such that for each n,

@ X, is a function of Z,,
e 7, is afunction of Z,,
e we have the conditional expectation condition

E[Xn|Zn—l} =Xp-1.

@ martingale difference sequence X;,X,, - - is a martingale
difference sequence if S, = > ", X; is a martingle or, equivalently

E[X,|Z,_1] = 0.

@ example X;,X,,--- independent and E(X;) =0, Z; = (X1, -+ , Xj).

32/96



Azuma-Hoeffding Inequality

Let X1, X», - -- be a martingale difference sequence with |X;| < B for
alli=1,2,... Then
P(iX- > 1) < exp(— 2 (30)
i=1 U
P(zn:X- <t <e (_2_1‘2) (31)
p— = PR
° Letd=1
1 & 2n6?
P(= X, >6) < -
o 202 0) < expl(= )
(] Xl,Xz, s IId, EX;, = M
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Azuma-Hoeffding Inequality

Theorem 5: Convergence of stochastic subgradient method

Let o > 0 be non-increasing sequence of stepsizes and the
preceding assumptions hold. Let x = % Zszl x¢. Then,

Z uM?. (32)

v

Theorem 6: Convergence of stochastic subgradient method

In addition to the conditions of Theorem 5, assume that ||g||» < M for
all stochastic subgradients g, Then for anything ¢ > 0,

E[f(xg) —f(x")] <

B 2KO£K

fEr) = f(x) < ZKaK Zakw + —e (33)

with probability at least 1 — e~2¢

v
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Proof of Theorem 6

@ Letf'(x) = E[giln] and & = gk — f' (),

1 1
Sl =271 = Sl — owge — 271

1 * |12 * alz 2
= §||xk—x H2+ak<gkvx —xk>+7”gk|’2
1 o
= §||Xk—x*||§+ak<f'(Xk)»x*—Xk>+7k|\gk||%+ak<€k,x*—Xk>

1 * * a2 *
P = X113 = o () = (") + Il 13 + ek (€ 6™ — i)

IN

! 1 * O
fo)=f(x) < Eka—X*H%—EkaH—X ||%+7Hgk||%+<§k,x* — Xk)
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Proof of Theorem 6

IN

<

K

Zf(xk) —f(x%)

k=1

f(x) —f(x) <

x| —

1 * *
2KaK||X1—X|!§+ Zak||gk”2+ Z<§k,x = Xk)

i=1

1 TS | , 1 .
2Ka,<Hx1_x Hz‘i‘ZK;QkM +EZ<&<’X — Xk)

K
0 Letw = sp|lv — x*[13 + 5 Yoy cu?

K
P(f(xk) —f(x) —w >1) < 1 Z ey X —xi) > 1),
1:1
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Proof of Theorem 6

@ (&, x* — x) is a bounded difference martingale sequence

° Zk = (xla"' axk-‘rl)
@ Since E[€k|Zk_1} =0and E[xk\Zk_l] = Xg.

E (&, x* —x) = 0.
o Since [|&ll2 = [lgx — f"(x)[| < 2M
| (G ™ = xi) | < [|&kll21x" — |2 < 2MR
@ By Azuma-Hoeffding Inequality,
K t2
P(; (i, x" —x) > 1) < GXP(—m
@ Substituting r = MRv/Ke

K 2

K 4
i=1

X

).

P(l D (Gox" —x) > MRE) < eXp(—%)-
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Adaptive stepsizes

@ choose an appropriate metric and associated
distance-generating function #.

@ it may be advantageous to adapt the metric being used, or at
least the stepsizes, to achieve faster convergence guarantees.

@ a simple scheme

1
h(x) = ExTAx

where A may change depending on information observed during
solution of the problem.
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Adaptive stepsizes

@ Recall the bounds
R 1 )
E[f(x¢) —f(x")] < E[m Tk ZangkH J- (34)
k=1
o Taking ax = R/\/ 31, llg]l?,
R K 1
E[f(x) —f(x")] < 2fE[(Z lll*)z]- (39)
k=1

o if E[||gk]|?] < M? for all k, then

K K
EIO) sl®2] < (EY llel?)]z < VMK =MVK  (36)
k=1 k=1
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Variable metric methods

@ Variable metric methods

. 1
X1 = argmin{ (gg, x) + 3 (x — xp, Hi(x — xx)) }
xeC

@ Projected subgradient method: H; = o/,

o Newton method: H; = V2f(x),

@ AdaGrad: H; = édiag(Zf-;l 8i- * 8:‘)%
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Variable metric methods

Theorem 9: Convergence of Variable metric methods

Let H, > 0 be a sequence of positive define matrices, where H;, is a
function of g;, - - - , gx. Let gx be stochastic subgradient with
E[gk|xk] € 8f(xk). Then

K
E[Y (F(w)
k=1

B0 (v — x°s, — e — 13, )

2

l\.)l'—‘

K
=

K
1 .
5Bl =+ Nl

k=1

E[f(x) —f(x")] <

L A e IngHZ;l]

N =
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Proof of Theorem 9

@ By non-expansiveness of m¢(x) under ||x||7, = (x, Hyx)
Prer = x* (7, < lloe — Hi g — x* 7,

@ Define & = gr — f'(x)

1 2
EkaH — x|,

1 . . 1

< Sl = xR, + (g x” =0 + 51l
1 N y 1 «

= Slh—x 17, + (), x —Xk>+§|!gk\|f,;1+<§k,x — x)
1 N . 1 «

< Sl = xR, = (FO) = () + el + (€ x™ —x0)

* 1 * *
lf(w) — £()] < 3Bl — I, — e — 71, + lgel 2]
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Variable metric methods

Assume H; = H for all k. Then

K K
* 1 *
£ |3 0m) 76| < 48l 15 + 3l
k=1 k=1
Minimize the error by considering:
d 0 0
. 2 Sl ..
min Z lgell7- 0 s -~ 0
t=1 H =
st. H>0 S :
tr(H) <c¢ 0 0 - s

It is equivalent to

d ZK 2
. —181i
min E M, st. 1's <c, s2>0.
y i=1 Si
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Variable metric methods

The Lagrangian function of the problem is:

d 112
L(s,\,0) = E M—)\Ts—#—@(lTs—c).
s

i=1 !

The complementarity condition gives A;s; = 0. Then we obtain

oL 181:x.l13
— =2 N\ 460 =0,
0s; si2 a
which yields: 0= —Hg1;1(’,‘H% — )\,‘Siz + 9s,2 = —Hg”(,iH% =+ (gslz Hence, we
have
_ cllgrk.ill2
LT —=d .
Zi:l ”glzk,z'HZ

Taking ¢ = 3¢, |g1.x.ll> gives | s; = [[g1.x.1]|2 |
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Variable metric methods

Corollary: Convergence of AdaGrad

Let Roo = sup,cc¢ ||x — x*||c @nd let the conditions of Theorem 9 hold.
Then we have

E[Z(f (x2) < 21R2 E[tr(Mx)] + aE[tr(M)]

where M, = diag(>"¥_, g;. x g)2 and H; = My

@ Let a =Ry, Then

Bl () (5] € S RaElis()] = 5Roe S E| Zg,w%
j=1

(37)

@ If C = {x: |jx|| <1}, the bound is lower than the one of adaptive

stepsize.
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Proof of Corolory

© Aim: [l — x|, — llae — 27, < |l — x*|Botr(Hi — Hi-1)
Letz=x—x*

l2llZ = Nallz,

n n
2 2
= § Hyjzi — Zkalszj
J=1 J=1
n

= > (Hyj—Hio1))3

j=1
n

2
< lellZ D (Hij — Hi1)
j=1

= ||zl |2otr(Hx — Hy—1)
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Proof of Corolory

@ Assume a = (ay,ay, ...,ar), a simple inequality( prove by
induction),

T
Z =<2 at +---+az

e Aim: 3§, lgill 1 < 20tr(M).

K

Z ||gk||i,k—1

B3 S

k=1 j=1 j=1

n
gk:]

1 \/ Zz lglJ

n K
< 200> 4|8 = 20tr(My) (38)

M=

w
Il



Summary

@ expectation
3RM

E[f(xk) — f(x))] < WK

@ convergence in probability

3RM RM 2log%

i) 1) < 208+ =

with probability at least 1 — §

@ Using proper metric and adapted strategy can improve the
convergence: Mirror Descent method and Adagrad.
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Outline

Q Stochastic Gradient Descent
@ Gradient Descent
@ Stochastic Gradient methods
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Gradient methods

@ Rewrite the ERM problem

min /) Zﬁ
@ gradient methods

Xpr1 = Xk — o Vf (xx)

@ the update is equal to

. 1
Nerr = argmin () + (V7 0s0)x —x) 5 el
X Qf
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Basic Properties

@ We only consider the convex defferentiable functions.
@ convex functions:
FOx+(1=X2)y) S M)+ (1= A)f(), VA€ [0, 1], x,y

@ M-Lipschitz functions:

f(x) =) < M|x = yll2

@ L-smooth functions:

IV (x) = Vi) < Lllx = yll2

@ u~strongly convex functions:
FORAH(1=N)y) < ME)+1=NF () =51 =13, YA € [0, 1],y
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Some useful results

@ convex functions:
f) 2 f ) +(Vf(x),y —x)
@ M-Lipschitz functions:
IVf ()l <M

@ L-smooth functions: %x7x — f(x) is convex
L
FO) £+ (VF ),y = x) + Sl =yl

1 L
S IVFEIE < f(x) = f () < Sk = x7[13

@ u-strongly convex functions: f(x) — 4x"x is convex

FO) 2 16 + (TF (@), = %) + S e = y1B
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Co-coercivity of gradient
if f is convex with dom f = R” and (L/2)x"x — f(x) is convex then
(Vf(x) = V() (x—y) > %IIVf(X) —VIWI3 Vxy

proof . define convex functions f,, f;, with domain R":

@) =f@) = V@) s, ) =1) - V) 2
the functions (L/2)z"z — f.(z) and (L/2)z"z — f,(z) are convex
@ z = x minimizes f,(z); from the left-hand inequality,

F0) =) = VAT =) = i) A
> S IVEG)IB = S 1970) — VFe)IB
@ similarly, z =y minimizes f,(z); therefore
100~ F0) = VFO) (e =) = o IV70) — V@I

combining the two inequalities shows co-coercivity
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Extension of co-coercivity

if f is strongly convex and V¥ is Lipschitz continuous, then
§(x) = £(x) = Sl

is convex and Vg is Lipschitz continuous with parameter L — p.

co-coercivity of g gives
(VF(x) = V) (x =)

pL 2 1 2
> P |l — I _
z A IV = VBl

for all x,y € dom f

54/96



Convergence guarantees

Assumption
@ fis L-smooth and p-strongly convex.

lemma: Coercivity of gradients

Ly
(Vf(x) = VI(y),x—y) > Lt

1
e =yl + mHVf(X) ~VIWI* 42)

v

Theorem: Convergence rates of GD

Let ag = ﬁ and let k = ;% Define Ay = ||xx — x*||. Then we get,

florar) =f6) < “2L exp(——). (43)

v
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Proof of Theorem

2
Ak-i—l

@ By the lemma

2
AkJrl

<

IA

Ly
A7 -2
k O[k(LJr,u
Ly 2
1 -2« Ay +
(1 =200 )AT 4
Ly 12
1-2 A —
(1 =200 )A 4

|[Xe1 — 2|3 = [Jxe — eV () — x*[|3
e — x| 13 — 20 (VF (i) xx — x*) + o ||V ()3

A% — Zak‘ (Vf(xk), xx — x™)

+ o |Vf ()13

1
Af + mHVf(X)HZ) +ail| VS (w)l3

20,
L+pu
20
L+p

+ o) [V ()13

+ a)L2A? (44)
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Proof of Theorem

2
@ o = Tin

2
AkJrl

IN
|

Aty < (

2
4T

k+1

< Afexp(—
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Stochastic Gradient methods

@ ERM problem
min £(x) Zfz
@ gradient descent

X1 = Xk — Vi (xe)

@ stochastic gradient descent

X1 = Xk — o Vs, (xk),

where s; is uniformly sampled from {1,--- ,
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Convergence guarantees

Assumption
® f(x) is L-smooth: ||Vf(x) — VF()II3 < Lllx —I13

@ f(x) is p-strongly convex: (Vf(x) — V£ (y),x —y) > pllx — y[[3
@ E([Vfi(x)] = Vf(x)
o EIVAWIP < M

Theorem: Convergence rates of SGD

Define A; = ||x; — x*||. For a fixed Stepsize o4 = a, 0 < a < ﬁ we
have,

oM
E[A},,] < 2 > [(1 —20u)TA2 + ﬁ] (48)
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Proof of Theorem

Atpr = g — 23 = |l — Vs, (x) — |3
=l — x5 — 20 (Vs (0e), 36 — X°) + || Vs () |13
= AF = 204 (Vs (), 1k — ) + o || Vs (x) |3

e Using E[X] = E[E[X|Y]]:

Ey, o [(Vf () — x5 = By, (B (Vi (00), Xk — x7)]]
ESl ~~~~~ Sk—1 [<E5k [vfsk (xk)]axk — X*>]

= Ey .50 [<vf(xk)7xk - x*>]
| DR Sk[<vf(xk)7xk —x")]

.....



Proof of Theorem

@ Taking induction from k = 1to k = T, we have

T-1

Eg s (AT—H) < (1—2ap) A7 + Z(l — 2ap)'a’*M? (50)
i=0

@ under the assumption that 0 < 2au < 1, we have

o0

i_ L
>_(1=2ap)" = 5am
i=0
@ Then
M2
E,,.(A3) < (1-2ap)7A)+ S (51)

2p
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Convergence guarantees

@ For fixed stepsize, we don’t have the convergence
@ For diminishing stepsize, the order of convergence is O(+)

Theorem: Convergence rates of SGD

Define Ay = ||xx — x*||. For a diminishing stepsize
B for some 5 > ! and v > 0 such that o < !
Q= —— = =
Ty 2 507 1= 70
Then we have, forany T > 1

L
E[A}] < 2 —
29+T

: (52)

Elf(xr) —f(x")] < 5

where v = max(%, (v +1)A?)




Proof of Theorem

@ Recall the bounds
E; . (Af) < (1=20p)Ey (A7) +o’M>  (53)

@ We prove it by induction. Firstly, the definition of v ensures that it

holds for k = 1.
@ Assume the conclusion holds for some k, it follows that
28p. v BEM? T
E(A2 < (1-=L52 . with k :=~ + k
( k+1) < | 7 )k 2 ( Y )
_k=28p M
= vt
k—1| 28u—1  B*M?
= —V — = v+ —
k? k2 k2
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stochastic optimization
@ stochastic subgradient descent: O(1/¢?)

@ stochastic gradient descent with strong convexity O(1/¢)

@ stochastic gradient descent with strong convexity and
smoothness O(1/e¢)

deterministic optimization
@ subgradient descent: O(n/¢?)

@ gradient descent with strong convexity O(n/e)

@ gradient descent with strong convexity and smoothness
O(nlog(1/c))
The complexity refers to the times of computation of component
(sub)gradients. We need to compute n gradients in every iterations of
GD and one gradient in SGD.
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Outline

e Variance Reduction
@ SAG method and SAGA method
@ SVRG method
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Variance Reduction
Assumption

® f(x) is L-smooth: ||Vf(x) — Vf(y)[l2 < Lllx — y[2
® f(x) is u-strongly convex: (Vf(x) — Vf(y).x —y) = ullx — |3
° E[V/i(x)] = Vf(x)
® E,||VA ()] <M
@ GD: linear convergence O(nlog(1/¢))
@ SGD: sublinear convergence O(1/¢)

What is the essential difference between SGD and GD?
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Variance Reduction

e GD

2
Ak-l—l

e SG
EA

D

2
k+1

IN A

IN A

IN

P — x5 = [ — aVf () — x*[3

AR = 2a (Vf (), 1 — x%) + 2|V (w) |3

(1 = 20u)A7 + o?||VFf(x)||5  (u — strongly convex)
(1 —2au+ ?L*)A7 (L — smooth)

El[xes1 — x*|3 = Ellx — aVif;, () — (3

EA} — 20E (Vfi, (x), x — x*) + o*E||Vf;, (x0)| 3
EA} — 20K (Vf(x), xc — x*) + o*E||Vfi, ()3
(1 —2ap)EA} + o*E||Vfi, (x1)||5 (1 — strongly convex)
(1 = 2ap)EAL + o”E||Vf;, (%) — Vi () + Vf (w3

(1 — 201 + 202L*)EAZ +

20%E|| Vi, (xx) — V()3
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Variance Reduction

EAZ,, < (1 —2ap+ 202 L)EAL +| 20°E| |V, (xi) — V()3 | (54)

A

B

@ a worst case convergence rate of ~ 1/T for SGD

@ In practice, the actual convergence rate may be somewhat better
than this bound.

@ Initially, B << A and we observe the linear rate regime, once
B > A we observe 1/T rate.

@ How to reduce variance term B to speed up SGD?

e SAG ( Stochastic average gradient)
e SAGA
e SVRG (Stochastic variance reduced gradient)
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SAG method

@ SAG method (Le Roux, Schmidt, Bach 2012)

1
X1 —xk—*zgk—xk—ak (n(vfsk(xk — &) ng 1)

(55)
where
. \U if i = s,
g = { fi(Xk) if i = sp (56)
Vgi_1 ow.,
and s is uniformly sampled from {1, --- ,n}

@ complexity(# component gradient evaluations):
O(max{n, ﬁ} log(1/€))
@ need to store most recent gradient of each component.
@ SAGA(Defazio, Bach,Julien 2014) is unbaised revision of SAG

i 1 S i
it =5 — o(Vfilw) =gy + D gh) (57)
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SVRG method

@ SVRG method (Johnson and Zhang 2013)

vi = Vfa(u)— V() + V)

Xk+1 = Xp — QgVg

where and s is uniformly sampled from {1, --- ,n}

@ v, is unbiased estimation of gradient Vf (xx)

Evi = Vf(x) + VI (y) = Vf(y) = V£ (x).

@ Recall the bound

EAL < (1= 20p)EAL + o’E||w[3
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SVRG method

@ Additional assumption: L — smoothness for component functions
IVfi(x) = Vfi»)ll2 < Lllx = yll2 (60)
@ Let’s analyze the "variance"

E||vi|3
= E|Vf, (%) — V£,0) + VIOl
= E|Vf, (%) — V£,0) + V) + Vi, (%) = V()3
2E|(|Vfi, () — Vi, ()3 + 2E[ V£, () — V() — Vs ()5
2L°EA] + 2E|| VS, (v) — Vs, ()13
2LPEA? + 2L%E|ly — x*||?

ININ A

@ if x; and y is close to x*, the variance is small.
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SVRG method

@ We only need to choose a current point as y.

@ picking a fresh y more often should decrease the variance,
however doing this too often involves computing too many full
gradients

@ Let's sety=xi,
EA7,, < (1 —2au+ 20°L)EA; + 20’ L*EAT (61)
@ Unrolling this:

EAL,
k—1 '
< (1=20p+20°L)EAT + ) (1 = 2ap + 20°L*) 20°L*EA]
i=0
< (1 =2ap + 20*L*)FEA} 4 2k’ L*EA? (62)
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SVRG method

@ Unrolling this:

EA7,, < (1 —2apu+ 20°L*)*EAT + 2k’ L’EAT (63)
@ Suppose we would like this to be < 0.5EA, after T iterations.
@ We pick a = O(1) 5, then it turns out that we can set T = 0(1)/’;—2.
@ In fact, we can improve itto 7 = 0(1)5

@ condition number k = ﬁ
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SVRG method
Algorithm 2: SVRG method

Input: xo, o, m
fore=1:Edo
Py X1, X| & Xe—1.
> ¢ < Vf(y) (full gradient)
» fork=1:mdo
@ pick s; € {1,--- ,n} uniformly at random.
o v = Vi (%) — VA) + V()
Q@ Xpy] = X — QVg

> end for

1 m
> X, < — Z-xk
m
k=1

end for

V.
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SVRG method

Convergence of SVRG method

Suppose 0 < o < ﬁ and m sufficiently large such that

1 2La
= 1 64
P pa(l —2La)m Tz 2o~ (64)

then we have linear convergence in expectation

Ef (%) —f(x") < p’lf (%0) —f(x")] (65)

@ ifa= 7, then

[

L
_ L/u 20

P = (i —200m 128 (66)

choosing ¢ = 0.1 and m = 50(L/u) results in p = 0.5
@ overall complexity: O((; +n)log(1/¢))
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proof of theorem

EAL, = Elg — x| = Ellg — ave —x*|[3
EA? — 20E (vi, x¢ — x*) + o*E||w 3
EA? — 2aE (VF(xp), xx — x*) + oZE||ve| 5

< EA} —2aE(f(xk—1) — f(x*)) + o E[vi3

@ By smoothness of f;(x)
IV£(x) = VA < 2L[fi(x) = () = VAE) (x =25 (67)

@ summing above inequalities over 1,2, --- ,n and using Vf(x*) =

- Z V£ (x) = V() |* < 2L[f (x) — £ (x")] (68)
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proof of theorem

@ Using E[(X — E[X])?] < E[X?], we obtain the bound

2
Eqf[vil 2

| VAN

21*3||stk(Xk) - stk(x*)Hﬁ

E||V/ () = Vifs (9) + V() + Vfse (x")
2E|[Vfi () = Vs, (&) 12 + 2B[[ Vs, (v) = VI () = Vfs ()12

IN A

@ now continue the derivation

EA7, | < EAf — 2aE(f(x)
< EA7 —2a(1 — 2aL)E(f(x;)

mNV%xa> V%k )M—%HWV%<) V%( w2
AL[f (xe) — £(x*) + f(3) — F(x*))]

— Vs ()13

—f()) + o Ellvil 13

—f(x")) + 4La”[f ()

()]
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proof of theorem

° summmg overk=1,--- ,m(note thaty = x,_; and

X IZk 1 %)

EAf,, +2a(1 —2aL) ) E(f(x) — f(x"))
k=1

E[[%e 1 — x*| + ALomE[f (o) — f(x")
< zEv@_l) — F)] + ALoPmE]f (Geer) — F(*)]

IN

@ therefore, for each stage s
E[f(x.) — f(x")]
1 m

—> E(f(x) —
m=

zam—lzamm(i +4mLo)E[f (%e-1) = f(x")]  (69)

IA

IN
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Summary

@ condition number: x = %

@ SVRG: E ~ log(1) so the complexity is O((n + ) log(1))
@ GD: T ~ rlog(1) so the complexity is O(nrlog(1))

@ SGD: T ~ % so the complexity is O(%)

@ even though we are allowing ourselves a few gradient
computations here, we don’t really pay too much in terms of
complexity.
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Outline

e Stochastic Algorithms in Deep learning

80/96



Stochastic Algorithms in Deep learning

. . 1
Consider problem min,cps 5 > 7, fi(x)
References: chapter 8 in
http://www.deeplearningbook.org/

@ Gradient descent
a
X = — - ; Vi (x')
@ Stochastic gradient descent
AT = ¥ — o/ V(X))
@ SGD with momentum
VT = v — o' V(X

xt—i—l — xt + Vt—H
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Stochastic Algorithms in Deep learning

@ Nesterov accelerated gradient (original version)

( ) t Mtxtfl
x+l VT g Vf( t+l)

here p/' = ﬁi—g and o' fixed or determined by line search (inverse
of Lipschitz constant).

@ Nesterov accelerated gradient (momentum version)

+1 'ulvt _ O/Vfi(xt + ,utvt)

xl-‘rl — xl‘ + vH—l

here u' = ;]Lrg and o fixed or determined by line search.
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Stochastic Algorithms in Deep learning

@ Adaptive Subgradient Methods (Adagrad): let g, = Vf;(x'),
g2 = diag[g/g7] € R?, and initial G, = g}. At step ¢

t

P I {C4
G' + Gld fl( )
G =G+ gy

in the upper and the following iterations we use element-wise
vector-vector multiplication.
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Stochastic Algorithms in Deep learning

@ Adam: initial E[g?]o = 0, E[g]o = 0. At step ¢,

E[g): = pE[gli—1 + (1 — p)g:
E[¢’), = pE[g"i1 + (1 — p)g;
Elgls = lEfg];L,
2
E[gz]t = IE[(_g itt

P =¥ — —E[g];
\/ —l—eld

here p, 1 are decay rates, « is learning rate.
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Optimization algorithms in Deep learning

AR K

@ pytorch/caffe2 2 523189 K % A adadelta, adagrad, adam,
nesterov, rmsprop, YellowFin
https://github.com/pytorch/pytorch/tree/master/
caffe2/sgd

@ pytorch/torch 4 : sgd, asgd, adagrad, rmsprop, adadelta,
adam, adamax
https://github.com/pytorch/pytorch/tree/master/
torch/optim

@ tensorflow % #49 A % 4 . Adadelta, AdagradDA, Adagrad,
ProximalAdagrad, Ftrl, Momentum, adam, Momentum,
CenteredRMSProp
BRI
https://github.com/tensorflow/tensorflow/blob/
master/tensorflow/core/kernels/training_ops.cc
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Outline

© Natural Gradient Method
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Feedforward network

different notation: the variable is # and x is the data.

@ Given an input ag = x, the output 4(x,0) = a; € R™ can be
obtained through a series of L layers as follows:

s; = Wa_1, a1:¢l(sl), [=1,2,....L,

where ¢, is element-wise, and W, is the weight in i-th layer .

@ The variable: 6 = [vec(W;) " vec(W2) T ... vec(W.)T]T.

@ Gradient by back-propagation Process:
g1 < Da;© ¢y(s1), DW, + gia] |, Daj_y + W/ g
@ For convolution layer, the gradient can also be represented
DW, = G/A],

where G, and A; are matrices.
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KL Divergence Objectives

@ Q. ,: the true data distribution.
@ (., the training distribution given {(x;,y;)}
@ P, ,(0): the learned distribution

o KL divergence: KL(Qx,||Pxy) = | q(x,y)log ggi; dxdy.

@ Goal: minimize the KL divergence from Q. , to P, ,(9)
1
Ep [KL(Qy[|Pyx(0))] = — Z log p(yilh(xi, 0))-

Hence, our loss function is the negative log probability.
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Kronecker product

@ A ® B denotes the Kronecker product between A and B:
[Al1pB -+ [AixB
A®B= : - :
[Alm1B - [AlmaB
@ vec(w') =veu
@ (A®B) '=A"leB .
@ (BT ®A)vec(X) = vec(AXB)
@ vec(GA) = (A; ® G;) vec(I).
® (A®B)(C®D) = (AC)® (BD) for any A, B, C, D with correct sizes.
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Empirical Fisher Information Matrix (EFIM)

@ Fisher Information Matrix
F =Ep, [Vi(h(x,0),y)V(h(x,0),y) '] = =Ep, [V 1og p(y|h(x,0))]

@ The EFIM is defined as follows:

F(6) = B, [Ve(h(x,0),) Vi (h(x,0),5)"
E; laoag @ g1gf] - Ey laoaj_, @gig]]

Ey lar1ag ®ggl] - Ep [ar-1a] | ©g1g]]

@ The second-order Taylor approximation to KL divergence is the
Fisher information matrix.

@ KL divergence is an intrinsic dissimilarity measure on
distributions: it doesn’t care how the distributions are

parameterized.
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The Hessian Matrix

@ The Hessian matrix is:

H(0) = E,_[S(0)]+

By laoa] ©Gua] -+ Ep, laval Gl
E, la1a] ©Gra] - By lar el ©Gri
where
0%
U 9si0s;” Z (9vec 8vec( W) © (8j)p

@ Notethat¥; =0foralli=1,..., L.

@ Let 6* be a global minimum. For 6 in a sufficiently small
neighborhood of * and sufficiently large N, it holds with
probability 1 — 4:

[H(8) —F(0)]| <«
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Natural Gradient Method

@ The scheme:
9k+l _ 01{ o akF(9k>flgk

@ It holds KL(Px (0 + d)||Px(0)) — 3d" Fd as d goes to zero

@ The steepest descent direction in the space of distributions
where distance is (approximately) measured in local
neighborhoods by the KL divergence:

F-vy 1
—\ﬁiv = lim — argmin V(0 +d).
[VU[p-1 20 € 4. ki, (94d)|Pry(8))<e

@ Similar to Gauss-Newton methods in nonlinear least squares?
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Kronecker-factored Approximation to EFIM

@ Block-diagonal (Layer-wise) Approximation to EFIM:

B:diag{Fl,...,FL},

where F; corresponds to the I-th layer.
@ Note that DW, = G/A;" and vec(G/A]") = (A; ® G;) vec(I). We

have:

:veC(DWl) VeC(DWl)T]
:(Al ® Gy) vec(l) vec(I) T (A ® GIT)}

(w2 Gl @G

[l e Ga))]

_A[A,T} 9E, [G,Gﬂ —A®G
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KFAC (James Martens and Roger Grosse)

@ Delayed update of EFIM
F, = (Al + VA @ (Gl + VD)
@ Update the iteration (gz = vec(Gpt), © = vec()):
9k+1 — ek . akﬁt_lg[j’kv
or equivalently
O ! = O — k(G + V) TG (Al + VAT
@ Use the momentum technique to generate direction.

@ Improvement: block diagonal approximation to A%, and G,
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