
Large-scale Integer Linear Programming

https://bicmr.pku.edu.cn/~wenzw/bigdata2024.html

1/43

https://bicmr.pku.edu.cn/~wenzw/bigdata2024.html

2/43

Outline

1 Lagrangian Relaxation

2 Dantzig-Wolfe decomposition

3 Bender’s Decomposition

3/43

Lagrangian Relaxation

Consider the integer programming problem

max c⊤x,

s.t. Ax ≤ b, Dx ≤ d,

x ∈ Zn,

(1)

and assume that A,D, b, c, d have integer entries.

Let ZIP the optimal cost and let

X = {x ∈ Zn | Dx ≤ d}. (2)

We assume that optimizing over the set X can be done efficiently.

Let λ ≥ 0 be a vector of dual variables. We introduce the problem

max c⊤x + λ⊤(b − Ax),

s.t. x ∈ X,
(3)

and denote its optimal cost by Z(λ).

4/43

Lagrangian Relaxation

Lemma
If the problem (1) has an optimal solution and if λ ≥ 0, then Z(λ) ≥ ZIP

Proof: Let x∗ denote an optimal solution to (1).
Then, b − Ax∗ ≥ 0 and, therefore

c⊤x∗ + λ⊤(b − Ax∗) ≥ c⊤x∗ = ZIP.

Since x∗ ∈ X,

Z(λ) ≥ c⊤x∗ + λ⊤(b − Ax∗) ≥ c⊤x∗ = ZIP.

Problem (3) provides an upper bound to (1). It is natural to
consider the tightest such bound.

5/43

Lagrangian Dual

We introduce the problem

min Z(λ), s.t. λ ≥ 0. (4)

We will refer to problem (4) as the Lagrangian dual. Let

ZD = min
λ≥0

Z(λ).

Suppose X = {x1, · · · , xm}. Then Z(λ) can be written as

Z(λ) = max
i=1,··· ,m

(c⊤xi + λ⊤(b − Axi)).

The function Z(λ) is convex and piecewise linear.
Computing ZD can be recast as a linear programming problem
with a very large number of constraints.

6/43

Weak Duality

Theorem (Weak Duality)
We have ZD = minλ≥0 Z(λ) ≥ ZIP.

The previous theorem represents the weak duality theory of
integer programming.

Unlike linear programming, integer programming does not have a
strong duality theory. It is possible to have ZD > ZIP.

The procedure of obtaining bounds for integer programming
problems by calculating ZD is called Lagrangian relaxation.

7/43

Strength of the Lagrangian Dual

Theorem
The optimal value ZD of the Lagrangian dual is equal to the optimal
cost of the following linear programming problem:

max c⊤x,

s.t. Ax ≤ b, x ∈ conv(X).
(5)

where conv(X) be the convex hull of the set X = {x ∈ Zn | Dx ≤ d}.

Proof:
Z(λ) = max

x∈X
(c⊤x + λ⊤(b − Ax)).

The optimal cost remains same if we allow convex combinations
of the elements of X.

Z(λ) = max
x∈conv(X)

(c⊤x + λ⊤(b − Ax)).

8/43

Proof

By definition, we have

ZD = min
λ≥0

Z(λ) = min
λ≥0

max
x∈conv(X)

(c⊤x + λ⊤(b − Ax)).

Let {vk, k ∈ K} be the extreme points, and {rj, j ∈ J} be the
complete set of extreme rays of conv(X).
Then, for any fixed λ, we have

Z(λ) =

{
+∞, ∃ j ∈ J, (c⊤ − λ⊤A)rj > 0,
maxk∈K(c⊤vk + λ⊤(b − Avk)), otherwise.

(6)

9/43

Proof

According to (6), the Lagrangian dual is equivalent to and has
the same optimal value as the problem

min
λ≥0

max
k∈K

(c⊤vk + λ⊤(b − Avk)),

s.t. (c⊤ − λ⊤A)rj ≤ 0, j ∈ J.
(7)

Problem (7) is equivalent to the linear programming problem

min
λ≥0

y,

s.t. y + λ⊤(Avk − b) ≥ c⊤vk, k ∈ K,

λ⊤Arj ≥ c⊤rj, j ∈ J.

(8)

10/43

Proof

Taking the linear programming dual of problem (8), and using
strong duality, ZD is equal to the optimal cost of the problem

max c⊤

∑
k∈K

αkvk +
∑
j∈J

βjrj

 ,

s.t. A

∑
k∈K

αkvk +
∑
j∈J

βjrj

 ≤ b,

∑
k∈K

αk = 1, αk, βj ≥ 0.

The result follows since

conv(X) =

∑
k∈K

αkvk +
∑
j∈J

βjrj
∣∣∣∣ ∑

k∈K

αk = 1, αk, βj ≥ 0

11/43

Linear Relaxation

We have characterized the optimal value of the Lagrangian dual
as solution to a linear programming problem.
It is natural to compare the optimal cost ZIP and the optimal cost
ZLP of the linear relaxation

max c⊤x,

s.t. Ax ≤ b, Dx ≤ d.

In general, the following ordering holds among ZLP, ZIP, and ZD:

ZLP ≥ ZD ≥ ZIP.

12/43

Linear Relaxation

We have ZIP = ZD for all cost vector c, if and only if

conv (X ∩ {x | Ax ≤ b}) = conv(X) ∩ {x | Ax ≤ b} .

We have ZLP = ZD for all cost vector c, if

conv(X) = {x | Dx ≤ d}.

13/43

Solution of the Lagrangian Dual

We outline a method for finding the optimal Lagrangian
multipliers λ∗, that solve the Lagrangian dual problem

min Z(λ), s.t. λ ≥ 0.

To keep the presentation simple, we assume that X is finite and
X = {x1, · · · , xm}.

Given a particular value of λ, we assume that we can calculate
Z(λ), which we have defined as follows:

Z(λ) = max
i=1,··· ,m

(c⊤xi + λ⊤(b − Axi)).

14/43

Subgradient

Let fi = b − Axi and hi = c⊤xi. Then,

Z(λ) = max
i=1,··· ,m

(hi + f⊤i λ).

Let E(λ) = {i | Z(λ) = hi + f⊤i λ}.

For every i ∈ E(λ∗), fi is a subgradient of the function Z(·) at λ∗.

∂Z(λ∗) = conv({fi, i ∈ E(λ∗)}), i.e., a vector s is a subgradient of
the function Z(·) at λ∗ if and only if s is a convex combination of
the vectors fi, i ∈ E(λ∗).

15/43

Subgradient Optimization Algorithm

The following algorithm generalizes the steepest ascent algorithm to
maximize a nondifferentiable concave function Z(·).

1 Choose a starting point λ1; let t = 1.
2 Given λt, choose a subgradient st of the function Z(·) at λt.
3 If st = 0, then λt is optimal and the algorithm terminates.

Else, continue.
4 Let λt+1

j = max{λt
j − θtst

j, 0}, where θt is a positive
stepwise parameter. Increment t and go to Step 2.

Typically, only the extreme subgradients fi are used.
The stopping criterion 0 ∈ ∂Z(λt) is rarely met. Typically, the
algorithm is stopped after a fixed number of iterations.

16/43

Stepsize

It can be proved that Z(λt) converges for any stepsize sequence
θt such that

∞∑
t=1

θt = ∞, and lim
t→∞

θt = 0.

An example of the stepsize sequence is θt = 1/t, which leads to
slow convergence in practical. Another example is

θt = θ0α
t, t = 1, 2, · · · ,

where α is a scalar satisfying 0 < α < 1.
A more sophisticated and popular rule is to let

θt =
Z(λt)− ẐD

∥st∥2 α

where α is a scalar satisfying 0 < α < 1 and ẐD is an estimate of
the optimal value ZD.

17/43

Outline

1 Lagrangian Relaxation

2 Dantzig-Wolfe decomposition

3 Bender’s Decomposition

18/43

Mixed Integer Program

Let us consider a mixed integer program (MIP)

zI = max cTx,

s.t. Ax ≤ b,Dx ≤ d,

x ∈ Zd
+ × Rp

+.

(9)

Let X be defined as

X =
{

x ∈ Zd
+ × Rp

+ : Dx ≤ d
}
.

We assume that X is nonempty and D, d have rational entries.

19/43

Lagrangian dual

Let m be the number of rows of A, and take λ ∈ Rm
+. The

Lagrangian relaxation with respect to λ as follows.

zLR(λ) = max c⊤x + λ⊤(b − Ax),

s.t. Dx ≤ d,

x ∈ Zq
+ × Rp

+.

(10)

Moreover, recall that the Lagrangian dual is defined as

zLD = min{ZLR(λ) : λ ≥ 0}. (11)

(10) and (11) are related according to the following
characterization of zLD.

zLD = max{c⊤x : Ax ≤ b, x ∈ conv(X)}.

20/43

Decomposition of conv(X)

conv(X) can be expressed as

conv(X) = conv
{

v1, . . . , vn}+ cone
{

r1, . . . , rℓ
}
,

where v1, . . . , vn are the extreme points of conv(X) and r1, . . . , rℓ

are the extreme rays of conv(X).
Any point x in conv(X) can be written as

x =
∑
k∈[n]

αkvk +
∑
h∈[ℓ]

βhrh

for some α ∈ Rk
+ and β ∈ Rℓ

+ such that
∑

k∈[n] αk = 1.

21/43

Dantzig-Wolfe Relaxation

Based on the decomposition of conv(X), it follows that

zLD = max
∑
k∈[n]

(
c⊤vk

)
αk +

∑
h∈[ℓ]

(
c⊤rh

)
βk,

s.t.
∑
k∈[n]

(
Avk)αk +

∑
h∈[ℓ]

(
Arh)βk ≤ b,

∑
k∈[n]

αk = 1, α ∈ Rk
+, β ∈ Rℓ

+.

(12)

We refer to (12) as the Dantzig-Wolfe relaxation.

22/43

Dantzig-Wolfe Reformulation

Moreover, we have

zI = max
{

c⊤x : Ax ≤ b, x ∈ conv(X), xj ∈ Z, ∀j ∈ [q]
}
.

Therefore, we deduce

zI = max
∑
k∈[n]

(
c⊤vk

)
αk +

∑
h∈[ℓ]

(
c⊤rh

)
βk,

s.t.
∑
k∈[n]

(
Avk)αk +

∑
h∈[ℓ]

(
Arh)βk ≤ b,

∑
k∈[n]

αk = 1,

α ∈ Rk
+, β ∈ Rℓ

+,∑
k∈[n]

αkvk
j +

∑
h∈[ℓ]

βhrh
j ∈ Z, j ∈ [q].

(13)

Here, (13) is referred to as the Dantzig-Wolfe reformulation.

23/43

Pure Binary Programs

Let us consider a pure binary integer program as follows.

zI = max c⊤x,

s.t. Ax ≤ b,Dx ≤ d,

x ∈ {0, 1}p.

We define X as

X = {x ∈ {0, 1}p : Dx ≤ d} .

Since X is bounded and finite, X =
{

v1, . . . , vn
}

Any point x in X can be expressed as

x =
∑
k∈[n]

αkvk,
∑
k∈[n]

αk = 1, α ∈ {0, 1}n.

24/43

Pure Binary Programs

Then we obtain the Dantzig-Wolfe reformulation.

zI = max
∑
k∈[n]

(
c⊤vk

)
αk,

s.t.
∑
k∈[n]

(
Avk)αk ≤ b,

∑
k∈[n]

αk = 1, α ∈ {0, 1}n.

The Dantzig-Wolfe relaxation

max
∑
k∈[n]

(
c⊤vk

)
αk,

s.t.
∑
k∈[n]

(
Avk)αk ≤ b,

∑
k∈[n]

αk = 1, α ≥ 0.

25/43

Block Diagonal Structure

We consider the following optimization model with block diagonal
structure.

max c1⊤x1+ c2⊤x2+ · · · +cp⊤xp,

s.t. D1x1 ≤ d1,

D2x2 ≤ d2,

. . .

Dpxp ≤ dp,

A1x1+ A2x2+ · · · +Apxp ≤ b,

xj ∈ {0, 1}qj , j ∈ [p].

For j ∈ [p], let Xj be defined as Xj =
{

xj ∈ {0, 1}qj : Djxj ≤ dj
}
.

Xj is bounded and finite. Any point xj in Xj can be written as

xj =
∑
v∈Xj

αj
vv,

∑
v∈Xj

αj
v = 1, αj ∈ {0, 1}|Xj|.

26/43

Block Diagonal Structure

The Dantzig-Wolfe reformulation is given by

max
∑
v∈X1

(
c1⊤v

)
α1

v +
∑
v∈X2

(
c2⊤v

)
α2

v + · · ·+
∑
v∈Xp

(
cp⊤v

)
αp

v ,

s.t.
∑
v∈X1

(
A1v

)
α1

v +
∑
v∈X2

(
A2v

)
α2

v + · · ·+
∑
v∈Xp

(Apv)αp
v ≤ b,

∑
v∈Xj

αj
v = 1, αj ∈ {0, 1}|Xj|, j ∈ [p].

The Dantzig-Wolfe relaxation is given by

max
∑
v∈X1

(
c1⊤v

)
α1

v +
∑
v∈X2

(
c2⊤v

)
α2

v + · · ·+
∑
v∈Xp

(
cp⊤v

)
αp

v ,

s.t.
∑
v∈X1

(
A1v

)
α1

v +
∑
v∈X2

(
A2v

)
α2

v + · · ·+
∑
v∈Xp

(Apv)αp
v ≤ b,

∑
v∈Xj

αj
v = 1, αj ≥ 0, j ∈ [p].

27/43

Block Diagonal Structure

Let us consider the special case where

c1 = · · · = cp = c,

A1 = · · · = Ap = A,

X1 = · · · = Xp = X.

Then in the Dantzig-Wolfe relaxation, we may set

α = α1 + α2 + · · ·+ αp.

As a result, the Dantzig-Wolfe relaxation becomes

max
∑
v∈X

(
c⊤v

)
αv,

s.t.
∑
v∈X

(Av)αv ≤ b,∑
v∈X

αv = p, α ≥ 0.

28/43

Column Generation: Master Problem

The Dantzig-Wolfe relaxation has variables α1, . . . , αn for the
extreme points of conv(X) and variables β1, . . . , βℓ for the
extreme rays of conv(X).
n and ℓ are potentially very large. In this case, we may apply the
column generation technique.
The column generation procedure works as follows. We start
with N ⊆ [n] and L ⊆ [ℓ]. Then we have the master problem

max
∑
k∈N

(
c⊤vk

)
αk +

∑
h∈L

(
c⊤rh

)
βk,

s.t.
∑
k∈N

(
Avk)αk +

∑
h∈L

(
Arh)βk ≤ b,∑

k∈N

αk = 1, α ∈ Rk
+, β ∈ Rℓ

+.

29/43

Column Generation: Subproblem

Once we obtain the dual solution λ of the master problem over N
and L, we can identify if there exists constraint that is violated by
solving the following subproblem.

max c⊤x + λ⊤(b − Ax),

s.t. x ∈ conv(X).
If the value of the subproblem is strictly positive, then there exists
k ∈ [n]\N or h ∈ [ℓ]\L whose associated constraint is violated.
If it is unbounded, then there must exist an extreme ray rh for
some h ∈ [ℓ]\L such that(

Arh)⊤ λ < c⊤rh.

If it it positively finite, then there exists an extreme point vk for
some k ∈ [n]\N such that(

Avk − b
)⊤

λ < c⊤vk.

Then we can add rh or vk to the master problem.

30/43

Outline

1 Lagrangian Relaxation

2 Dantzig-Wolfe decomposition

3 Bender’s Decomposition

31/43

Bender’s Decomposition

We use the Lagrangian relaxation framework to deal with
complicating constraints.
In this section, we learn the Bender’s reformulation technique
that can deal with complicating variables.
Consider the following mixed-integer program.

zI = max c⊤x + q⊤y,

s.t. Ax + Gy ≤ b,

x ∈ Zd
+, y ∈ Rp

+.

32/43

Bender’s Decomposition

Here, the integer variables x are complicating variables. If we fix
the x part, then the optimization problem becomes

zLP(x) =max q⊤y,

s.t. Gy ≤ b − Ax,

y ∈ Rp
+.

Taking the dual of it, we deduce

min u⊤(b − Ax),

s.t. G⊤u ≥ q,

u ≥ 0.

Here, the feasible set of the dual does not depend on x.

33/43

Bender’s Decomposition

Let Q denote the feasible set of the dual:

Q =
{

u : G⊤u ≥ q, u ≥ 0
}
.

Suppose that Q can be expressed as

Q = conv
{

v1, . . . , vn}+ cone
{

r1, . . . , rℓ
}
.

for some vectors v1, . . . , vn and r1, . . . , rℓ.
We will prove the following theorem.

Theorem (Bender’s Decomposition)
The mixed integer program can be reformulated as

zI = max η,

s.t. η ≤ c⊤x + (b − Ax)⊤vk, k ∈ [n],

(b − Ax)⊤rh ≥ 0, h ∈ [ℓ],

x ∈ Zd
+, η ∈ R.

34/43

Projection Theorem of Egon Balas

Theorem
Let P =

{
(x, y) ∈ Rd × Rp : Ax + Gy ≤ b, y ≥ 0

}
. Suppose that

C =
{

u : G⊤u ≥ 0, u ≥ 0
}

can be expressed as C = cone
{

r1, . . . , rℓ
}

.
Then projx(P), the projection of P onto the x-space, is given by

projx(P) =
{

x ∈ Rd : (b − Ax)⊤rh ≥ 0, h ∈ [ℓ]
}
.

Let x̄ ∈ Rd. Note that x̄ /∈ projx(P) holds if and only if there is no
y ∈ Rp that satisfies Gy ≤ b − Ax̄ and y ≥ 0.
By Farkas’ Lemma, the system Gy ≤ b − Ax̄, y ≥ 0 is infeasible if
and only if there exists u ∈ C such that u⊤(b − Ax̄) < 0.
Since C = cone

{
r1, . . . , rℓ

}
, such a vector u exists if and only if

(b − Ax̄)⊤rh ≤ 0 for some h ∈ [ℓ], in which case,
x̄ /∈

{
x ∈ Rd : (b − Ax)⊤rh ≥ 0, h ∈ [ℓ]

}
.

35/43

Proof of Bender’s Decomposition

Let P =
{
(x, y) ∈ Rd × Rp : Ax + Gy ≤ b, y ≥ 0

}
. Note that

zI = max c⊤x + zLP(x),

s.t. x ∈ Zd
+.

Here, zLP(x) > −∞ if and only if there exists some y ≥ 0 such
that Gy ≤ b − Ax, which is equivalent to x ∈ projx(P).
Therefore, it follows that

zI = max c⊤x + zLP(x),

s.t. x ∈ projx(P) ∩ Zd
+.

36/43

Proof of Bender’s Decomposition

Recall that Q =
{

u : G⊤u ≥ q, u ≥ 0
}

and

Q = conv
{

v1, . . . , vn}+ cone
{

r1, . . . , rℓ
}
.

Then C =
{

u : G⊤u ≥ 0, u ≥ 0
}

is the recession cone of Q, so we
have C = cone

{
r1, . . . , rℓ

}
.

Then it follows from projection theorem of Egon Balas that
projx(P) =

{
x ∈ Rd : (b − Ax)⊤rh ≥ 0, h ∈ [ℓ]

}
.

Therefore, we deduce that

zI = max c⊤x + zLP(x),

s.t. (b − Ax)⊤rh ≥ 0, h ∈ [ℓ],

x ∈ Zd
+.

37/43

Proof of Bender’s Decomposition

Moreover, note that for any x ∈ projx(P), zLP(x) > −∞, so strong
duality implies that

zLP(x) = min u⊤(b − Ax),

s.t. G⊤u ≥ q,

u ≥ 0.

If zLP(x) is finite, then it means that Q is non-empty and

zLP(x) = min
k∈[n]

{
(b − Ax)⊤vk

}
.

If zLP(x) = +∞, then Q is empty, so the above equation also
holds. Hence,

zI = max c⊤x +min
k∈[n]

{
(b − Ax)⊤vk

}
,

s.t. (b − Ax)⊤rh ≥ 0, h ∈ [ℓ],

x ∈ Zd
+.

38/43

Proof of Bender’s Decomposition

We may move the term mink∈[n]
{
(b − Ax)⊤vk

}
in the objective to

constraints, after which we deduce that

zI = max η,

s.t. η ≤ c⊤x +min
k∈[n]

{
(b − Ax)⊤vk

}
,

(b − Ax)⊤rh ≥ 0, h ∈ [ℓ],

x ∈ Zd
+, η ∈ R.

which is equivalent to Bender’s reformulation as required.

39/43

Bender’s Decomposition Algorithm

The Bender’s reformulation has an enormous number of
constraints.

A natural approach is to work with a small subset of the
constraints and add new ones as cutting planes.

The Bender’s decomposition algorithm is the row generation
framework for Bender’s reformulation.

40/43

Master Problem

At iteration t, we have Nt ⊆ [n] and Lt ⊆ [ℓ]. Then we solve

zt
I = max η,

s.t. η ≤ c⊤x + (b − Ax)⊤vk, k ∈ Nt,

(b − Ax)⊤rh ≥ 0, h ∈ Lt,

x ∈ Zd
+, η ∈ R.

This is the master problem.
Assume that we get a solution (xt, ηt) after solving the master
problem at iteration t. Then we attempts to find a violated
inequality among

η ≤ c⊤x + (b − Ax)⊤vk, k ∈ [n]\Nt,

(b − Ax)⊤rh ≥ 0, h ∈ [ℓ]\Lt.

41/43

Subproblem

The question is
does there exists kt ∈ [n] such that

ηt > c⊤xt + (b − Axt)
⊤ vkt?

does there exists ht ∈ [ℓ] such that

(b − Axt)
⊤ rht < 0?

To answer this, we solve

zLP (xt) = max q⊤y,

s.t. Gy ≤ b − Axt,

y ∈ Rp
+.

This is the subproblem for the Bender’s decomposition
algorithm.

42/43

Solving the Subproblem

If zLP (xt) = +∞, then for any M > 0, there exists y ≥ 0 such that
Axt + Gy ≤ b and c⊤xt + q⊤y > M, in which case zI = +∞.
If zLP (xt) is finite, then

zLP (xt) = min
k∈[n]

(b − Axt)
⊤ vk = (b − Axt)

⊤ vkt

for some kt.
Hence, we deduce that

c⊤xt + zLP (xt) = c⊤xt + (b − Axt)
⊤ vkt .

Moreover, if zLP (xt) = −∞, then the subproblem is infeasible, in
which case, there exists ht ∈ [ℓ]

(b − Axt)
⊤ rht < 0.

43/43

Bender’s decomposition algorithm

1 At iteration t, solve the master problem with Nt ⊆ [n] and Lt ⊆ [ℓ].
2 If zt

I = −∞, then the mixed-integer program is infeasible.
3 Let (xt, ηt) be an optimal solution to the master problem. Solve

the subproblem with xt.
4 If zLP(xt) = +∞ then the mixed-integer program is unbounded.
5 If zLP(xt) = −∞ then there exists ht ∈ [ℓ] such that

(b − Ax)⊤rht < 0.
Add constraint (b − Ax)⊤rht ≥ 0 and update Lt+1 = Lt ∪ {ht}.

6 If zLP(xt) is finite. Let yt be an optimal solution and
kt ∈ argmink∈[n]{(b − Axt)⊤ > vk}.
If c⊤xt + q⊤yt ≥ ηt, then we conclude that (xt, yt) is an optimal
solution.
If c⊤xt + q⊤yt < ηt, then we add constraint η ≤ c⊤x + (b − Ax)⊤vkt

and update Nt+1 = Nt ∪ {kt}.

	Lagrangian Relaxation
	Dantzig-Wolfe decomposition
	Bender's Decomposition

