Large-scale Integer Linear Programming

https://bicmr.pku.edu.cn/~wenzw/bigdata2024.html

1/4%

https://bicmr.pku.edu.cn/~wenzw/bigdata2024.html

Outline

0 Lagrangian Relaxation

2/43

Lagrangian Relaxation

@ Consider the integer programming problem

max ¢ x,
st. Ax<b, Dx<d, (1)
xeZzZ",

and assume that A, D, b, ¢, d have integer entries.
@ Let Z;p the optimal cost and let
X={xeZ" | Dx <dj}. (2)
We assume that optimizing over the set X can be done efficiently.

@ Let A > 0 be a vector of dual variables. We introduce the problem

max ¢'x+ A (b —Ax),
st xeX,

(3)

and denote its optimal cost by Z(\).

3/43

Lagrangian Relaxation

If the problem (1) has an optimal solution and if A > 0, then Z(\) > Z;p

@ Proof: Let x* denote an optimal solution to (1).
Then, b — Ax* > 0 and, therefore

clxt + /\T(b — Ax™) > c'x* = Zp.
Since x* € X,
ZOA) > x* + AT (b —Ax*) > ¢'x* = Zp.

@ Problem (3) provides an upper bound to (1). It is natural to
consider the tightest such bound.

4/43

Lagrangian Dual

@ We introduce the problem

min Z(A), st A>0. (4)

@ We will refer to problem (4) as the Lagrangian dual. Let

Zp = min Z(\).
A>0
@ Suppose X = {x',--- ,x"}. Then Z()\) can be written as

Z(\) = max (c'x' + AT (b —Ax)).

i=1,-,m

@ The function Z(\) is convex and piecewise linear.

@ Computing Z; can be recast as a linear programming problem
with a very large number of constraints.

5/43

Weak Duality

Theorem (Weak Duality)

We have Zp = min)\zo Z()\) > Zip.

@ The previous theorem represents the weak duality theory of
integer programming.

@ Unlike linear programming, integer programming does not have a
strong duality theory. It is possible to have Z, > Zp.

@ The procedure of obtaining bounds for integer programming
problems by calculating Z, is called Lagrangian relaxation.

6/43

Strength of the Lagrangian Dual

Theorem

The optimal value Zy, of the Lagrangian dual is equal to the optimal
cost of the following linear programming problem:

max ch,

s.t. Ax <b,x € conv(X).

(%)

where conv(X) be the convex hull of the set X = {x € Z"" | Dx < d}.

Proof:

Z(A) = max (c"x+ A" (b—Ax)).

@ The optimal cost remains same if we allow convex combinations
of the elements of X.

Z\) = max (¢’ x+ AT (b—Ax)).
xeconv(X)

7/43

Proof

@ By definition, we have

Zp = minZ()\) = mi Tx+ AT (b - Ax)).
PR AN TR A A 04D

@ Let {*, k € K} be the extreme points, and {//,j € J} be the
complete set of extreme rays of conv(X).

@ Then, for any fixed \, we have

700 = +00, Jjed, (¢ =ATA)H >0,
| maxgeg(c TV + AT (b — AK)), otherwise.

(6)

8/43

Proof

@ According to (6), the Lagrangian dual is equivalent to and has
the same optimal value as the problem

min max(c vF + X7 (b — AF)),
A>0 kek (7)

st. (¢! —ATA)PF <0, jel.
@ Problem (7) is equivalent to the linear programming problem
mi -y,
st. y+ A (Af—b) >V keKk, (8)
MNAY >cTH, el

9/43

Proof

@ Taking the linear programming dual of problem (8), and using
strong duality, Zp, is equal to the optimal cost of the problem

max ¢ (Z Oéka + Z 5;’"’))

kek JjeJs

st. A Z akvk + Z Bjr’ <b,
kek jeJ
Zakzla 04105;20

kekK

@ The result follows since

conv(X) = {Z ok + Z Bir!

keK jer

> = l,ak7f5/>0}

kek

10/43

Linear Relaxation

@ We have characterized the optimal value of the Lagrangian dual
as solution to a linear programming problem.

@ Itis natural to compare the optimal cost Z;» and the optimal cost
Z; p of the linear relaxation

max ch,

st Ax<b, Dx <d.

@ In general, the following ordering holds among Z; p, Z;p, and Zp:

Zip 2 Zp = Zjp.

11/43

Linear Relaxation

@ We have Z;p = Zp for all cost vector c, if and only if

conv (X N{x | Ax < b}) =conv(X) N {x | Ax < b}.

@ We have Z;p = Zp for all cost vector c, if

conv(X) = {x | Dx < d}.

12/43

Solution of the Lagrangian Dual

@ We outline a method for finding the optimal Lagrangian
multipliers *, that solve the Lagrangian dual problem

min Z(\), st A>0.

@ To keep the presentation simple, we assume that X is finite and
X ={x!,--- ¥,

@ Given a particular value of A\, we assume that we can calculate
Z(\), which we have defined as follows:

Z(\) = max (c"x' + AT (b — AX)).

i=1,--,m

13/43

Subgradient

@ Letfi=b—Ax' and h; = ¢'x'. Then,
Z(\) = _max (hi + £ X).
@ LetE\\) = {i| Z(\) = b + 1 A}
@ Forevery i € E(*), f; is a subgradient of the function Z(-) at A*.

@ 0Z(*) = conv({f;,i € E(*)}), i.e., a vector s is a subgradient of
the function Z(-) at A* if and only if s is a convex combination of
the vectors f;,i € E(\").

14/43

Subgradient Optimization Algorithm

The following algorithm generalizes the steepest ascent algorithm to
maximize a nondifferentiable concave function Z(-).

@ Choose a starting point \!; let r = 1.

@ Given)\, choose a subgradient s’ of the function Z(-) at \'.

© If s =0, then) is optimal and the algorithm terminates.
Else, continue.

Q Let X*' = max{\ — 6,s!,0}, where 6, is a positive
stepwise parameter. Increment r and go to Step 2.

@ Typically, only the extreme subgradients f; are used.

@ The stopping criterion 0 € 9Z(\) is rarely met. Typically, the
algorithm is stopped after a fixed number of iterations.

15/43

Stepsize

@ It can be proved that Z(\") converges for any stepsize sequence
0, such that

[oe)
Z 0, =oc0, and lim 6, = 0.
P 11— 00

@ An example of the stepsize sequence is ¢, = 1/t, which leads to
slow convergence in practical. Another example is

9[:900/7 t:1727”'7

where « is a scalar satisfying 0 < a < 1.
@ A more sophisticated and popular rule is to let

0 _ Z(\') — Zp
R

where « is a scalar satisfying 0 < a < 1 and Zp is an estimate of

the optimal value Zp. o

Outline

@ Dantzig-Wolfe decomposition

17/43

Mixed Integer Program

@ Let us consider a mixed integer program (MIP)
2l = max CTX,
sit. Ax<b,Dx <d, (9)
x € Zfl,_ X Rﬁ_.
@ Let X be defined as
X={xeZ{ xR : Dx<d}.

We assume that X is nonempty and D, d have rational entries.

18/43

Lagrangian dual

@ Let m be the number of rows of A, and take A € R. The
Lagrangian relaxation with respect to A as follows.

zr(\) = max ¢ x+ A\ (b— Ax),
s.t. Dx <d, (10)
xeZl xR
@ Moreover, recall that the Lagrangian dual is defined as

zzp = min{Zg(A): A >0} (11)

@ (10) and (11) are related according to the following
characterization of z;p.

zzp = max{c' x: Ax < b,x € conv(X)}.

19/43

Decomposition of conv(X)

@ conv(X) can be expressed as
conv(X) = conv {vl, - ,v"} + cone {rl, .. ,rz} ,

where v!, ... V" are the extreme points of conv(X) and r!,... r
are the extreme rays of conv(X).

@ Any point x in conv(X) can be written as

x—ZakV +Zﬂhrh

ke(n] hell)

for some a € R and 3 € RY, suchthat 3,1, ax = 1.

20/43

Dantzig-Wolfe Relaxation

Based on the decomposition of conv(X), it follows that

ZLp = max Z (chk> oy + Z (cTrh> Bk,

k€(n] hell]

s.t. Z (Avk) o + Z (Al"h) Bk < b,
k€n] hel]
Zak: l,aeler,ﬁ E]Rﬁ.
k€n]

We refer to (12) as the Dantzig-Wolfe relaxation.

(12)

21/43

Dantzig-Wolfe Reformulation

@ Moreover, we have

7] = max {ch :Ax < b,x € conv(X),x; € Z, Vj € [q}} .

@ Therefore, we deduce

Z;7 = max Z (chk> oy + Z (cTrh) Bk,

kE€n] hell]
st Y (AF)a+ D (A7) B < b,
k€n] hell)
Z ap =1, (13)
k€n]
aeRE B eR,
dak+> B €z, jelq.
k€|n] hel]

@ Here, (13) is referred to as the Dantzig-Wolfe reformulation. 2243

Pure Binary Programs

@ Let us consider a pure binary integer program as follows.

77 =max c'ux,

sit. Ax<b,Dx <d,
x € {0, 1}*.
@ We define X as

X={xe{0,1}Y :Dx<d}.

@ Since X is bounded and finite, X = {v!,... v}
@ Any point x in X can be expressed as

x—Zakv Zak—l ac{0,1}"

k€n] k€|n]

23/43

Pure Binary Programs

@ Then we obtain the Dantzig-Wolfe reformulation.

Z; = max E (chk> Qp,

k€n]

s.t. Z (Avk) ar < b,

k€n]

da=1, ac{o1}"

ke(n]

@ The Dantzig-Wolfe relaxation
max Z (chk) g,
k€|n]

st. Y (Ah) oy < b,
k€E|[n]

Zak—l a > 0.

ken]

24/43

Block Diagonal Structure

@ We consider the following optimization model with block diagonal

structure.
max ¢ x4 AT T
st. D! <d',
D*x? < d*,
D'y < o,
Alx'+ AZ4 ... 4APXP < b,

¥ e{0,1}4, jelp.

@ Forj € [p], let X; be defined as X; = {¥ € {0,1}% : Di¥ < d'} .
@ X; is bounded and finite. Any point ¢/ in X; can be written as
d=> "oy, Y d =1 oo}/

VvEX; VEX;
25/43

Block Diagonal Structure

@ The Dantzig-Wolfe reformulation is given by

max Z (clTv) o) + Z <c2Tv) ol 4t Z (cpTv> ab,
veEX) VEXP

s.t.

veX)

Z (A'v)) + Z (sz) i+t Z (APv) b < b,
veX veX, veX),

doa=1, oefo,}¥ jelp.

veX;

@ The Dantzig-Wolfe relaxation is given by

max Z (clTv) o) + Z (CZTV) a4t Z (cpTv> ab,
veXy VGXP

s.t.

veX]
DAV al+ > (AW) el 4 D (A) ol < b,
veX) veXy veX,

da=1, =0, jep

VEX;

26/43

Block Diagonal Structure

@ Let us consider the special case where

c == =c,
Al =... = AP = A,
X'=...=xP=Xx.

@ Then in the Dantzig-Wolfe relaxation, we may set
a=a'+a’+-- +of.
@ As aresult, the Dantzig-Wolfe relaxation becomes

max Z (CTV) Qy,

veX

st) (Av)ay < b,

veX

Zav:p, a > 0.

veX
27/43

Column Generation: Master Problem

@ The Dantzig-Wolfe relaxation has variables «;, ..., «, for the
extreme points of conv(X) and variables 5, ..., 8, for the
extreme rays of conv(X).

@ n and / are potentially very large. In this case, we may apply the
column generation technique.

@ The column generation procedure works as follows. We start
with N C [#] and L C [¢]. Then we have the master problem

% T k T h 7
ma Z(c v)ozk—i—%(C F)ﬁk

keN
st Y (W) o+ (A) B < b,
keEN helL

Zak: 1, aERi,ﬁeRi
keN

28/43

Column Generation: Subproblem

@ Once we obtain the dual solution X of the master problem over N
and L, we can identify if there exists constraint that is violated by
solving the following subproblem.

max ¢ x+ A (b—Ax),
s.t. x € conv(X).
@ If the value of the subproblem is strictly positive, then there exists
k € [n]\N or h € [¢]\L whose associated constraint is violated.

@ If it is unbounded, then there must exist an extreme ray " for
some h € [¢]\L such that

(Arh)T A<c'

e Ifit it positively finite, then there exists an extreme point v* for
some k € [n]\N such that

(Avk — b)T A\ < ek

@ Then we can add " or v* to the master problem. st

Outline

© Bender’s Decomposition

30/43

Bender's Decomposition

@ We use the Lagrangian relaxation framework to deal with
complicating constraints.

@ In this section, we learn the Bender’s reformulation technique
that can deal with complicating variables.

@ Consider the following mixed-integer program.

Z] = max c'x+ qu7
st. Ax+ Gy <),
xeZ%,yeR:.

31/43

Bender's Decomposition

@ Here, the integer variables x are complicating variables. If we fix
the x part, then the optimization problem becomes

ap(x) =max ¢y,
s.t. Gy < b — Ax,
yeRL.
@ Taking the dual of it, we deduce
min u' (b — Ax),

st. Glu>gq,
u>0.

@ Here, the feasible set of the dual does not depend on x.

32/43

Bender’s Decomposition

@ Let O denote the feasible set of the dual:

Q:{M:GTMZQ,MZO}.
@ Suppose that Q can be expressed as
Q:conv{vl,...,v"} —i—cone{rl,...,rz}.
¢

for some vectors v!, ... v and r!,..., /.
@ We will prove the following theorem.

Theorem (Bender’s Decomposition)
The mixed integer program can be reformulated as

g = max 1,
st n<c'x+(b-Ax)"HW, keln,
(b—Ax)"F" >0, hell,
X € Z‘i, n € R.

= = = =Y 3343

Projection Theorem of Egon Balas

LetP = {(x,y) e RY x R : Ax+ Gy < b,y > 0}. Suppose that
C= {u G u>0,u> O} can be expressed as C = cone {rl, .. .,ré}.

Then proj,(P), the projection of P onto the x-space, is given by

proj,(P) = {x eERY: (b—Ax) /" >0,h e [f]} .

@ Let x € R?. Note that x ¢ proj, (P) holds if and only if there is no
y € R? that satisfies Gy < b —Axand y > 0.

@ By Farkas’ Lemma, the system Gy < b — Ax,y > 0 is infeasible if
and only if there exists u € C such that u" (b — Ax) < 0.

@ Since C = cone {r!,...,r*}, such a vector u exists if and only if
(b — Ax)Tr" < 0 for some & € [¢], in which case,
x¢ {xe Rd t(b—Ax)"r">0,h e 0]}

34/43

Proof of Bender’s Decomposition

@ LetP = {(x,y) € R x R" : Ax+ Gy < b,y > 0}. Note that

z7=max ¢ x+ zp(x),

d
st. xe¢ Z+.

@ Here, z;p(x) > —oc if and only if there exists some y > 0 such
that Gy < b — Ax, which is equivalent to x € proj,(P).

@ Therefore, it follows that

z7=max ¢ x+zp(x),

st x€proj(P)nZL.

35/43

Proof of Bender’s Decomposition
@ Recallthat 0 = {u: G"u > q,u > 0} and

Q:conv{vl,...,v"}—l—cone{rl,...,rf}.

@ Then C = {u G u>0,u> 0} is the recession cone of Q, so we

have C = cone{rl, e ,re}.
@ Then it follows from projection theorem of Egon Balas that

proj,(P) = {x e R?: (b—Ax)"r" > 0,h € [(]}.
@ Therefore, we deduce that

z7=max ¢ x+zp(x),
st. (b—Ax)'/">0, hell,
X € Zfi.

36/43

Proof of Bender’s Decomposition

@ Moreover, note that for any x € proj,(P), z.p(x) > —o0, SO strong

duality implies that
zp(x) =min u' (b — Ax),
st. G'lu>gq,
u>0.

@ If zzp(x) is finite, then it means that Q is non-empty and
zzp(x) = lr{reu[rrj {(b - Ax)Tvk} .

@ If z,p(x) = 400, then Q is empty, so the above equation also
holds. Hence,

z7=max ¢ x4+ min {(b - Ax)Tvk} ,
k€E[n]

st. (b—Ax)'/">0, hell,
X € Z‘j_.

37/43

Proof of Bender’s Decomposition

@ We may move the term miny¢, { (b — Ax) "v*} in the objective to
constraints, after which we deduce that
Z; = max 1,

st. n<c'x+min {(b - Ax)Tvk} ,
k€n]

(b—Ax)"F" >0, hell,
xeZi, neRr.

which is equivalent to Bender’s reformulation as required.

38/43

Bender’s Decomposition Algorithm

@ The Bender’s reformulation has an enormous number of
constraints.

@ A natural approach is to work with a small subset of the
constraints and add new ones as cutting planes.

@ The Bender’s decomposition algorithm is the row generation
framework for Bender’s reformulation.

39/43

Master Problem

@ Atiteration 7, we have N, C [n] and L, C [¢]. Then we solve

7y = max 1,
st. n<c'x+(b-Ax)"V, keN,
(b—Ax)""">0, hel,
X € Zi,n eR.

This is the master problem.

@ Assume that we get a solution (x', ") after solving the master
problem at iteration 7. Then we attempts to find a violated
inequality among

n<cx+(b—Ax)"WV, ke n)\N,
(b—Ax)""" >0, hel)\L.

40/43

Subproblem

@ The question is
e does there exists k, € [n] such that
0 >c x4 (b —Ax')T V2
e does there exists A, € [¢] such that
)T

(b—AX') " <0?

@ To answer this, we solve

71p (x') = max qu,
st Gy<b—Ax,
ye R

@ This is the subproblem for the Bender’s decomposition
algorithm.

41/43

Solving the Subproblem

@ If z;p (x') = +o0, then for any M > 0, there exists y > 0 such that
Ax' + Gy <bandc'x' + ¢y > M, in which case z; = +oc.

@ If zzp (x') is finite, then

zp (V) = ?Hﬁ (b—Ax') v = (b— Ax') " Vo
€ln

for some k;.
@ Hence, we deduce that

X+ zp () =X+ (b Ax’)—r Ve,

@ Moreover, if z;p (x') = —o0, then the subproblem is infeasible, in
which case, there exists i, € [/]

(b—Ax) v <o0.

42/43

Bender’s decomposition algorithm

@ At iteration 7, solve the master problem with N, C [r] and L, C [¢].

Q If Z; = —oco, then the mixed-integer program is infeasible.

© Let (x;,7,) be an optimal solution to the master problem. Solve
the subproblem with x'.

Q If zzp(x") = +o0 then the mixed-integer program is unbounded.

@ If zzp(x") = —oo then there exists i, € [¢] such that
(b — Ax) T < 0.
Add constraint (b — Ax) " > 0 and update L, = L, U {h,}.
Q If zzp(x") is finite. Let y' be an optimal solution and
ki € argminc, {(b — Ax')T > vk
If c"x, +¢"y; > 7', then we conclude that (x',y") is an optimal
solution.
If c"x, +¢q"y; < 7', then we add constraint n < ¢'x + (b — Ax) "k
and update N, = N, U {k}.

43/43

	Lagrangian Relaxation
	Dantzig-Wolfe decomposition
	Bender's Decomposition

