Large-scale Integer Linear Programming

https://bicmr.pku.edu.cn/~wenzw/bigdata2024.html

Outline

(1) Lagrangian Relaxation
(2) Dantzig-Wolfe decomposition
(3) Bender's Decomposition

Lagrangian Relaxation

- Consider the integer programming problem

$$
\begin{array}{cl}
\max & c^{\top} x \\
\text { s.t. } & A x \leq b, D x \leq d \tag{1}\\
& x \in \mathbb{Z}^{n}
\end{array}
$$

and assume that A, D, b, c, d have integer entries.

- Let $Z_{I P}$ the optimal cost and let

$$
\begin{equation*}
X=\left\{x \in \mathbb{Z}^{n} \mid D x \leq d\right\} \tag{2}
\end{equation*}
$$

We assume that optimizing over the set X can be done efficiently.

- Let $\lambda \geq 0$ be a vector of dual variables. We introduce the problem

$$
\begin{array}{cl}
\max & c^{\top} x+\lambda^{\top}(b-A x), \\
\text { s.t. } & x \in X, \tag{3}
\end{array}
$$

and denote its optimal cost by $Z(\lambda)$.

Lagrangian Relaxation

Lemma

If the problem (1) has an optimal solution and if $\lambda \geq 0$, then $Z(\lambda) \geq Z_{I P}$

- Proof: Let x^{*} denote an optimal solution to (1).

Then, $b-A x^{*} \geq 0$ and, therefore

$$
c^{\top} x^{*}+\lambda^{\top}\left(b-A x^{*}\right) \geq c^{\top} x^{*}=Z_{I P}
$$

Since $x^{*} \in X$,

$$
Z(\lambda) \geq c^{\top} x^{*}+\lambda^{\top}\left(b-A x^{*}\right) \geq c^{\top} x^{*}=Z_{I P}
$$

- Problem (3) provides an upper bound to (1). It is natural to consider the tightest such bound.

Lagrangian Dual

- We introduce the problem

$$
\begin{equation*}
\min Z(\lambda), \quad \text { s.t. } \lambda \geq 0 \tag{4}
\end{equation*}
$$

- We will refer to problem (4) as the Lagrangian dual. Let

$$
Z_{D}=\min _{\lambda \geq 0} Z(\lambda)
$$

- Suppose $X=\left\{x^{1}, \cdots, x^{m}\right\}$. Then $Z(\lambda)$ can be written as

$$
Z(\lambda)=\max _{i=1, \cdots, m}\left(c^{\top} x^{i}+\lambda^{\top}\left(b-A x^{i}\right)\right)
$$

- The function $Z(\lambda)$ is convex and piecewise linear.
- Computing Z_{D} can be recast as a linear programming problem with a very large number of constraints.

Weak Duality

Theorem (Weak Duality)

We have $Z_{D}=\min _{\lambda \geq 0} Z(\lambda) \geq Z_{I P}$.

- The previous theorem represents the weak duality theory of integer programming.
- Unlike linear programming, integer programming does not have a strong duality theory. It is possible to have $Z_{D}>Z_{I P}$.
- The procedure of obtaining bounds for integer programming problems by calculating Z_{D} is called Lagrangian relaxation.

Strength of the Lagrangian Dual

Theorem

The optimal value Z_{D} of the Lagrangian dual is equal to the optimal cost of the following linear programming problem:

$$
\begin{array}{cl}
\max & c^{\top} x \\
\text { s.t. } & A x \leq b, x \in \operatorname{conv}(X) \tag{5}
\end{array}
$$

where $\operatorname{conv}(X)$ be the convex hull of the set $X=\left\{x \in \mathbb{Z}^{n} \mid D x \leq d\right\}$.

Proof:

$$
Z(\lambda)=\max _{x \in X}\left(c^{\top} x+\lambda^{\top}(b-A x)\right)
$$

- The optimal cost remains same if we allow convex combinations of the elements of X.

$$
Z(\lambda)=\max _{x \in \operatorname{conv}(X)}\left(c^{\top} x+\lambda^{\top}(b-A x)\right)
$$

Proof

- By definition, we have

$$
Z_{D}=\min _{\lambda \geq 0} Z(\lambda)=\min _{\lambda \geq 0} \max _{x \in \operatorname{conv}(X)}\left(c^{\top} x+\lambda^{\top}(b-A x)\right)
$$

- Let $\left\{v^{k}, k \in K\right\}$ be the extreme points, and $\left\{r^{j}, j \in J\right\}$ be the complete set of extreme rays of $\operatorname{conv}(X)$.
- Then, for any fixed λ, we have

$$
Z(\lambda)= \begin{cases}+\infty, & \exists j \in J,\left(c^{\top}-\lambda^{\top} A\right) r^{j}>0 \tag{6}\\ \max _{k \in K}\left(c^{\top} v^{k}+\lambda^{\top}\left(b-A v^{k}\right)\right), & \text { otherwise }\end{cases}
$$

Proof

- According to (6), the Lagrangian dual is equivalent to and has the same optimal value as the problem

$$
\begin{array}{ll}
\min _{\lambda \geq 0} & \max _{k \in K}\left(c^{\top} v^{k}+\lambda^{\top}\left(b-A v^{k}\right)\right), \tag{7}\\
\text { s.t. } & \left(c^{\top}-\lambda^{\top} A\right) r^{j} \leq 0, \quad j \in J .
\end{array}
$$

- Problem (7) is equivalent to the linear programming problem

$$
\begin{array}{ll}
\min _{\lambda \geq 0} & y, \\
\text { s.t. } & y+\lambda^{\top}\left(A v^{k}-b\right) \geq c^{\top} v^{k}, \quad k \in K, \tag{8}\\
& \lambda^{\top} A r^{j} \geq c^{\top} r^{j}, \quad j \in J .
\end{array}
$$

Proof

- Taking the linear programming dual of problem (8), and using strong duality, Z_{D} is equal to the optimal cost of the problem

$$
\begin{array}{ll}
\max & c^{\top}\left(\sum_{k \in K} \alpha_{k} v^{k}+\sum_{j \in J} \beta_{j} r^{j}\right) \\
\text { s.t. } & A\left(\sum_{k \in K} \alpha_{k} v^{k}+\sum_{j \in J} \beta_{j} r^{j}\right) \leq b \\
& \sum_{k \in K} \alpha_{k}=1, \quad \alpha_{k}, \beta_{j} \geq 0
\end{array}
$$

- The result follows since

$$
\operatorname{conv}(X)=\left\{\sum_{k \in K} \alpha_{k} v^{k}+\sum_{j \in J} \beta_{j} r^{j} \mid \sum_{k \in K} \alpha_{k}=1, \alpha_{k}, \beta_{j} \geq 0\right\}
$$

Linear Relaxation

- We have characterized the optimal value of the Lagrangian dual as solution to a linear programming problem.
- It is natural to compare the optimal cost $Z_{I P}$ and the optimal cost $Z_{L P}$ of the linear relaxation

$$
\begin{array}{cl}
\max & c^{\top} x \\
\text { s.t. } & A x \leq b, D x \leq d
\end{array}
$$

- In general, the following ordering holds among $Z_{L P}, Z_{I P}$, and Z_{D} :

$$
Z_{L P} \geq Z_{D} \geq Z_{I P}
$$

Linear Relaxation

- We have $Z_{I P}=Z_{D}$ for all cost vector c, if and only if

$$
\operatorname{conv}(X \cap\{x \mid A x \leq b\})=\operatorname{conv}(X) \cap\{x \mid A x \leq b\}
$$

- We have $Z_{L P}=Z_{D}$ for all cost vector c, if

$$
\operatorname{conv}(X)=\{x \mid D x \leq d\}
$$

Solution of the Lagrangian Dual

- We outline a method for finding the optimal Lagrangian multipliers λ^{*}, that solve the Lagrangian dual problem

$$
\min Z(\lambda), \quad \text { s.t. } \lambda \geq 0
$$

- To keep the presentation simple, we assume that X is finite and $X=\left\{x^{1}, \cdots, x^{m}\right\}$.
- Given a particular value of λ, we assume that we can calculate $Z(\lambda)$, which we have defined as follows:

$$
Z(\lambda)=\max _{i=1, \cdots, m}\left(c^{\top} x^{i}+\lambda^{\top}\left(b-A x^{i}\right)\right)
$$

Subgradient

- Let $\mathrm{f}_{i}=b-A x^{i}$ and $h_{i}=c^{\top} x^{i}$. Then,

$$
Z(\lambda)=\max _{i=1, \cdots, m}\left(h_{i}+\mathrm{f}_{i}^{\top} \lambda\right)
$$

- Let $E(\lambda)=\left\{i \mid Z(\lambda)=h_{i}+\mathrm{f}_{i}^{\top} \lambda\right\}$.
- For every $i \in E\left(\lambda^{*}\right), \mathrm{f}_{i}$ is a subgradient of the function $Z(\cdot)$ at λ^{*}.
- $\partial Z\left(\lambda^{*}\right)=\operatorname{conv}\left(\left\{\mathrm{f}_{i}, i \in E\left(\lambda^{*}\right)\right\}\right)$, i.e., a vector s is a subgradient of the function $Z(\cdot)$ at λ^{*} if and only if s is a convex combination of the vectors $\mathrm{f}_{i}, i \in E\left(\lambda^{*}\right)$.

Subgradient Optimization Algorithm

The following algorithm generalizes the steepest ascent algorithm to maximize a nondifferentiable concave function $Z(\cdot)$.
(1) Choose a starting point λ^{1}; let $t=1$.
(2) Given λ^{t}, choose a subgradient s^{t} of the function $Z(\cdot)$ at λ^{t}.
(3) If $s^{t}=0$, then λ^{t} is optimal and the algorithm terminates. Else, continue.
(4) Let $\lambda_{j}^{t+1}=\max \left\{\lambda_{j}^{t}-\theta_{t} s_{j}^{t}, 0\right\}$, where θ_{t} is a positive stepwise parameter. Increment t and go to Step 2.

- Typically, only the extreme subgradients f_{i} are used.
- The stopping criterion $0 \in \partial Z\left(\lambda^{t}\right)$ is rarely met. Typically, the algorithm is stopped after a fixed number of iterations.

Stepsize

- It can be proved that $Z\left(\lambda^{t}\right)$ converges for any stepsize sequence θ_{t} such that

$$
\sum_{t=1}^{\infty} \theta_{t}=\infty, \quad \text { and } \quad \lim _{t \rightarrow \infty} \theta_{t}=0
$$

- An example of the stepsize sequence is $\theta_{t}=1 / t$, which leads to slow convergence in practical. Another example is

$$
\theta_{t}=\theta_{0} \alpha^{t}, \quad t=1,2, \cdots,
$$

where α is a scalar satisfying $0<\alpha<1$.

- A more sophisticated and popular rule is to let

$$
\theta_{t}=\frac{Z\left(\lambda^{t}\right)-\hat{Z}_{D}}{\left\|s^{t}\right\|^{2}} \alpha
$$

where α is a scalar satisfying $0<\alpha<1$ and \hat{Z}_{D} is an estimate of the optimal value Z_{D}.

Outline

Lagrangian Relaxation

(2) Dantzig-Wolfe decomposition

(3) Bender's Decomposition

Mixed Integer Program

- Let us consider a mixed integer program (MIP)

$$
\begin{align*}
z_{I}= & \max
\end{align*} c^{T} x, ~ 子 \begin{array}{cl}
\text { s.t. } & A x \leq b, D x \leq d \\
& x \in \mathbb{Z}_{+}^{d} \times R_{+}^{p} \tag{9}
\end{array}
$$

- Let X be defined as

$$
X=\left\{x \in \mathbb{Z}_{+}^{d} \times R_{+}^{p}: D x \leq d\right\}
$$

We assume that X is nonempty and D, d have rational entries.

Lagrangian dual

- Let m be the number of rows of A, and take $\lambda \in \mathbb{R}_{+}^{m}$. The Lagrangian relaxation with respect to λ as follows.

$$
\begin{align*}
& z_{L R}(\lambda)= \max \\
& c^{\top} x+\lambda^{\top}(b-A x) \tag{10}\\
& \text { s.t. } D x \leq d \\
& x \in \mathbb{Z}_{+}^{q} \times R_{+}^{p}
\end{align*}
$$

- Moreover, recall that the Lagrangian dual is defined as

$$
\begin{equation*}
z_{L D}=\min \left\{Z_{L R}(\lambda): \lambda \geq 0\right\} \tag{11}
\end{equation*}
$$

- (10) and (11) are related according to the following characterization of $z_{L D}$.

$$
z_{L D}=\max \left\{c^{\top} x: A x \leq b, x \in \operatorname{conv}(X)\right\}
$$

Decomposition of $\operatorname{conv}(X)$

- $\operatorname{conv}(X)$ can be expressed as

$$
\operatorname{conv}(X)=\operatorname{conv}\left\{v^{1}, \ldots, v^{n}\right\}+\operatorname{cone}\left\{r^{1}, \ldots, r^{\ell}\right\}
$$

where v^{1}, \ldots, v^{n} are the extreme points of $\operatorname{conv}(X)$ and r^{1}, \ldots, r^{ℓ} are the extreme rays of $\operatorname{conv}(X)$.

- Any point x in $\operatorname{conv}(X)$ can be written as

$$
x=\sum_{k \in[n]} \alpha_{k} v^{k}+\sum_{h \in[\ell]} \beta_{h} r^{h}
$$

for some $\alpha \in \mathbb{R}_{+}^{k}$ and $\beta \in \mathbb{R}_{+}^{\ell}$ such that $\sum_{k \in[n]} \alpha_{k}=1$.

Dantzig-Wolfe Relaxation

Based on the decomposition of $\operatorname{conv}(X)$, it follows that

$$
\begin{align*}
z_{\mathrm{LD}}= & \max \\
& \sum_{k \in[n]}\left(c^{\top} v^{k}\right) \alpha_{k}+\sum_{h \in[\ell]}\left(c^{\top} r^{h}\right) \beta_{k} \tag{12}\\
\text { s.t. } & \sum_{k \in[n]}\left(A v^{k}\right) \alpha_{k}+\sum_{h \in[\ell]}\left(A r^{h}\right) \beta_{k} \leq b \\
& \sum_{k \in[n]} \alpha_{k}=1, \alpha \in \mathbb{R}_{+}^{k}, \beta \in \mathbb{R}_{+}^{\ell}
\end{align*}
$$

We refer to (12) as the Dantzig-Wolfe relaxation.

Dantzig-Wolfe Reformulation

- Moreover, we have

$$
z_{I}=\max \left\{c^{\top} x: A x \leq b, x \in \operatorname{conv}(X), x_{j} \in \mathbb{Z}, \forall j \in[q]\right\}
$$

- Therefore, we deduce

$$
\begin{align*}
z_{I}=\max & \sum_{k \in[n]}\left(c^{\top} v^{k}\right) \alpha_{k}+\sum_{h \in[\ell]}\left(c^{\top} r^{h}\right) \beta_{k}, \\
\text { s.t. } & \sum_{k \in[n]}\left(A v^{k}\right) \alpha_{k}+\sum_{h \in[\ell]}\left(A r^{h}\right) \beta_{k} \leq b, \\
& \sum_{k \in[n]} \alpha_{k}=1, \tag{13}\\
& \alpha \in \mathbb{R}_{+}^{k}, \beta \in \mathbb{R}_{+}^{\ell}, \\
& \sum_{k \in[n]} \alpha_{k} v_{j}^{k}+\sum_{h \in[\ell]} \beta_{h} r_{j}^{h} \in \mathbb{Z}, \quad j \in[q] .
\end{align*}
$$

- Here, (13) is referred to as the Dantzig-Wolfe reformulation.

Pure Binary Programs

- Let us consider a pure binary integer program as follows.

$$
\begin{aligned}
z_{I}=\max & c^{\top} x \\
\text { s.t. } & A x \leq b, D x \leq d \\
& x \in\{0,1\}^{p}
\end{aligned}
$$

- We define X as

$$
X=\left\{x \in\{0,1\}^{p}: D x \leq d\right\}
$$

- Since X is bounded and finite, $X=\left\{v^{1}, \ldots, v^{n}\right\}$
- Any point x in X can be expressed as

$$
x=\sum_{k \in[n]} \alpha_{k} v^{k}, \quad \sum_{k \in[n]} \alpha_{k}=1, \quad \alpha \in\{0,1\}^{n} .
$$

Pure Binary Programs

- Then we obtain the Dantzig-Wolfe reformulation.

$$
\begin{aligned}
z_{I}=\max & \sum_{k \in[n]}\left(c^{\top} v^{k}\right) \alpha_{k} \\
\text { s.t. } & \sum_{k \in[n]}\left(A v^{k}\right) \alpha_{k} \leq b \\
& \sum_{k \in[n]} \alpha_{k}=1, \quad \alpha \in\{0,1\}^{n}
\end{aligned}
$$

- The Dantzig-Wolfe relaxation

$$
\begin{aligned}
\max & \sum_{k \in[n]}\left(c^{\top} v^{k}\right) \alpha_{k} \\
\text { s.t. } & \sum_{k \in[n]}\left(A v^{k}\right) \alpha_{k} \leq b \\
& \sum_{k \in[n]} \alpha_{k}=1, \quad \alpha \geq 0
\end{aligned}
$$

Block Diagonal Structure

- We consider the following optimization model with block diagonal structure.

$$
\begin{array}{llrr}
\max & c^{1 \top} x^{1}+ & c^{2 \top} x^{2}+\cdots & +c^{p \top} x^{p}, \\
\text { s.t. } & D^{1} x^{1} & & \leq d^{1}, \\
& D^{2} x^{2} & \leq d^{2}, \\
& & \ddots & \\
& & D^{p} x^{p} \leq d^{p}, \\
& A^{2} x^{2}+\cdots & +A^{p} x^{p} \leq b, \\
& x^{j} x^{1}+ &
\end{array}
$$

- For $j \in[p]$, let X_{j} be defined as $X_{j}=\left\{x^{j} \in\{0,1\}^{q_{j}}: D^{j} x^{j} \leq d^{j}\right\}$.
- X_{j} is bounded and finite. Any point x^{j} in X_{j} can be written as

$$
x^{j}=\sum_{v \in X_{j}} \alpha_{v}^{j} v, \quad \sum_{v \in X_{j}} \alpha_{v}^{j}=1, \quad \alpha^{j} \in\{0,1\}^{\left|X_{j}\right|}
$$

Block Diagonal Structure

- The Dantzig-Wolfe reformulation is given by
$\max \sum_{v \in X_{1}}\left(c^{1 \top} v\right) \alpha_{v}^{1}+\sum_{v \in X_{2}}\left(c^{2 \top} v\right) \alpha_{v}^{2}+\cdots+\sum_{v \in X_{p}}\left(c^{p \top} v\right) \alpha_{v}^{p}$,
s.t. $\quad \sum_{v \in X_{1}}\left(A^{1} v\right) \alpha_{v}^{1}+\sum_{v \in X_{2}}\left(A^{2} v\right) \alpha_{v}^{2}+\cdots+\sum_{v \in X_{p}}\left(A^{p} v\right) \alpha_{v}^{p} \leq b$,

$$
\sum_{v \in X_{j}} \alpha_{v}^{j}=1, \quad \alpha^{j} \in\{0,1\}^{\left|X_{j}\right|}, \quad j \in[p] .
$$

- The Dantzig-Wolfe relaxation is given by
$\max \sum_{v \in X_{1}}\left(c^{1 \top} v\right) \alpha_{v}^{1}+\sum_{v \in X_{2}}\left(c^{2 \top} v\right) \alpha_{v}^{2}+\cdots+\sum_{v \in X_{p}}\left(c^{p \top} v\right) \alpha_{v}^{p}$,
s.t. $\quad \sum_{v \in X_{1}}\left(A^{1} v\right) \alpha_{v}^{1}+\sum_{v \in X_{2}}\left(A^{2} v\right) \alpha_{v}^{2}+\cdots+\sum_{v \in X_{p}}\left(A^{p} v\right) \alpha_{v}^{p} \leq b$,

$$
\sum_{v \in X_{j}} \alpha_{v}^{j}=1, \quad \alpha^{j} \geq 0, \quad j \in[p] .
$$

Block Diagonal Structure

- Let us consider the special case where

$$
\begin{aligned}
c^{1} & =\cdots=c^{p}=c \\
A^{1} & =\cdots=A^{p}=A \\
X^{1} & =\cdots=X^{p}=X .
\end{aligned}
$$

- Then in the Dantzig-Wolfe relaxation, we may set

$$
\alpha=\alpha^{1}+\alpha^{2}+\cdots+\alpha^{p} .
$$

- As a result, the Dantzig-Wolfe relaxation becomes

$$
\begin{array}{ll}
\max & \sum_{v \in X}\left(c^{\top} v\right) \alpha_{v} \\
\text { s.t. } & \sum_{v \in X}(A v) \alpha_{v} \leq b \\
& \sum_{v \in X} \alpha_{v}=p, \quad \alpha \geq 0
\end{array}
$$

Column Generation: Master Problem

- The Dantzig-Wolfe relaxation has variables $\alpha_{1}, \ldots, \alpha_{n}$ for the extreme points of $\operatorname{conv}(X)$ and variables $\beta_{1}, \ldots, \beta_{\ell}$ for the extreme rays of $\operatorname{conv}(X)$.
- n and ℓ are potentially very large. In this case, we may apply the column generation technique.
- The column generation procedure works as follows. We start with $N \subseteq[n]$ and $L \subseteq[\ell]$. Then we have the master problem

$$
\begin{array}{ll}
\max & \sum_{k \in N}\left(c^{\top} v^{k}\right) \alpha_{k}+\sum_{h \in L}\left(c^{\top} r^{h}\right) \beta_{k} \\
\text { s.t. } & \sum_{k \in N}\left(A v^{k}\right) \alpha_{k}+\sum_{h \in L}\left(A r^{h}\right) \beta_{k} \leq b \\
& \sum_{k \in N} \alpha_{k}=1, \quad \alpha \in \mathbb{R}_{+}^{k}, \beta \in \mathbb{R}_{+}^{\ell}
\end{array}
$$

Column Generation: Subproblem

- Once we obtain the dual solution λ of the master problem over N and L, we can identify if there exists constraint that is violated by solving the following subproblem.

$$
\begin{array}{cl}
\max & c^{\top} x+\lambda^{\top}(b-A x) \\
\text { s.t. } & x \in \operatorname{conv}(X)
\end{array}
$$

- If the value of the subproblem is strictly positive, then there exists $k \in[n] \backslash N$ or $h \in[\ell] \backslash L$ whose associated constraint is violated.
- If it is unbounded, then there must exist an extreme ray r^{h} for some $h \in[\ell] \backslash L$ such that

$$
\left(A r^{h}\right)^{\top} \lambda<c^{\top} r^{h}
$$

- If it it positively finite, then there exists an extreme point v^{k} for some $k \in[n] \backslash N$ such that

$$
\left(A v^{k}-b\right)^{\top} \lambda<c^{\top} v^{k}
$$

- Then we can add r^{h} or v^{k} to the master problem.

Outline

(4) Lagrangian Relaxation

(2) Dantzig-Wolfe decomposition

(3) Bender's Decomposition

Bender's Decomposition

- We use the Lagrangian relaxation framework to deal with complicating constraints.
- In this section, we learn the Bender's reformulation technique that can deal with complicating variables.
- Consider the following mixed-integer program.

$$
\begin{aligned}
z_{I}=\max & c^{\top} x+q^{\top} y \\
\text { s.t. } & A x+G y \leq b \\
& x \in \mathbb{Z}_{+}^{d}, y \in \mathbb{R}_{+}^{p}
\end{aligned}
$$

Bender's Decomposition

- Here, the integer variables x are complicating variables. If we fix the x part, then the optimization problem becomes

$$
\begin{array}{cl}
z_{L P}(x)=\max & q^{\top} y, \\
\text { s.t. } & G y \leq b-A x, \\
& y \in \mathbb{R}_{+}^{p} .
\end{array}
$$

- Taking the dual of it, we deduce

$$
\begin{array}{ll}
\min & u^{\top}(b-A x), \\
\text { s.t. } & G^{\top} u \geq q, \\
& u \geq 0 .
\end{array}
$$

- Here, the feasible set of the dual does not depend on x.

Bender's Decomposition

- Let Q denote the feasible set of the dual:

$$
Q=\left\{u: G^{\top} u \geq q, u \geq 0\right\} .
$$

- Suppose that Q can be expressed as

$$
Q=\operatorname{conv}\left\{v^{1}, \ldots, v^{n}\right\}+\operatorname{cone}\left\{r^{1}, \ldots, r^{\ell}\right\} .
$$

for some vectors v^{1}, \ldots, v^{n} and r^{1}, \ldots, r^{ℓ}.

- We will prove the following theorem.

Theorem (Bender's Decomposition)

The mixed integer program can be reformulated as

$$
\begin{aligned}
z_{I}=\max & \eta \\
\text { s.t. } & \eta \leq c^{\top} x+(b-A x)^{\top} v^{k}, \quad k \in[n], \\
& (b-A x)^{\top} r^{h} \geq 0, \quad h \in[\ell], \\
& x \in \mathbb{Z}_{+}^{d}, \quad \eta \in \mathbb{R} .
\end{aligned}
$$

Projection Theorem of Egon Balas

Theorem

Let $P=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{p}: A x+G y \leq b, y \geq 0\right\}$. Suppose that
$C=\left\{u: G^{\top} u \geq 0, u \geq 0\right\}$ can be expressed as $C=$ cone $\left\{r^{1}, \ldots, r^{\ell}\right\}$.
Then $\operatorname{proj}_{x}(P)$, the projection of P onto the x-space, is given by

$$
\operatorname{proj}_{x}(P)=\left\{x \in \mathbb{R}^{d}:(b-A x)^{\top} r^{h} \geq 0, h \in[\ell]\right\}
$$

- Let $\bar{x} \in \mathbb{R}^{d}$. Note that $\bar{x} \notin \operatorname{proj}_{x}(P)$ holds if and only if there is no $y \in \mathbb{R}^{p}$ that satisfies $G y \leq b-A \bar{x}$ and $y \geq 0$.
- By Farkas' Lemma, the system $G y \leq b-A \bar{x}, y \geq 0$ is infeasible if and only if there exists $u \in C$ such that $u^{\top}(b-A \bar{x})<0$.
- Since $C=$ cone $\left\{r^{1}, \ldots, r^{\ell}\right\}$, such a vector u exists if and only if $(b-A \bar{x})^{\top} r^{h} \leq 0$ for some $h \in[\ell]$, in which case, $\bar{x} \notin\left\{x \in \mathbb{R}^{d}:(b-A x)^{\top} r^{h} \geq 0, h \in[\ell]\right\}$.

Proof of Bender's Decomposition

- Let $P=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{p}: A x+G y \leq b, y \geq 0\right\}$. Note that

$$
\begin{array}{cl}
z_{I}=\max & c^{\top} x+z_{L P}(x), \\
\text { s.t. } & x \in \mathbb{Z}_{+}^{d}
\end{array}
$$

- Here, $z_{L P}(x)>-\infty$ if and only if there exists some $y \geq 0$ such that $G y \leq b-A x$, which is equivalent to $x \in \operatorname{proj}_{x}(P)$.
- Therefore, it follows that

$$
\begin{aligned}
z_{I}=\max & c^{\top} x+z_{L P}(x) \\
\text { s.t. } & x \in \operatorname{proj}_{x}(P) \cap \mathbb{Z}_{+}^{d}
\end{aligned}
$$

Proof of Bender's Decomposition

- Recall that $Q=\left\{u: G^{\top} u \geq q, u \geq 0\right\}$ and

$$
Q=\operatorname{conv}\left\{v^{1}, \ldots, v^{n}\right\}+\operatorname{cone}\left\{r^{1}, \ldots, r^{\ell}\right\} .
$$

- Then $C=\left\{u: G^{\top} u \geq 0, u \geq 0\right\}$ is the recession cone of Q, so we have $C=$ cone $\left\{r^{1}, \ldots, r^{\ell}\right\}$.
- Then it follows from projection theorem of Egon Balas that $\operatorname{proj}_{x}(P)=\left\{x \in \mathbb{R}^{d}:(b-A x)^{\top} r^{h} \geq 0, h \in[\ell]\right\}$.
- Therefore, we deduce that

$$
\begin{aligned}
z_{I}=\max & c^{\top} x+z_{L P}(x) \\
\text { s.t. } & (b-A x)^{\top} r^{h} \geq 0, \quad h \in[\ell] \\
& x \in \mathbb{Z}_{+}^{d}
\end{aligned}
$$

Proof of Bender's Decomposition

- Moreover, note that for any $x \in \operatorname{proj}_{x}(P), z_{L P}(x)>-\infty$, so strong duality implies that

$$
\begin{aligned}
z_{L P}(x)=\min & u^{\top}(b-A x) \\
\text { s.t. } & G^{\top} u \geq q \\
& u \geq 0
\end{aligned}
$$

- If $z_{L P}(x)$ is finite, then it means that Q is non-empty and

$$
z_{L P}(x)=\min _{k \in[n]}\left\{(b-A x)^{\top} v^{k}\right\} .
$$

- If $z_{L P}(x)=+\infty$, then Q is empty, so the above equation also holds. Hence,

$$
\begin{aligned}
z_{I}=\max & c^{\top} x+\min _{k \in[n]}\left\{(b-A x)^{\top} v^{k}\right\}, \\
\text { s.t. } & (b-A x)^{\top} r^{h} \geq 0, \quad h \in[\ell], \\
& x \in \mathbb{Z}_{+}^{d} .
\end{aligned}
$$

Proof of Bender's Decomposition

- We may move the term $\min _{k \in[n]}\left\{(b-A x)^{\top} v^{k}\right\}$ in the objective to constraints, after which we deduce that

$$
\begin{array}{ll}
z_{I}=\max & \eta, \\
\text { s.t. } & \eta \leq c^{\top} x+\min _{k \in[n]}\left\{(b-A x)^{\top} v^{k}\right\}, \\
& (b-A x)^{\top} r^{h} \geq 0, \quad h \in[\ell], \\
& x \in \mathbb{Z}_{+}^{d}, \quad \eta \in \mathbb{R} .
\end{array}
$$

which is equivalent to Bender's reformulation as required.

Bender's Decomposition Algorithm

- The Bender's reformulation has an enormous number of constraints.
- A natural approach is to work with a small subset of the constraints and add new ones as cutting planes.
- The Bender's decomposition algorithm is the row generation framework for Bender's reformulation.

Master Problem

- At iteration t, we have $N_{t} \subseteq[n]$ and $L_{t} \subseteq[\ell]$. Then we solve

$$
\begin{aligned}
z_{I}^{t}=\max & \eta, \\
\text { s.t. } & \eta \leq c^{\top} x+(b-A x)^{\top} v^{k}, \quad k \in N_{t}, \\
& (b-A x)^{\top} r^{h} \geq 0, \quad h \in L_{t}, \\
& x \in \mathbb{Z}_{+}^{d}, \eta \in \mathbb{R} .
\end{aligned}
$$

This is the master problem.

- Assume that we get a solution $\left(x^{t}, \eta^{t}\right)$ after solving the master problem at iteration t. Then we attempts to find a violated inequality among

$$
\begin{aligned}
& \eta \leq c^{\top} x+(b-A x)^{\top} v^{k}, \quad k \in[n] \backslash N_{t} \\
& (b-A x)^{\top} r^{h} \geq 0, \quad h \in[\ell] \backslash L_{t}
\end{aligned}
$$

Subproblem

- The question is
- does there exists $k_{t} \in[n]$ such that

$$
\eta^{t}>c^{\top} x^{t}+\left(b-A x^{t}\right)^{\top} v^{k_{t}} ?
$$

- does there exists $h_{t} \in[\ell]$ such that

$$
\left(b-A x^{t}\right)^{\top} r^{h_{t}}<0 ?
$$

- To answer this, we solve

$$
\begin{aligned}
z_{L P}\left(x^{t}\right)=\max & q^{\top} y \\
\text { s.t. } & G y \leq b-A x^{t}, \\
& y \in \mathbb{R}_{+}^{p} .
\end{aligned}
$$

- This is the subproblem for the Bender's decomposition algorithm.

Solving the Subproblem

- If $z_{L P}\left(x^{t}\right)=+\infty$, then for any $M>0$, there exists $y \geq 0$ such that $A x^{t}+G y \leq b$ and $c^{\top} x^{t}+q^{\top} y>M$, in which case $z_{I}=+\infty$.
- If $z_{L P}\left(x^{t}\right)$ is finite, then

$$
z_{L P}\left(x^{t}\right)=\min _{k \in[n]}\left(b-A x^{t}\right)^{\top} v^{k}=\left(b-A x^{t}\right)^{\top} v^{k_{t}}
$$

for some k_{t}.

- Hence, we deduce that

$$
c^{\top} x^{t}+z_{L P}\left(x^{t}\right)=c^{\top} x^{t}+\left(b-A x^{t}\right)^{\top} v^{k_{t}} .
$$

- Moreover, if $z_{L P}\left(x^{t}\right)=-\infty$, then the subproblem is infeasible, in which case, there exists $h_{t} \in[\ell]$

$$
\left(b-A x^{t}\right)^{\top} r^{h_{t}}<0 .
$$

Bender's decomposition algorithm

(0) At iteration t, solve the master problem with $N_{t} \subseteq[n]$ and $L_{t} \subseteq[\ell]$.
(2) If $z_{I}^{t}=-\infty$, then the mixed-integer program is infeasible.
(3) Let $\left(x_{t}, \eta_{t}\right)$ be an optimal solution to the master problem. Solve the subproblem with x^{t}.
(9) If $z_{L P}\left(x^{t}\right)=+\infty$ then the mixed-integer program is unbounded.
(0) If $z_{L P}\left(x^{t}\right)=-\infty$ then there exists $h_{t} \in[\ell]$ such that $(b-A x)^{\top} r^{h_{t}}<0$. Add constraint $(b-A x)^{\top} r^{h_{t}} \geq 0$ and update $L_{t+1}=L_{t} \cup\left\{h_{t}\right\}$.
(0) If $z_{L P}\left(x^{t}\right)$ is finite. Let y^{t} be an optimal solution and $k_{t} \in \operatorname{argmin}_{k \in[n]}\left\{\left(b-A x^{t}\right)^{\top}>v^{k}\right\}$.
If $c^{\top} x_{t}+q^{\top} y_{t} \geq \eta^{t}$, then we conclude that $\left(x^{t}, y^{t}\right)$ is an optimal solution.
If $c^{\top} x_{t}+q^{\top} y_{t}<\eta^{t}$, then we add constraint $\eta \leq c^{\top} x+(b-A x)^{\top} v^{k_{t}}$ and update $N_{t+1}=N_{t} \cup\left\{k_{t}\right\}$.

