Homework for “Algorithms for Big-Data Analysis”

Zaiwen Wen
Beijing International Center for Mathematical Research
Peking University

March 5, 2024

1 Submission Requirement

1.

Prepare a report including

¢ detailed answers to each question

* numerical results and their iterpretation
The programming language can be either matlab, Python or c/c++.

Pack all of your codes named as projlmk-name-ID.zip” send it to TA: pkuopt@ 163.com
FLRRXEFRA—ATEORELE LN, FLEXA : projlmk-FF-4 L, IHEUVEE. IHLT TR
HIALEH, RFAERILF .

HEARERRBREERET, FRINEIFRERTRITRAIAFE, TRBBAXF AENFLTH N
X

. 3 X word 8 Fl % F £ 42 word R AR 3 2 4% e spdf A -

. If you get significant help from others on one routine, write down the source of references at the beginning of

this routine.

2 Algorithms for /; minimization

Consider the problem

2.1)

min - pffzi + [|Az = b,

where A € R™*™ and b € R™ are given. Test data are as follows:

= 1024;
= 512;
randn (m, n) ;

= sprandn(n,1,0.1);

o c » 3 B
Il

= AxUu;

e—2-:

mi1 = _Tle :
Seehttp://bicmr.pku.edu.cn/~wenzw/bigdata/Test_BP.m

http://bicmr.pku.edu.cn/~wenzw/bigdata/Test_BP.m

1. Solve (2.1) using CVX by calling different solvers mosek or gurobi.
CVX, Mosek and Gurobi are available free at:
CVX:http://cvxr.com/cvx/

Mosek: http://www.mosek.com/
Gurobi: http://www.gurobi.com/

2. Write down and implement one of the following algorithms in Matlab/Python:

(a) Classical Augmented Lagrangian method (or Bregman method), where each augmented Lagrangian func-
tion is minimized by using the proximal gradient method
Reference: Wotao Yin, Stanley Osher, Donald Goldfarb, Jerome Darbon, Bregman Iterative Algorithms

for l1-Minimization with Applications to Compressed Sensing

(b) Classical Augmented Lagrangian method (or Bregman method), where each augmented Lagrangian func-
tion is minimized by using the accelerated proximal gradient method (FISTA or Nesterov’s method)
Reference on FISTA: Amir Beck and Marc Teboulle, A fast iterative shrinkage thresholding algorithm for

linear inverse problems
3. Write down and implement one of the following algorithms in Matlab/Python:

(a) Alternating direction method of multipliers (ADMM) for the primal or dual problem
Reference: Junfeng Yang, Yin Zhang, Alternating direction algorithms for l1-problems in Compressed
Sensing, SIAM Journal on Scientific Computing, https://epubs.siam.org/doi/abs/10.1137/090777761

(b) Alternating direction method of multipliers with linearization for the primal or dual problem
Reference: Junfeng Yang, Yin Zhang, Alternating direction algorithms for l1-problems in Compressed
Sensing, SIAM Journal on Scientific Computing, https://epubs.siam.org/doi/abs/10.1137/090777761

4. (Optional) Develop algorithms for solving the following problems:

min el + [Az — b,

min - pllzy + [|Az = b1,
min pljzfyz + [|Az — b,

P
where [[z|1 /2 = 37, i 1/2.
5. Requirement:
(a) The interface of each method should be written in the following format
[x, out] = method_name(x0, A, b, mu, opts);

Here, x0 is a given input initial solution, A and b are given data, opts is a struct which stores the options

of the algorithm, out is a struct which saves all other output information.

(b) Compare the efficiency (cpu time) and accuracy (checking optimality condition) in the format as

http://bicmr.pku.edu.cn/~wenzw/bigdata/Test_BP.m

http://cvxr.com/cvx/
 http://www.mosek.com/
http://www.gurobi.com/
http://bicmr.pku.edu.cn/~wenzw/bigdata/Test_BP.m

3 Algorithms For Low-rank Recovery

Consider the model

] e — .. 2
3.1 i Xl Y (X = Mig)?,
(1,)€Q

where the nuclear norm || X[, = . 0;(X).

1. Write down and implement a proximal gradient method for solving (3.1).
2. Write down and implement an alternating direction method of multipliers (ADMM) for solving (3.1]).

3. The data M and (2 are specified in the following script:
http://bicmr.pku.edu.cn/~wenzw/bigdata/Test_MC.m
Test your method for u = 10~1,1072,1073.

4. (Optional) Design a method for solving the following problem:

.2 i * 17 771
(3.2) clin Cpl X+ D0 X — My
(i,7)€Q

http://bicmr.pku.edu.cn/~wenzw/bigdata/Test_MC.m

	Submission Requirement
	Algorithms for 1 minimization
	Algorithms For Low-rank Recovery

