Homework for "Algorithms for Big-Data Analysis"

Beijing International Center for Mathematical Research
Peking University

February 17, 2024

Note: Please write up your solutions independently. If you get significant help from others, write down the source of references. A formal mathematical proof for all your claims is required.

1. This exercise shows that an efficient procedure for updating a tableau can be derived from the SMW formula in numerical linear algebra.
(a) Let C be an $m \times m$ invertible matrix and let $u, v \in \mathbb{R}^{m}$ be two vectors. Show that

$$
\left(C+u v^{\top}\right)^{-1}=C^{-1}-\frac{C^{-1} u v^{\top} C^{-1}}{1+v^{\top} C^{-1} u}
$$

(b) Assuming that C^{-1} is available, explain how to obtain $\left(C+u v^{\top}\right)^{-1}$ using only $O\left(m^{2}\right)$ arithmetic operations.
(c) Let B and \bar{B} be basis matrices before and after an iteration of the simplex method. Let $A_{B(l)}$ and $A_{\bar{B}(l)}$ be the exiting and entering column, respectively. Show that

$$
\bar{B}-B=\left(A_{\bar{B}(l)}-A_{B(l)}\right) e_{l}^{\top},
$$

where e_{l} is the l th unit vector.
(d) Note that $e_{i}^{\top} B^{-1}$ is the i th row of B^{-1} and $e_{l}^{\top} B^{-1}$ is the pivot row. Show that

$$
e_{i}^{\top} \bar{B}^{-1}=e_{i}^{\top} B^{-1}-g_{i} e_{l}^{\top} B^{-1}, \quad i=1, \ldots, m
$$

for suitable scalars g_{i}. Provide a formula for g_{i}. Interpret the above equation in terms of the mechanics for pivoting in the revised simplex method.
2. Let x be an element of the standard form polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x=b, x \geq 0\right\}$. Prove that a vector $d \in \mathbb{R}^{n}$ is a feasible direction at x if and only if $A d=0$ and $d_{i} \geq 0$ for every i such that $x_{i}=0$.

