Homework for "Algorithms for Big-Data Analysis"

Beijing International Center for Mathematical Research Peking University

February 17, 2024

Note: Please write up your solutions independently. If you get significant help from others, write down the source of references. A formal mathematical proof for all your claims is required.

- 1. This exercise shows that an efficient procedure for updating a tableau can be derived from the SMW formula in numerical linear algebra.
 - (a) Let C be an $m \times m$ invertible matrix and let $u, v \in \mathbb{R}^m$ be two vectors. Show that

$$(C + uv^{\top})^{-1} = C^{-1} - \frac{C^{-1}uv^{\top}C^{-1}}{1 + v^{\top}C^{-1}u}.$$

- (b) Assuming that C^{-1} is available, explain how to obtain $(C + uv^{\top})^{-1}$ using only $O(m^2)$ arithmetic operations.
- (c) Let B and \overline{B} be basis matrices before and after an iteration of the simplex method. Let $A_{B(l)}$ and $A_{\overline{B}(l)}$ be the exiting and entering column, respectively. Show that

$$\bar{B} - B = (A_{\bar{B}(l)} - A_{B(l)})e_l^{\top},$$

where e_l is the *l*th unit vector.

(d) Note that $e_i^{\top}B^{-1}$ is the *i*th row of B^{-1} and $e_i^{\top}B^{-1}$ is the pivot row. Show that

$$e_i^{\top} \bar{B}^{-1} = e_i^{\top} B^{-1} - g_i e_l^{\top} B^{-1}, \quad i = 1, \dots, m_i$$

for suitable scalars g_i . Provide a formula for g_i . Interpret the above equation in terms of the mechanics for pivoting in the revised simplex method.

2. Let x be an element of the standard form polyhedron $P = \{x \in \mathbb{R}^n \mid Ax = b, x \ge 0\}$. Prove that a vector $d \in \mathbb{R}^n$ is a feasible direction at x if and only if Ad = 0 and $d_i \ge 0$ for every i such that $x_i = 0$.