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Separable permutations

Definition

A permutation is separable if it avoids the patterns 3142 and 2413.

•
•

•
•

•
•

•
•

Figure: Permutations 3142 and 2413.

Lemma

If w ∈ Sn is separable, then there exists 1 < m < n such that either

w1 · · ·wm is a separable permutation on {1, . . . ,m} and wm+1 · · ·wn is a
separable permutation on {m + 1, . . . , n};
or w1 · · ·wn−m is a separable permutation on {m + 1, . . . , n} and
wn−m+1 · · ·wn is a separable permutation on {1, . . . ,m}.
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Separable permutations: fun facts (Wikipedia)

Separable permutations were first introduced by Bose, Buss and Lubiw in
1998 via a structure of rooted binary tree structure. They gave
characterizations using pattern avoidance as well.

Separable permutations are counted by Schröder numbers.

•
•
•
•
• •

• •
•

Figure: A Schröder path: lattice path from (0, 0) to (2n, 0) using steps (1, 1),
(1,−1), (2, 0) that never goes below the x-axis.

If a collection of distinct real polynomials all have equal values at some
number x, then the permutation that describes how the numerical ordering
of the polynomials changes at x is separable, and every separable
permutation can be realized in this way.
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Notations on ranked posets

Let P be a finite ranked poset with rank decomposition P0 t P1 t · · · t Pr .

We say that P is

rank symmetric if |Pi | = |Pr−i | for all i ,

rank unimodal if there exists m such that
|P0| ≤ |P1| ≤ · · · ≤ |Pm| ≥ · · · ≥ |Pr−1| ≥ |Pr |.

For x ∈ P, let

Vx := {y ∈ P : y ≥ x} be the principal upper order ideal at x ,

Λx := {y ∈ P : y ≤ x} be the principal lower order ideal at x .

Let
F (P) = F (P, q) :=

∑
x∈P

qrk(x)

be the rank generating function of P.
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Background on the weak (Bruhat) order

The right weak (Bruhat) order Rn is generated by

w lR wsi if `(wsi ) = `(w) + 1, where si = (i , i + 1).

The left weak (Bruhat) order Ln is generated by

w lL siw if `(siw) = `(w) + 1, where si = (i , i + 1).

•123

•213

•231

•321

•132

•312

•123

•213

•231

•321

•132

•312

Figure: The left weak order and the right weak order on S3.
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Results by Fan Wei

Theorem (Wei 2012)

Let π ∈ Sn be a separable permutation. Then both Λπ and Vπ are rank
symmetric and rank unimodal. Moreover, F (Λπ)F (Vπ) = F (Sn).

Her proof relies on the following lemma.

Lemma (Wei 2012)

Let π = uv as words where u and v are separable. Then

if u ∈ S1,...,m, v ∈ Sm+1,...,n, F (Λπ) = F (Λu)F (Λv ) and
F (Vπ) = F (Vu)F (Vv )

[n
m

]
q
;

if u ∈ Sm+1,...,n, v ∈ S1,...,m, F (Λπ) = F (Λu)F (Λv )
[n
m

]
q

and

F (Vπ) = F (Vu)F (Vv ).

We will be generalizing these results to other types.
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Root systems and Weyl groups

Definition (Root system)

Let E = Rn. A root system Φ ⊂ E is a finite set of vectors, such that

Φ spans E ;

for α ∈ Φ, kα ∈ Φ iff k ∈ {±1};
for α, β ∈ Φ, 2(α, β)/(α, α) ∈ Z;

for α, β ∈ Φ, σα(β) := β − 2
(
(α, β)/(α, α)

)
α ∈ Φ.

We can partition Φ as Φ+ t Φ− such that

for any α ∈ Φ, |{α,−α} ∩ Φ+| = 1;

for any α, β ∈ Φ+, if α + β ∈ Φ, then α + β ∈ Φ+.

Such partition can be obtained via a generic linear hyperplane.
A choice of Φ+ corresponds to a unique set of simple roots ∆ such that

∆ = {α1, . . . , αn} is a basis for E ;

every α ∈ Φ+ is written as
∑n

i=1 ciαi where ci ∈ Z≥0 ∀i .
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Root systems and Weyl groups

Example: root system of type An−1

E = Rn/(1, . . . , 1). Φ = {ei − ej : i 6= j}.

Φ+ = {ei − ej : i < j}.
∆ = {ei − ei+1 : i = 1, . . . , n − 1}.
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Root systems and Weyl groups

We say Φ is irreducible if it cannot be partitioned into Φ′ t Φ′′ such that
(α, β) = 0 for all α ∈ Φ′ and β ∈ Φ′′.

Irreducible root systems can be classified using Dynkin diagrams.

Figure: Irreducible root systems (Wikipedia)
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Root systems and Weyl groups

The Weyl group W = W (Φ) that corresponds to Φ is a finite subgroup of
GL(E ) generated by all reflections across roots σα, for α ∈ Φ, or
equivalently, by si := σαi for αi ∈ ∆.

Fix ∆ ⊂ Φ+ ⊂ Φ as above.

For w ∈W , its Coxeter length `(w) is defined to be the smallest ` such
that w can be written as si1 · · · si` .

The left weak (Bruhat) order is generated by

w lL siw if `(siw) = `(w) + 1, where si = σαi , αi ∈ ∆.
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Root systems and Weyl groups

Example: root system of type An−1

E = Rn/(1, . . . , 1). Φ = {ei − ej : i 6= j}.
Φ+ = {ei − ej : i < j}.
∆ = {ei − ei+1 : i = 1, . . . , n − 1}.

σei−ej : (x1, x2, . . . , xn) 7→ (x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi , xj+1, . . . , xn).
W (An−1) = Sn.
The definitions of weak Bruhat orders coincide.
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Root systems and Weyl groups

Definition (Inversion set)

For w ∈W , IΦ(w) := {α ∈ Φ+ : wα ∈ Φ−}.

The following proposition is well-known and useful.

Proposition

IΦ(w) uniquely characterizes w ∈W .

S ⊂ Φ+ is the inversion set of some w ∈W iff S is biconvex:

if α, β ∈ S and α + β ∈ Φ+, then α + β ∈ S ;
if α, β /∈ S and α + β ∈ Φ+, then α + β /∈ S .
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Root systems and Weyl groups

Example: root system of type An−1

E = Rn/(1, . . . , 1). Φ = {ei − ej : i 6= j}.
Φ+ = {ei − ej : i < j}.
∆ = {ei − ei+1 : i = 1, . . . , n − 1}.
σei−ej : (x1, x2, . . . , xn) 7→ (x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi , xj+1, . . . , xn).
W (An−1) = Sn.
The definitions of weak Bruhat orders coincide.

• • • •
• • •
• •
•

Figure: Root system of type A4
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A restriction map (Billey-Postnikov 2005)

Fix ∆ ⊂ Φ+ ⊂ Φ ⊂ E and W = W (Φ).

If E ′ ⊂ E is a subspace, then Φ′ := E ′ ∩ Φ is a root system and
(Φ′)+ := E ′ ∩ Φ+ is a choice of positive roots.
For w ∈W (Φ), IΦ(w) is biconvex. So IΦ(w) ∩ E ′ ⊂ (Φ′)+ is also
biconvex, which must be IΦ′(w ′) for a unique w ′ ∈W (Φ′).
Write w |Φ′ = w ′ for such w ′.

Example: restriction map in type A

Let w = 6347215 ∈W (A6).
Consider E ′ = span(e2 − e4, e4 − e5). Then Φ′ is of type A2. And the set
of simple roots for Φ′ is ∆′ = {e2 − e4, e4 − e5}.
Then IΦ(w)∩E ′ = {e4− e5, e2− e5} since w(4) > w(5) and w(2) > w(5).
So w |Φ′ = 231 ∈W (A2).
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Separable elements in Weyl groups

Definition (Gaetz and G. 2019)

Let w ∈W (Φ). Then w is separable if one of the following holds:

Φ is of type A1;

Φ =
⊕

Φi is reducible and w |Φi
is separable for all i ;

Φ is irreducible and there exists a pivot αi ∈ ∆ such that w |Φ′ ∈W (Φ′) is
separable, where Φ′ is generated by ∆ \ {αi} and either
{α ∈ Φ+ : α ≥ αi} ⊂ IΦ(w) or {α ∈ Φ+ : α ≥ αi} ∩ IΦ(w) = ∅.

Compare the following equivalent definition of separable permutations.

Definition

Let w ∈ Sn. Then w is separable if one of the following holds:

n ≤ 2;
there exists 1 < m < n such that either

w1 · · ·wm is a separable permutation on {1, . . . ,m} and wm+1 · · ·wn is a
separable permutation on {m + 1, . . . , n};
or w1 · · ·wm is a separable permutation on {n −m + 1, . . . , n} and wm+1 · · ·wn

is a separable permutation on {1, . . . , n −m}.
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Separable elements in Weyl groups

Example (separable elements in W (B2))

Φ+ = {α1, α2, α1 + α2, α1 + 2α2}. ∆ = {α1, α2}. Dynkin diagram • • .

•©

•©

•

•©

•©

•

•©

•©

{α1}

{α1, α1 + α2}

{α1, α1 + α2, α1 + 2α2}

{α2}

{α2, α1 + 2α2}

{α2, α1 + α2, α1 + 2α2}

∅

Φ+

Figure: Weak order of type B2 labeled by inversion sets, where separable elements
are circled.

Yibo Gao (MIT) Separable elements in Weyl groups Summer Combo 2019 17 / 23



Separable elements in Weyl groups

Example (separable elements in W (B2))

Φ+ = {α1, α2, α1 + α2, α1 + 2α2}. ∆ = {α1, α2}. Dynkin diagram • • .

•©

•©

•

•©

•©

•

•©

•©

{α1}

{α1, α1 + α2}

{α1, α1 + α2, α1 + 2α2}

{α2}

{α2, α1 + 2α2}

{α2, α1 + α2, α1 + 2α2}

∅

Φ+

Figure: Weak order of type B2 labeled by inversion sets, where separable elements
are circled.

Yibo Gao (MIT) Separable elements in Weyl groups Summer Combo 2019 17 / 23



Properties of separable elements

Theorem (Gaetz and G. 2019)

Let w ∈W (Φ) be separable. Then the upper order ideal Vw and the lower
order ideal Λw in the (left) weak order are both rank symmetric and rank
unimodal. Moreover, F (Vw )F (Λw ) = F (W (Φ)).

Proof sketch.
Use induction. Assume that Φ is irreducible.
Let αi ∈ ∆ be a pivot and ∆′ = ∆ \ {αi} which generates Φ′. Show that

if {α : α ≥ αi} ⊂ IΦ(w), then F (Vw ) = F (Vw|Φ′ ) and F (Λw ) = f · F (Vw|Φ′ ),

if {α : α ≥ αi} ∩ IΦ(w) = ∅, then F (Vw ) = f · F (Vw|Φ′ ) and F (Λw ) = F (Vw|Φ′ ),

where f = F (W (Φ))/F (W (Φ′)).

The (strong) Bruhat order of the parabolic quotient W∆′
has f as its rank generating

function. So f is a polynomial with symmetric and unimodal coefficient.

The longest element wJ
0 ∈W J is separable, for which the above theorem

is known, because of the rank-preserving decomposition W = W J ·WJ .
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Classification via pattern avoidance

Definition (Pattern avoidance)

We say that w ∈W (Φ) avoids pattern w ′ ∈W (Φ′) if there does not
exists a subspace E ′ ⊂ E such that Φ′ ' E ′ ∩ Φ and w |Φ′ = w ′.

Theorem (Gaetz and G. 2019)

An element w ∈W (Φ) is separable if (and only if) it avoids:

2413 and 3142 in W (A3),

two patterns of length 2 in W (B2),

and six patterns of length 2,3,4 in W (G2).

Our proof is fairly technical, type-dependent and computer-assisted.

Open question

Is there a nice proof?
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Classification via pattern avoidance: type Dn,En

Here is the proof strategy.

The following lemma is heavily used in all steps of the proof.

Lemma

Let w ∈W (Φ) where Φ is simply-laced and w avoids 2413 and 3142. For
α, β, γ ∈ Φ+ such that (α, β) = (β, γ) = −1, (α, γ) = 0, if
α + β, β, β + γ ∈ IΦ(w) (or ∈ Φ+ \ IΦ(w)), then α + β + γ ∈ IΦ(w) (or
∈ Φ+ \ IΦ(w)).

Step 1: consider only small roots ({0, 1}-linear combination of simple
roots) and show that they have a “pivot”, using induction on the rank and
relentless discovery of type A3 root subsystems.
Step 2: show that whether α ∈ IΦ(w) depends only on its support, using
induction on the height and computer search.

Remark

|W (E8)| = 696, 729, 600 and |Φ+
E8
| = 120.
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Classification via pattern avoidance: type Bn(Cn)

Step 1: show that the “type-A-like” subset behaves like type A.

Figure: The root poset for B4; the type-A4-like subset is enclosed in dashed lines.

Step 2: show that whether α ∈ IΦ(w) depends only on its support, using
induction on the height and bad patterns in B2.
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Connection with generalized permutahedron

Faces of the graph associahedron of (the graph of) the Dynkin diagram of
Φ can be labeled by exactly half (or the other half) of the separable
elements in W (Φ).

In particular, notice that the number of separable elements in type An is
the same as in type Bn.

Open question

Can we label the faces of any graph associahedron analogously?
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Thanks

Thanks: Alex Postnikov, Victor Reiner, and Anders Björner.

Thank you for listening!
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