Separable elements in Weyl groups

Yibo Gao
Joint work with: Christian Gaetz
Massachusetts Institute of Technology

Summer Combo in Vermont, 2019

Overview

(1) Background

- separable permutations
- results by Fan Wei
- root systems and Weyl groups

Overview

(1) Background

- separable permutations
- results by Fan Wei
- root systems and Weyl groups
(2) Separable elements in Weyl groups
- definition
- properties

Overview

(1) Background

- separable permutations
- results by Fan Wei
- root systems and Weyl groups
(2) Separable elements in Weyl groups
- definition
- properties
(3) Classification via pattern avoidance
- Case 1: Simply-laced
- Case 2: Type B_{n}, C_{n}

Separable permutations

Definition

A permutation is separable if it avoids the patterns 3142 and 2413.

Separable permutations

Definition

A permutation is separable if it avoids the patterns 3142 and 2413.

Figure: Permutations 3142 and 2413.

Separable permutations

Definition

A permutation is separable if it avoids the patterns 3142 and 2413.

Figure: Permutations 3142 and 2413.

Lemma

If $w \in \mathfrak{S}_{n}$ is separable, then there exists $1<m<n$ such that either

- $w_{1} \cdots w_{m}$ is a separable permutation on $\{1, \ldots, m\}$ and $w_{m+1} \cdots w_{n}$ is a separable permutation on $\{m+1, \ldots, n\}$;
- or $w_{1} \cdots w_{n-m}$ is a separable permutation on $\{m+1, \ldots, n\}$ and $w_{n-m+1} \cdots w_{n}$ is a separable permutation on $\{1, \ldots, m\}$.

Separable permutations: fun facts (Wikipedia)

Separable permutations: fun facts (Wikipedia)

Separable permutations were first introduced by Bose, Buss and Lubiw in 1998 via a structure of rooted binary tree structure. They gave characterizations using pattern avoidance as well.

Separable permutations: fun facts (Wikipedia)

Separable permutations were first introduced by Bose, Buss and Lubiw in 1998 via a structure of rooted binary tree structure. They gave characterizations using pattern avoidance as well.

Separable permutations are counted by Schröder numbers.

Figure: A Schröder path: lattice path from $(0,0)$ to $(2 n, 0)$ using steps $(1,1)$, $(1,-1),(2,0)$ that never goes below the x-axis.

Separable permutations: fun facts (Wikipedia)

Separable permutations were first introduced by Bose, Buss and Lubiw in 1998 via a structure of rooted binary tree structure. They gave characterizations using pattern avoidance as well.

Separable permutations are counted by Schröder numbers.

Figure: A Schröder path: lattice path from $(0,0)$ to $(2 n, 0)$ using steps $(1,1)$, $(1,-1),(2,0)$ that never goes below the x-axis.

If a collection of distinct real polynomials all have equal values at some number x, then the permutation that describes how the numerical ordering of the polynomials changes at x is separable, and every separable permutation can be realized in this way.

Notations on ranked posets

Let P be a finite ranked poset with rank decomposition $P_{0} \sqcup P_{1} \sqcup \cdots \sqcup P_{r}$.

Notations on ranked posets

Let P be a finite ranked poset with rank decomposition $P_{0} \sqcup P_{1} \sqcup \cdots \sqcup P_{r}$. We say that P is

- rank symmetric if $\left|P_{i}\right|=\left|P_{r-i}\right|$ for all i,
- rank unimodal if there exists m such that

$$
\left|P_{0}\right| \leq\left|P_{1}\right| \leq \cdots \leq\left|P_{m}\right| \geq \cdots \geq\left|P_{r-1}\right| \geq\left|P_{r}\right|
$$

Notations on ranked posets

Let P be a finite ranked poset with rank decomposition $P_{0} \sqcup P_{1} \sqcup \cdots \sqcup P_{r}$. We say that P is

- rank symmetric if $\left|P_{i}\right|=\left|P_{r-i}\right|$ for all i,
- rank unimodal if there exists m such that

$$
\left|P_{0}\right| \leq\left|P_{1}\right| \leq \cdots \leq\left|P_{m}\right| \geq \cdots \geq\left|P_{r-1}\right| \geq\left|P_{r}\right|
$$

For $x \in P$, let

- $V_{x}:=\{y \in P: y \geq x\}$ be the principal upper order ideal at x,
- $\Lambda_{x}:=\{y \in P: y \leq x\}$ be the principal lower order ideal at x.

Notations on ranked posets

Let P be a finite ranked poset with rank decomposition $P_{0} \sqcup P_{1} \sqcup \cdots \sqcup P_{r}$. We say that P is

- rank symmetric if $\left|P_{i}\right|=\left|P_{r-i}\right|$ for all i,
- rank unimodal if there exists m such that

$$
\left|P_{0}\right| \leq\left|P_{1}\right| \leq \cdots \leq\left|P_{m}\right| \geq \cdots \geq\left|P_{r-1}\right| \geq\left|P_{r}\right|
$$

For $x \in P$, let

- $V_{x}:=\{y \in P: y \geq x\}$ be the principal upper order ideal at x,
- $\Lambda_{x}:=\{y \in P: y \leq x\}$ be the principal lower order ideal at x.

Let

$$
F(P)=F(P, q):=\sum_{x \in P} q^{\mathrm{rk}(x)}
$$

be the rank generating function of P.

Background on the weak (Bruhat) order

The right weak (Bruhat) order R_{n} is generated by

$$
w \lessdot_{R} w s_{i} \quad \text { if } \ell\left(w s_{i}\right)=\ell(w)+1, \text { where } s_{i}=(i, i+1) .
$$

Background on the weak (Bruhat) order

The right weak (Bruhat) order R_{n} is generated by

$$
w \lessdot R w s_{i} \quad \text { if } \ell\left(w s_{i}\right)=\ell(w)+1, \text { where } s_{i}=(i, i+1) .
$$

The left weak (Bruhat) order L_{n} is generated by

$$
w \lessdot\left\llcorner s_{i} w \text { if } \ell\left(s_{i} w\right)=\ell(w)+1 \text {, where } s_{i}=(i, i+1) .\right.
$$

Background on the weak (Bruhat) order

The right weak (Bruhat) order R_{n} is generated by

$$
w \lessdot_{R} w s_{i} \quad \text { if } \ell\left(w s_{i}\right)=\ell(w)+1, \text { where } s_{i}=(i, i+1) .
$$

The left weak (Bruhat) order L_{n} is generated by

$$
w \lessdot \digamma_{L} s_{i} w \quad \text { if } \ell\left(s_{i} w\right)=\ell(w)+1, \text { where } s_{i}=(i, i+1) .
$$

Figure: The left weak order and the right weak order on \mathfrak{S}_{3}.

Results by Fan Wei

Results by Fan Wei

Theorem (Wei 2012)

Let $\pi \in \mathfrak{S}_{n}$ be a separable permutation. Then both Λ_{π} and V_{π} are rank symmetric and rank unimodal. Moreover, $F\left(\Lambda_{\pi}\right) F\left(V_{\pi}\right)=F\left(\mathfrak{S}_{n}\right)$.

Results by Fan Wei

Theorem (Wei 2012)

Let $\pi \in \mathfrak{S}_{n}$ be a separable permutation. Then both Λ_{π} and V_{π} are rank symmetric and rank unimodal. Moreover, $F\left(\Lambda_{\pi}\right) F\left(V_{\pi}\right)=F\left(\mathfrak{S}_{n}\right)$.

Her proof relies on the following lemma.

Lemma (Wei 2012)

Let $\pi=u v$ as words where u and v are separable. Then

- if $u \in \mathfrak{S}_{1, \ldots, m}, v \in \mathfrak{S}_{m+1, \ldots, n}, F\left(\Lambda_{\pi}\right)=F\left(\Lambda_{u}\right) F\left(\Lambda_{v}\right)$ and

$$
F\left(V_{\pi}\right)=F\left(V_{u}\right) F\left(V_{v}\right)\left[\begin{array}{l}
n \\
m
\end{array}\right]_{q} ;
$$

- if $u \in \mathfrak{S}_{m+1, \ldots, n}, v \in \mathfrak{S}_{1, \ldots, m}, F\left(\Lambda_{\pi}\right)=F\left(\Lambda_{u}\right) F\left(\Lambda_{v}\right)\left[\begin{array}{l}n \\ m\end{array}\right]_{q}$ and $F\left(V_{\pi}\right)=F\left(V_{u}\right) F\left(V_{v}\right)$.

Results by Fan Wei

Theorem (Wei 2012)

Let $\pi \in \mathfrak{S}_{n}$ be a separable permutation. Then both Λ_{π} and V_{π} are rank symmetric and rank unimodal. Moreover, $F\left(\Lambda_{\pi}\right) F\left(V_{\pi}\right)=F\left(\mathfrak{S}_{n}\right)$.

Her proof relies on the following lemma.

Lemma (Wei 2012)

Let $\pi=u v$ as words where u and v are separable. Then

- if $u \in \mathfrak{S}_{1, \ldots, m}, v \in \mathfrak{S}_{m+1, \ldots, n}, F\left(\Lambda_{\pi}\right)=F\left(\Lambda_{u}\right) F\left(\Lambda_{v}\right)$ and

$$
F\left(V_{\pi}\right)=F\left(V_{u}\right) F\left(V_{v}\right)\left[\begin{array}{l}
n \\
m
\end{array}\right]_{q} ;
$$

- if $u \in \mathfrak{S}_{m+1, \ldots, n}, v \in \mathfrak{S}_{1, \ldots, m}, F\left(\Lambda_{\pi}\right)=F\left(\Lambda_{u}\right) F\left(\Lambda_{v}\right)\left[\begin{array}{l}n \\ m\end{array}\right]_{q}$ and $F\left(V_{\pi}\right)=F\left(V_{u}\right) F\left(V_{v}\right)$.

We will be generalizing these results to other types.

Root systems and Weyl groups

Root systems and Weyl groups

Definition (Root system)

Let $E=\mathbb{R}^{n}$. A root system $\Phi \subset E$ is a finite set of vectors, such that

- Φ spans E;
- for $\alpha \in \Phi, k \alpha \in \Phi$ iff $k \in\{ \pm 1\}$;
- for $\alpha, \beta \in \Phi, 2(\alpha, \beta) /(\alpha, \alpha) \in \mathbb{Z}$;
- for $\alpha, \beta \in \Phi, \sigma_{\alpha}(\beta):=\beta-2((\alpha, \beta) /(\alpha, \alpha)) \alpha \in \Phi$.

Root systems and Weyl groups

Definition (Root system)

Let $E=\mathbb{R}^{n}$. A root system $\Phi \subset E$ is a finite set of vectors, such that

- Φ spans E;
- for $\alpha \in \Phi, k \alpha \in \Phi$ iff $k \in\{ \pm 1\}$;
- for $\alpha, \beta \in \Phi, 2(\alpha, \beta) /(\alpha, \alpha) \in \mathbb{Z}$;
- for $\alpha, \beta \in \Phi, \sigma_{\alpha}(\beta):=\beta-2((\alpha, \beta) /(\alpha, \alpha)) \alpha \in \Phi$.

We can partition Φ as $\Phi^{+} \sqcup \Phi^{-}$such that

- for any $\alpha \in \Phi,\left|\{\alpha,-\alpha\} \cap \Phi^{+}\right|=1$;
- for any $\alpha, \beta \in \Phi^{+}$, if $\alpha+\beta \in \Phi$, then $\alpha+\beta \in \Phi^{+}$.

Such partition can be obtained via a generic linear hyperplane.

Root systems and Weyl groups

Definition (Root system)

Let $E=\mathbb{R}^{n}$. A root system $\Phi \subset E$ is a finite set of vectors, such that

- Φ spans E;
- for $\alpha \in \Phi, k \alpha \in \Phi$ iff $k \in\{ \pm 1\}$;
- for $\alpha, \beta \in \Phi, 2(\alpha, \beta) /(\alpha, \alpha) \in \mathbb{Z}$;
- for $\alpha, \beta \in \Phi, \sigma_{\alpha}(\beta):=\beta-2((\alpha, \beta) /(\alpha, \alpha)) \alpha \in \Phi$.

We can partition Φ as $\Phi^{+} \sqcup \Phi^{-}$such that

- for any $\alpha \in \Phi,\left|\{\alpha,-\alpha\} \cap \Phi^{+}\right|=1$;
- for any $\alpha, \beta \in \Phi^{+}$, if $\alpha+\beta \in \Phi$, then $\alpha+\beta \in \Phi^{+}$.

Such partition can be obtained via a generic linear hyperplane.
A choice of Φ^{+}corresponds to a unique set of simple roots Δ such that

- $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is a basis for E;
- every $\alpha \in \Phi^{+}$is written as $\sum_{i=1}^{n} c_{i} \alpha_{i}$ where $c_{i} \in \mathbb{Z}_{\geq 0} \forall i$.

Root systems and Weyl groups

$$
\begin{aligned}
& \text { Example: root system of type } A_{n-1} \\
& E=\mathbb{R}^{n} /(1, \ldots, 1) . \Phi=\left\{e_{i}-e_{j}: i \neq j\right\} .
\end{aligned}
$$

Root systems and Weyl groups

Example: root system of type A_{n-1}

$$
\begin{aligned}
& E=\mathbb{R}^{n} /(1, \ldots, 1) . \Phi=\left\{e_{i}-e_{j}: i \neq j\right\} . \\
& \Phi^{+}=\left\{e_{i}-e_{j}: i<j\right\} .
\end{aligned}
$$

Root systems and Weyl groups

Example: root system of type A_{n-1}

$$
\begin{aligned}
& E=\mathbb{R}^{n} /(1, \ldots, 1) . \Phi=\left\{e_{i}-e_{j}: i \neq j\right\} . \\
& \Phi^{+}=\left\{e_{i}-e_{j}: i<j\right\} . \\
& \Delta=\left\{e_{i}-e_{i+1}: i=1, \ldots, n-1\right\} .
\end{aligned}
$$

Root systems and Weyl groups

Root systems and Weyl groups

We say Φ is irreducible if it cannot be partitioned into $\Phi^{\prime} \sqcup \Phi^{\prime \prime}$ such that $(\alpha, \beta)=0$ for all $\alpha \in \Phi^{\prime}$ and $\beta \in \Phi^{\prime \prime}$.

Root systems and Weyl groups

We say Φ is irreducible if it cannot be partitioned into $\Phi^{\prime} \sqcup \Phi^{\prime \prime}$ such that $(\alpha, \beta)=0$ for all $\alpha \in \Phi^{\prime}$ and $\beta \in \Phi^{\prime \prime}$.

Irreducible root systems can be classified using Dynkin diagrams.

Root systems and Weyl groups

We say Φ is irreducible if it cannot be partitioned into $\Phi^{\prime} \sqcup \Phi^{\prime \prime}$ such that $(\alpha, \beta)=0$ for all $\alpha \in \Phi^{\prime}$ and $\beta \in \Phi^{\prime \prime}$.

Irreducible root systems can be classified using Dynkin diagrams.

Figure: Irreducible root systems (Wikipedia)

Root systems and Weyl groups

Root systems and Weyl groups

The Weyl group $W=W(\Phi)$ that corresponds to Φ is a finite subgroup of $\mathrm{GL}(E)$ generated by all reflections across roots σ_{α}, for $\alpha \in \Phi$, or equivalently, by $s_{i}:=\sigma_{\alpha_{i}}$ for $\alpha_{i} \in \Delta$.

Root systems and Weyl groups

The Weyl group $W=W(\Phi)$ that corresponds to Φ is a finite subgroup of $\mathrm{GL}(E)$ generated by all reflections across roots σ_{α}, for $\alpha \in \Phi$, or equivalently, by $s_{i}:=\sigma_{\alpha_{i}}$ for $\alpha_{i} \in \Delta$.

Fix $\Delta \subset \Phi^{+} \subset \Phi$ as above.
For $w \in W$, its Coxeter length $\ell(w)$ is defined to be the smallest ℓ such that w can be written as $s_{i_{1}} \cdots s_{i_{\ell}}$.

Root systems and Weyl groups

The Weyl group $W=W(\Phi)$ that corresponds to Φ is a finite subgroup of $\mathrm{GL}(E)$ generated by all reflections across roots σ_{α}, for $\alpha \in \Phi$, or equivalently, by $s_{i}:=\sigma_{\alpha_{i}}$ for $\alpha_{i} \in \Delta$.

Fix $\Delta \subset \Phi^{+} \subset \Phi$ as above.
For $w \in W$, its Coxeter length $\ell(w)$ is defined to be the smallest ℓ such that w can be written as $s_{i_{1}} \cdots s_{i_{\ell}}$.

The left weak (Bruhat) order is generated by

$$
w \lessdot\left\llcorner s_{i} w \quad \text { if } \ell\left(s_{i} w\right)=\ell(w)+1, \text { where } s_{i}=\sigma_{\alpha_{i}}, \alpha_{i} \in \Delta .\right.
$$

Root systems and Weyl groups

Example: root system of type A_{n-1}

$$
\begin{aligned}
& E=\mathbb{R}^{n} /(1, \ldots, 1) . \Phi=\left\{e_{i}-e_{j}: i \neq j\right\} . \\
& \Phi^{+}=\left\{e_{i}-e_{j}: i<j\right\} . \\
& \Delta=\left\{e_{i}-e_{i+1}: i=1, \ldots, n-1\right\} .
\end{aligned}
$$

Root systems and Weyl groups

Example: root system of type A_{n-1}

$$
\begin{aligned}
& E=\mathbb{R}^{n} /(1, \ldots, 1) . \Phi=\left\{e_{i}-e_{j}: i \neq j\right\} . \\
& \Phi^{+}=\left\{e_{i}-e_{j}: i<j\right\} . \\
& \Delta=\left\{e_{i}-e_{i+1}: i=1, \ldots, n-1\right\} . \\
& \sigma_{e_{i}-e_{j}}:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{i-1}, x_{j}, x_{i+1}, \ldots, x_{j-1}, x_{i}, x_{j+1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Root systems and Weyl groups

Example: root system of type A_{n-1}

$$
\begin{aligned}
& E=\mathbb{R}^{n} /(1, \ldots, 1) . \Phi=\left\{e_{i}-e_{j}: i \neq j\right\} . \\
& \Phi^{+}=\left\{e_{i}-e_{j}: i<j\right\} . \\
& \Delta=\left\{e_{i}-e_{i+1}: i=1, \ldots, n-1\right\} . \\
& \sigma_{e_{i}-e_{j}}:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{i-1}, x_{j}, x_{i+1}, \ldots, x_{j-1}, x_{i}, x_{j+1}, \ldots, x_{n}\right) . \\
& W\left(A_{n-1}\right)=\mathfrak{S}_{n} .
\end{aligned}
$$

Root systems and Weyl groups

Example: root system of type A_{n-1}

$$
\begin{aligned}
& E=\mathbb{R}^{n} /(1, \ldots, 1) . \Phi=\left\{e_{i}-e_{j}: i \neq j\right\} . \\
& \Phi^{+}=\left\{e_{i}-e_{j}: i<j\right\} . \\
& \Delta=\left\{e_{i}-e_{i+1}: i=1, \ldots, n-1\right\} . \\
& \sigma_{e_{i}-e_{j}}:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{i-1}, x_{j}, x_{i+1}, \ldots, x_{j-1}, x_{i}, x_{j+1}, \ldots, x_{n}\right) . \\
& W\left(A_{n-1}\right)=\mathfrak{S}_{n} .
\end{aligned}
$$

The definitions of weak Bruhat orders coincide.

Root systems and Weyl groups

Root systems and Weyl groups

Definition (Inversion set)
 For $w \in W, I_{\Phi}(w):=\left\{\alpha \in \Phi^{+}: w \alpha \in \Phi^{-}\right\}$.

Root systems and Weyl groups

Definition (Inversion set)
 For $w \in W, I_{\Phi}(w):=\left\{\alpha \in \Phi^{+}: w \alpha \in \Phi^{-}\right\}$.

The following proposition is well-known and useful.

Root systems and Weyl groups

Definition (Inversion set)

For $w \in W, I_{\Phi}(w):=\left\{\alpha \in \Phi^{+}: w \alpha \in \Phi^{-}\right\}$.
The following proposition is well-known and useful.

Proposition

- $I_{\Phi}(w)$ uniquely characterizes $w \in W$.

Root systems and Weyl groups

Definition (Inversion set)

For $w \in W, I_{\Phi}(w):=\left\{\alpha \in \Phi^{+}: w \alpha \in \Phi^{-}\right\}$.
The following proposition is well-known and useful.

Proposition

- $I_{\Phi}(w)$ uniquely characterizes $w \in W$.
- $S \subset \Phi^{+}$is the inversion set of some $w \in W$ iff S is biconvex:

Root systems and Weyl groups

Definition (Inversion set)

For $w \in W, I_{\Phi}(w):=\left\{\alpha \in \Phi^{+}: w \alpha \in \Phi^{-}\right\}$.
The following proposition is well-known and useful.

Proposition

- $I_{\Phi}(w)$ uniquely characterizes $w \in W$.
- $S \subset \Phi^{+}$is the inversion set of some $w \in W$ iff S is biconvex:
- if $\alpha, \beta \in S$ and $\alpha+\beta \in \Phi^{+}$, then $\alpha+\beta \in S$;

Root systems and Weyl groups

Definition (Inversion set)

For $w \in W, I_{\Phi}(w):=\left\{\alpha \in \Phi^{+}: w \alpha \in \Phi^{-}\right\}$.
The following proposition is well-known and useful.

Proposition

- $I_{\Phi}(w)$ uniquely characterizes $w \in W$.
- $S \subset \Phi^{+}$is the inversion set of some $w \in W$ iff S is biconvex:
- if $\alpha, \beta \in S$ and $\alpha+\beta \in \Phi^{+}$, then $\alpha+\beta \in S$;
- if $\alpha, \beta \notin S$ and $\alpha+\beta \in \Phi^{+}$, then $\alpha+\beta \notin S$.

Root systems and Weyl groups

Definition (Inversion set)

For $w \in W, I_{\Phi}(w):=\left\{\alpha \in \Phi^{+}: w \alpha \in \Phi^{-}\right\}$.
The following proposition is well-known and useful.

Proposition

- $I_{\Phi}(w)$ uniquely characterizes $w \in W$.
- $S \subset \Phi^{+}$is the inversion set of some $w \in W$ iff S is biconvex:
- if $\alpha, \beta \in S$ and $\alpha+\beta \in \Phi^{+}$, then $\alpha+\beta \in S$;
- if $\alpha, \beta \notin S$ and $\alpha+\beta \in \Phi^{+}$, then $\alpha+\beta \notin S$.
- $u \leq_{L} v$ in the (left) weak order iff $I_{\Phi}(u) \subset I_{\Phi}(v)$.

Root systems and Weyl groups

Definition (Inversion set)

For $w \in W, I_{\Phi}(w):=\left\{\alpha \in \Phi^{+}: w \alpha \in \Phi^{-}\right\}$.
The following proposition is well-known and useful.

Proposition

- $I_{\Phi}(w)$ uniquely characterizes $w \in W$.
- $S \subset \Phi^{+}$is the inversion set of some $w \in W$ iff S is biconvex:
- if $\alpha, \beta \in S$ and $\alpha+\beta \in \Phi^{+}$, then $\alpha+\beta \in S$;
- if $\alpha, \beta \notin S$ and $\alpha+\beta \in \Phi^{+}$, then $\alpha+\beta \notin S$.
- $u \leq_{L} v$ in the (left) weak order iff $I_{\Phi}(u) \subset I_{\Phi}(v)$.

Root systems and Weyl groups

Definition (Inversion set)

For $w \in W, I_{\Phi}(w):=\left\{\alpha \in \Phi^{+}: w \alpha \in \Phi^{-}\right\}$.
The following proposition is well-known and useful.

Proposition

- $I_{\Phi}(w)$ uniquely characterizes $w \in W$.
- $S \subset \Phi^{+}$is the inversion set of some $w \in W$ iff S is biconvex:
- if $\alpha, \beta \in S$ and $\alpha+\beta \in \Phi^{+}$, then $\alpha+\beta \in S$;
- if $\alpha, \beta \notin S$ and $\alpha+\beta \in \Phi^{+}$, then $\alpha+\beta \notin S$.
- $u \leq_{L} v$ in the (left) weak order iff $I_{\Phi}(u) \subset I_{\Phi}(v)$.

Definition (Root poset and support)

For $\alpha, \beta \in \Phi^{+}, \alpha \leq \beta$ if $\beta-\alpha$ is written as a nonnegative linear combination of simple roots. For $\alpha \in \Phi^{+}$, its support is defined as $\operatorname{Supp}(\alpha):=\left\{\alpha_{i} \in \Delta: \alpha_{i} \leq \alpha\right\}$.

Root systems and Weyl groups

Example: root system of type A_{n-1}

$$
\begin{aligned}
& E=\mathbb{R}^{n} /(1, \ldots, 1) . \Phi=\left\{e_{i}-e_{j}: i \neq j\right\} . \\
& \Phi^{+}=\left\{e_{i}-e_{j}: i<j\right\} . \\
& \Delta=\left\{e_{i}-e_{i+1}: i=1, \ldots, n-1\right\} . \\
& \sigma_{e_{i}-e_{j}}:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{i-1}, x_{j}, x_{i+1}, \ldots, x_{j-1}, x_{i}, x_{j+1}, \ldots, x_{n}\right) . \\
& W\left(A_{n-1}\right)=\mathfrak{S}_{n} .
\end{aligned}
$$

The definitions of weak Bruhat orders coincide.

Figure: Root system of type A_{4}

A restriction map (Billey-Postnikov 2005)

Fix $\Delta \subset \Phi^{+} \subset \Phi \subset E$ and $W=W(\Phi)$.

A restriction map (Billey-Postnikov 2005)

Fix $\Delta \subset \Phi^{+} \subset \Phi \subset E$ and $W=W(\Phi)$.
If $E^{\prime} \subset E$ is a subspace, then $\Phi^{\prime}:=E^{\prime} \cap \Phi$ is a root system and $\left(\phi^{\prime}\right)^{+}:=E^{\prime} \cap \phi^{+}$is a choice of positive roots.

A restriction map (Billey-Postnikov 2005)

Fix $\Delta \subset \Phi^{+} \subset \Phi \subset E$ and $W=W(\Phi)$.
If $E^{\prime} \subset E$ is a subspace, then $\Phi^{\prime}:=E^{\prime} \cap \Phi$ is a root system and $\left(\Phi^{\prime}\right)^{+}:=E^{\prime} \cap \Phi^{+}$is a choice of positive roots.
For $w \in W(\Phi), l_{\Phi}(w)$ is biconvex. So $l_{\Phi}(w) \cap E^{\prime} \subset\left(\Phi^{\prime}\right)^{+}$is also biconvex, which must be $I_{\Phi^{\prime}}\left(w^{\prime}\right)$ for a unique $w^{\prime} \in W\left(\Phi^{\prime}\right)$.

A restriction map (Billey-Postnikov 2005)

Fix $\Delta \subset \Phi^{+} \subset \Phi \subset E$ and $W=W(\Phi)$.
If $E^{\prime} \subset E$ is a subspace, then $\Phi^{\prime}:=E^{\prime} \cap \Phi$ is a root system and $\left(\Phi^{\prime}\right)^{+}:=E^{\prime} \cap \Phi^{+}$is a choice of positive roots.
For $w \in W(\Phi), l_{\Phi}(w)$ is biconvex. So $l_{\Phi}(w) \cap E^{\prime} \subset\left(\Phi^{\prime}\right)^{+}$is also biconvex, which must be $I_{\Phi^{\prime}}\left(w^{\prime}\right)$ for a unique $w^{\prime} \in W\left(\Phi^{\prime}\right)$. Write $\left.w\right|_{\Phi^{\prime}}=w^{\prime}$ for such w^{\prime}.

A restriction map (Billey-Postnikov 2005)

Fix $\Delta \subset \Phi^{+} \subset \Phi \subset E$ and $W=W(\Phi)$.
If $E^{\prime} \subset E$ is a subspace, then $\Phi^{\prime}:=E^{\prime} \cap \Phi$ is a root system and $\left(\Phi^{\prime}\right)^{+}:=E^{\prime} \cap \Phi^{+}$is a choice of positive roots.
For $w \in W(\Phi), l_{\Phi}(w)$ is biconvex. So $l_{\Phi}(w) \cap E^{\prime} \subset\left(\Phi^{\prime}\right)^{+}$is also biconvex, which must be $I_{\Phi^{\prime}}\left(w^{\prime}\right)$ for a unique $w^{\prime} \in W\left(\Phi^{\prime}\right)$.
Write $\left.w\right|_{\Phi^{\prime}}=w^{\prime}$ for such w^{\prime}.
Example: restriction map in type A
Let $w=6347215 \in W\left(A_{6}\right)$.

A restriction map (Billey-Postnikov 2005)

Fix $\Delta \subset \Phi^{+} \subset \Phi \subset E$ and $W=W(\Phi)$.
If $E^{\prime} \subset E$ is a subspace, then $\Phi^{\prime}:=E^{\prime} \cap \Phi$ is a root system and $\left(\Phi^{\prime}\right)^{+}:=E^{\prime} \cap \Phi^{+}$is a choice of positive roots.
For $w \in W(\Phi), l_{\Phi}(w)$ is biconvex. So $l_{\Phi}(w) \cap E^{\prime} \subset\left(\Phi^{\prime}\right)^{+}$is also biconvex, which must be $I_{\Phi^{\prime}}\left(w^{\prime}\right)$ for a unique $w^{\prime} \in W\left(\Phi^{\prime}\right)$.
Write $\left.w\right|_{\Phi^{\prime}}=w^{\prime}$ for such w^{\prime}.

Example: restriction map in type A

Let $w=6347215 \in W\left(A_{6}\right)$.
Consider $E^{\prime}=\operatorname{span}\left(e_{2}-e_{4}, e_{4}-e_{5}\right)$. Then Φ^{\prime} is of type A_{2}. And the set of simple roots for Φ^{\prime} is $\Delta^{\prime}=\left\{e_{2}-e_{4}, e_{4}-e_{5}\right\}$.

A restriction map (Billey-Postnikov 2005)

Fix $\Delta \subset \Phi^{+} \subset \Phi \subset E$ and $W=W(\Phi)$.
If $E^{\prime} \subset E$ is a subspace, then $\Phi^{\prime}:=E^{\prime} \cap \Phi$ is a root system and $\left(\Phi^{\prime}\right)^{+}:=E^{\prime} \cap \Phi^{+}$is a choice of positive roots.
For $w \in W(\Phi), l_{\Phi}(w)$ is biconvex. So $l_{\Phi}(w) \cap E^{\prime} \subset\left(\Phi^{\prime}\right)^{+}$is also biconvex, which must be $I_{\Phi^{\prime}}\left(w^{\prime}\right)$ for a unique $w^{\prime} \in W\left(\Phi^{\prime}\right)$.
Write $\left.w\right|_{\Phi^{\prime}}=w^{\prime}$ for such w^{\prime}.

Example: restriction map in type A

Let $w=6347215 \in W\left(A_{6}\right)$.
Consider $E^{\prime}=\operatorname{span}\left(e_{2}-e_{4}, e_{4}-e_{5}\right)$. Then Φ^{\prime} is of type A_{2}. And the set of simple roots for Φ^{\prime} is $\Delta^{\prime}=\left\{e_{2}-e_{4}, e_{4}-e_{5}\right\}$.
Then $I_{\Phi}(w) \cap E^{\prime}=\left\{e_{4}-e_{5}, e_{2}-e_{5}\right\}$ since $w(4)>w(5)$ and $w(2)>w(5)$.

A restriction map (Billey-Postnikov 2005)

Fix $\Delta \subset \Phi^{+} \subset \Phi \subset E$ and $W=W(\Phi)$.
If $E^{\prime} \subset E$ is a subspace, then $\Phi^{\prime}:=E^{\prime} \cap \Phi$ is a root system and $\left(\Phi^{\prime}\right)^{+}:=E^{\prime} \cap \Phi^{+}$is a choice of positive roots.
For $w \in W(\Phi), l_{\Phi}(w)$ is biconvex. So $l_{\Phi}(w) \cap E^{\prime} \subset\left(\Phi^{\prime}\right)^{+}$is also biconvex, which must be $l_{\Phi^{\prime}}\left(w^{\prime}\right)$ for a unique $w^{\prime} \in W\left(\Phi^{\prime}\right)$.
Write $\left.w\right|_{\Phi^{\prime}}=w^{\prime}$ for such w^{\prime}.

Example: restriction map in type A

Let $w=6347215 \in W\left(A_{6}\right)$.
Consider $E^{\prime}=\operatorname{span}\left(e_{2}-e_{4}, e_{4}-e_{5}\right)$. Then Φ^{\prime} is of type A_{2}. And the set of simple roots for Φ^{\prime} is $\Delta^{\prime}=\left\{e_{2}-e_{4}, e_{4}-e_{5}\right\}$.
Then $I_{\Phi}(w) \cap E^{\prime}=\left\{e_{4}-e_{5}, e_{2}-e_{5}\right\}$ since $w(4)>w(5)$ and $w(2)>w(5)$. So $\left.w\right|_{\phi^{\prime}}=231 \in W\left(A_{2}\right)$.

Separable elements in Weyl groups

Definition (Gaetz and G. 2019)

Let $w \in W(\Phi)$. Then w is separable if one of the following holds:

- Φ is of type A_{1};

Separable elements in Weyl groups

Definition (Gaetz and G. 2019)

Let $w \in W(\Phi)$. Then w is separable if one of the following holds:

- Φ is of type A_{1};
- $\Phi=\bigoplus \Phi_{i}$ is reducible and $\left.w\right|_{\Phi_{i}}$ is separable for all i;

Separable elements in Weyl groups

Definition (Gaetz and G. 2019)

Let $w \in W(\Phi)$. Then w is separable if one of the following holds:

- Φ is of type A_{1};
- $\Phi=\bigoplus \Phi_{i}$ is reducible and $\left.w\right|_{\Phi_{i}}$ is separable for all i;
- Φ is irreducible and there exists a pivot $\alpha_{i} \in \Delta$ such that $\left.w\right|_{\Phi^{\prime}} \in W\left(\Phi^{\prime}\right)$ is separable, where Φ^{\prime} is generated by $\Delta \backslash\left\{\alpha_{i}\right\}$ and either

$$
\left\{\alpha \in \Phi^{+}: \alpha \geq \alpha_{i}\right\} \subset I_{\Phi}(w) \text { or }\left\{\alpha \in \Phi^{+}: \alpha \geq \alpha_{i}\right\} \cap I_{\Phi}(w)=\emptyset .
$$

Separable elements in Weyl groups

Definition (Gaetz and G. 2019)

Let $w \in W(\Phi)$. Then w is separable if one of the following holds:

- Φ is of type A_{1};
- $\Phi=\bigoplus \Phi_{i}$ is reducible and $\left.w\right|_{\Phi_{i}}$ is separable for all i;
- Φ is irreducible and there exists a pivot $\alpha_{i} \in \Delta$ such that $\left.w\right|_{\Phi^{\prime}} \in W\left(\Phi^{\prime}\right)$ is separable, where Φ^{\prime} is generated by $\Delta \backslash\left\{\alpha_{i}\right\}$ and either

$$
\left\{\alpha \in \Phi^{+}: \alpha \geq \alpha_{i}\right\} \subset I_{\Phi}(w) \text { or }\left\{\alpha \in \Phi^{+}: \alpha \geq \alpha_{i}\right\} \cap I_{\Phi}(w)=\emptyset .
$$

Separable elements in Weyl groups

Definition (Gaetz and G. 2019)

Let $w \in W(\Phi)$. Then w is separable if one of the following holds:

- Φ is of type A_{1};
- $\Phi=\bigoplus \Phi_{i}$ is reducible and $\left.w\right|_{\Phi_{i}}$ is separable for all i;
- Φ is irreducible and there exists a pivot $\alpha_{i} \in \Delta$ such that $\left.w\right|_{\Phi^{\prime}} \in W\left(\Phi^{\prime}\right)$ is separable, where Φ^{\prime} is generated by $\Delta \backslash\left\{\alpha_{i}\right\}$ and either $\left\{\alpha \in \Phi^{+}: \alpha \geq \alpha_{i}\right\} \subset I_{\Phi}(w)$ or $\left\{\alpha \in \Phi^{+}: \alpha \geq \alpha_{i}\right\} \cap I_{\Phi}(w)=\emptyset$.

Compare the following equivalent definition of separable permutations.

Definition

Let $w \in \mathfrak{S}_{n}$. Then w is separable if one of the following holds:

- $n \leq 2$;
- there exists $1<m<n$ such that either
- $w_{1} \cdots w_{m}$ is a separable permutation on $\{1, \ldots, m\}$ and $w_{m+1} \cdots w_{n}$ is a separable permutation on $\{m+1, \ldots, n\}$;
- or $w_{1} \cdots w_{m}$ is a separable permutation on $\{n-m+1, \ldots, n\}$ and $w_{m+1} \cdots w_{n}$ is a separable permutation on $\{1, \ldots, n-m\}$.

Separable elements in Weyl groups

Example (separable elements in $W\left(B_{2}\right)$)

$$
\Phi^{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}\right\} . \Delta=\left\{\alpha_{1}, \alpha_{2}\right\} . \text { Dynkin diagram }
$$

Separable elements in Weyl groups

Example (separable elements in $W\left(B_{2}\right)$)

$$
\boldsymbol{\Phi}^{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}\right\} . \Delta=\left\{\alpha_{1}, \alpha_{2}\right\} . \text { Dynkin diagram } \bullet \bullet .
$$

Figure: Weak order of type B_{2} labeled by inversion sets, where separable elements are circled.

Properties of separable elements

Theorem (Gaetz and G. 2019)

Let $w \in W(\Phi)$ be separable. Then the upper order ideal V_{w} and the lower order ideal Λ_{w} in the (left) weak order are both rank symmetric and rank unimodal. Moreover, $F\left(V_{w}\right) F\left(\Lambda_{w}\right)=F(W(\Phi))$.

Properties of separable elements

Theorem (Gaetz and G. 2019)

Let $w \in W(\Phi)$ be separable. Then the upper order ideal V_{w} and the lower order ideal Λ_{w} in the (left) weak order are both rank symmetric and rank unimodal. Moreover, $F\left(V_{w}\right) F\left(\Lambda_{w}\right)=F(W(\Phi))$.

Proof sketch.

Use induction. Assume that Φ is irreducible.

Properties of separable elements

Theorem (Gaetz and G. 2019)

Let $w \in W(\Phi)$ be separable. Then the upper order ideal V_{w} and the lower order ideal Λ_{w} in the (left) weak order are both rank symmetric and rank unimodal. Moreover, $F\left(V_{w}\right) F\left(\Lambda_{w}\right)=F(W(\Phi))$.

Proof sketch.

Use induction. Assume that Φ is irreducible.
Let $\alpha_{i} \in \Delta$ be a pivot and $\Delta^{\prime}=\Delta \backslash\left\{\alpha_{i}\right\}$ which generates Φ^{\prime}. Show that

- if $\left\{\alpha: \alpha \geq \alpha_{i}\right\} \subset I_{\Phi}(w)$, then $F\left(V_{w}\right)=F\left(V_{\left.w\right|_{\Phi^{\prime}}}\right)$ and $F\left(\Lambda_{w}\right)=f \cdot F\left(V_{\left.w\right|_{\Phi^{\prime}}}\right)$,
- if $\left\{\alpha: \alpha \geq \alpha_{i}\right\} \cap I_{\Phi}(w)=\emptyset$, then $F\left(V_{w}\right)=f \cdot F\left(V_{\left.w\right|_{\Phi^{\prime}}}\right)$ and $F\left(\Lambda_{w}\right)=F\left(V_{\left.w\right|_{\Phi^{\prime}}}\right)$, where $f=F(W(\Phi)) / F\left(W\left(\Phi^{\prime}\right)\right)$.

Properties of separable elements

Theorem (Gaetz and G. 2019)

Let $w \in W(\Phi)$ be separable. Then the upper order ideal V_{w} and the lower order ideal Λ_{w} in the (left) weak order are both rank symmetric and rank unimodal. Moreover, $F\left(V_{w}\right) F\left(\Lambda_{w}\right)=F(W(\Phi))$.

Proof sketch.

Use induction. Assume that Φ is irreducible.
Let $\alpha_{i} \in \Delta$ be a pivot and $\Delta^{\prime}=\Delta \backslash\left\{\alpha_{i}\right\}$ which generates Φ^{\prime}. Show that

- if $\left\{\alpha: \alpha \geq \alpha_{i}\right\} \subset I_{\Phi}(w)$, then $F\left(V_{w}\right)=F\left(V_{\left.w\right|_{\Phi^{\prime}}}\right)$ and $F\left(\Lambda_{w}\right)=f \cdot F\left(V_{\left.w\right|_{\Phi^{\prime}}}\right)$,
- if $\left\{\alpha: \alpha \geq \alpha_{i}\right\} \cap I_{\Phi}(w)=\emptyset$, then $F\left(V_{w}\right)=f \cdot F\left(V_{\left.w\right|_{\Phi^{\prime}}}\right)$ and $F\left(\Lambda_{w}\right)=F\left(V_{\left.w\right|_{\Phi^{\prime}}}\right)$, where $f=F(W(\Phi)) / F\left(W\left(\Phi^{\prime}\right)\right)$.
The (strong) Bruhat order of the parabolic quotient $W^{\Delta^{\prime}}$ has f as its rank generating function. So f is a polynomial with symmetric and unimodal coefficient.

Properties of separable elements

Theorem (Gaetz and G. 2019)

Let $w \in W(\Phi)$ be separable. Then the upper order ideal V_{w} and the lower order ideal Λ_{w} in the (left) weak order are both rank symmetric and rank unimodal. Moreover, $F\left(V_{w}\right) F\left(\Lambda_{w}\right)=F(W(\Phi))$.

Proof sketch.

Use induction. Assume that Φ is irreducible.
Let $\alpha_{i} \in \Delta$ be a pivot and $\Delta^{\prime}=\Delta \backslash\left\{\alpha_{i}\right\}$ which generates Φ^{\prime}. Show that

- if $\left\{\alpha: \alpha \geq \alpha_{i}\right\} \subset I_{\Phi}(w)$, then $F\left(V_{w}\right)=F\left(V_{\left.w\right|_{\Phi^{\prime}}}\right)$ and $F\left(\Lambda_{w}\right)=f \cdot F\left(V_{\left.w\right|_{\Phi^{\prime}}}\right)$,
- if $\left\{\alpha: \alpha \geq \alpha_{i}\right\} \cap I_{\Phi}(w)=\emptyset$, then $F\left(V_{w}\right)=f \cdot F\left(V_{\left.w\right|_{\Phi^{\prime}}}\right)$ and $F\left(\Lambda_{w}\right)=F\left(V_{\left.w\right|_{\Phi^{\prime}}}\right)$, where $f=F(W(\Phi)) / F\left(W\left(\Phi^{\prime}\right)\right)$.
The (strong) Bruhat order of the parabolic quotient $W^{\Delta^{\prime}}$ has f as its rank generating function. So f is a polynomial with symmetric and unimodal coefficient.

The longest element $w_{0}^{J} \in W^{J}$ is separable, for which the above theorem is known, because of the rank-preserving decomposition $W \equiv W^{J} \cdot W_{J}$.

Classification via pattern avoidance

Classification via pattern avoidance

Definition (Pattern avoidance)

We say that $w \in W(\Phi)$ avoids pattern $w^{\prime} \in W\left(\Phi^{\prime}\right)$ if there does not exists a subspace $E^{\prime} \subset E$ such that $\Phi^{\prime} \simeq E^{\prime} \cap \Phi$ and $\left.w\right|_{\Phi^{\prime}}=w^{\prime}$.

Classification via pattern avoidance

Definition (Pattern avoidance)

We say that $w \in W(\Phi)$ avoids pattern $w^{\prime} \in W\left(\Phi^{\prime}\right)$ if there does not exists a subspace $E^{\prime} \subset E$ such that $\Phi^{\prime} \simeq E^{\prime} \cap \Phi$ and $\left.w\right|_{\Phi^{\prime}}=w^{\prime}$.

Theorem (Gaetz and G. 2019)

An element $w \in W(\Phi)$ is separable if (and only if) it avoids:

- 2413 and 3142 in $W\left(A_{3}\right)$,
- two patterns of length 2 in $W\left(B_{2}\right)$,
- and six patterns of length 2,3,4 in $W\left(G_{2}\right)$.

Classification via pattern avoidance

Definition (Pattern avoidance)

We say that $w \in W(\Phi)$ avoids pattern $w^{\prime} \in W\left(\Phi^{\prime}\right)$ if there does not exists a subspace $E^{\prime} \subset E$ such that $\Phi^{\prime} \simeq E^{\prime} \cap \Phi$ and $\left.w\right|_{\Phi^{\prime}}=w^{\prime}$.

Theorem (Gaetz and G. 2019)

An element $w \in W(\Phi)$ is separable if (and only if) it avoids:

- 2413 and 3142 in $W\left(A_{3}\right)$,
- two patterns of length 2 in $W\left(B_{2}\right)$,
- and six patterns of length 2,3,4 in $W\left(G_{2}\right)$.

Our proof is fairly technical, type-dependent and computer-assisted.

Classification via pattern avoidance

Definition (Pattern avoidance)

We say that $w \in W(\Phi)$ avoids pattern $w^{\prime} \in W\left(\Phi^{\prime}\right)$ if there does not exists a subspace $E^{\prime} \subset E$ such that $\Phi^{\prime} \simeq E^{\prime} \cap \Phi$ and $\left.w\right|_{\Phi^{\prime}}=w^{\prime}$.

Theorem (Gaetz and G. 2019)

An element $w \in W(\Phi)$ is separable if (and only if) it avoids:

- 2413 and 3142 in $W\left(A_{3}\right)$,
- two patterns of length 2 in $W\left(B_{2}\right)$,
- and six patterns of length 2,3,4 in $W\left(G_{2}\right)$.

Our proof is fairly technical, type-dependent and computer-assisted.

Open question

 Is there a nice proof?
Classification via pattern avoidance: type D_{n}, E_{n}

Here is the proof strategy.

Classification via pattern avoidance: type D_{n}, E_{n}

Here is the proof strategy.
The following lemma is heavily used in all steps of the proof.

Lemma

Let $w \in W(\Phi)$ where Φ is simply-laced and w avoids 2413 and 3142. For $\alpha, \beta, \gamma \in \Phi^{+}$such that $(\alpha, \beta)=(\beta, \gamma)=-1,(\alpha, \gamma)=0$, if $\alpha+\beta, \beta, \beta+\gamma \in I_{\Phi}(w)\left(\right.$ or $\left.\in \Phi^{+} \backslash I_{\Phi}(w)\right)$, then $\alpha+\beta+\gamma \in I_{\Phi}(w)$ (or $\left.\in \Phi^{+} \backslash I_{\Phi}(w)\right)$.

Classification via pattern avoidance: type D_{n}, E_{n}

Here is the proof strategy.
The following lemma is heavily used in all steps of the proof.

Lemma

Let $w \in W(\Phi)$ where Φ is simply-laced and w avoids 2413 and 3142. For $\alpha, \beta, \gamma \in \Phi^{+}$such that $(\alpha, \beta)=(\beta, \gamma)=-1,(\alpha, \gamma)=0$, if
$\alpha+\beta, \beta, \beta+\gamma \in I_{\Phi}(w)\left(\right.$ or $\in \Phi^{+} \backslash I_{\Phi}(w)$), then $\alpha+\beta+\gamma \in I_{\Phi}(w)$ (or $\left.\in \Phi^{+} \backslash I_{\Phi}(w)\right)$.

Step 1: consider only small roots ($\{0,1\}$-linear combination of simple roots) and show that they have a "pivot", using induction on the rank and relentless discovery of type A_{3} root subsystems.

Classification via pattern avoidance: type D_{n}, E_{n}

Here is the proof strategy.
The following lemma is heavily used in all steps of the proof.

Lemma

Let $w \in W(\Phi)$ where Φ is simply-laced and w avoids 2413 and 3142. For $\alpha, \beta, \gamma \in \Phi^{+}$such that $(\alpha, \beta)=(\beta, \gamma)=-1,(\alpha, \gamma)=0$, if
$\alpha+\beta, \beta, \beta+\gamma \in I_{\Phi}(w)\left(\right.$ or $\in \Phi^{+} \backslash I_{\Phi}(w)$), then $\alpha+\beta+\gamma \in I_{\Phi}(w)$ (or $\left.\in \Phi^{+} \backslash I_{\Phi}(w)\right)$.

Step 1: consider only small roots ($\{0,1\}$-linear combination of simple roots) and show that they have a "pivot", using induction on the rank and relentless discovery of type A_{3} root subsystems.
Step 2: show that whether $\alpha \in I_{\Phi}(w)$ depends only on its support, using induction on the height and computer search.

Classification via pattern avoidance: type D_{n}, E_{n}

Here is the proof strategy.
The following lemma is heavily used in all steps of the proof.

Lemma

Let $w \in W(\Phi)$ where Φ is simply-laced and w avoids 2413 and 3142. For $\alpha, \beta, \gamma \in \Phi^{+}$such that $(\alpha, \beta)=(\beta, \gamma)=-1,(\alpha, \gamma)=0$, if
$\alpha+\beta, \beta, \beta+\gamma \in I_{\Phi}(w)\left(\right.$ or $\in \Phi^{+} \backslash I_{\Phi}(w)$), then $\alpha+\beta+\gamma \in I_{\Phi}(w)$ (or $\left.\in \Phi^{+} \backslash I_{\Phi}(w)\right)$.

Step 1: consider only small roots ($\{0,1\}$-linear combination of simple roots) and show that they have a "pivot", using induction on the rank and relentless discovery of type A_{3} root subsystems.
Step 2: show that whether $\alpha \in I_{\Phi}(w)$ depends only on its support, using induction on the height and computer search.

Remark

$$
\left|W\left(E_{8}\right)\right|=696,729,600 \text { and }\left|\Phi_{E_{8}}^{+}\right|=120 .
$$

Classification via pattern avoidance: type $B_{n}\left(C_{n}\right)$

Classification via pattern avoidance: type $B_{n}\left(C_{n}\right)$

Step 1: show that the "type- A-like" subset behaves like type A.

Figure: The root poset for B_{4}; the type- A_{4}-like subset is enclosed in dashed lines.

Classification via pattern avoidance: type $B_{n}\left(C_{n}\right)$

Step 1: show that the "type- A-like" subset behaves like type A.

Figure: The root poset for B_{4}; the type- A_{4}-like subset is enclosed in dashed lines.

Step 2: show that whether $\alpha \in I_{\Phi}(w)$ depends only on its support, using induction on the height and bad patterns in B_{2}.

Connection with generalized permutahedron

Faces of the graph associahedron of (the graph of) the Dynkin diagram of Φ can be labeled by exactly half (or the other half) of the separable elements in $W(\Phi)$.

Connection with generalized permutahedron

Faces of the graph associahedron of (the graph of) the Dynkin diagram of Φ can be labeled by exactly half (or the other half) of the separable elements in $W(\Phi)$.

In particular, notice that the number of separable elements in type A_{n} is the same as in type B_{n}.

Connection with generalized permutahedron

Faces of the graph associahedron of (the graph of) the Dynkin diagram of Φ can be labeled by exactly half (or the other half) of the separable elements in $W(\Phi)$.

In particular, notice that the number of separable elements in type A_{n} is the same as in type B_{n}.

Open question

Can we label the faces of any graph associahedron analogously?

Thanks

Thanks: Alex Postnikov, Victor Reiner, and Anders Björner.

Thank you for listening!

