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The Sperner property

Let P be a ranked poset with rank decomposition P0 t P1 t · · · t Pr .

Definition

P is called k-Sperner if no union of its k antichains is larger than the
union of its largest k ranks.
P is called Sperner if it is 1-Sperner.
P is called strongly Sperner if it is k-Sperner for any k ∈ Z≥1.
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Figure: A Sperner poset (left) and a non-Sperner poset (right)
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The Sperner property

Further assume that P = P0 t · · · t Pr is

rank symmetric: |Pi | = |Pr−i | for all i ,
rank unimodal: there exists m such that
|P0| ≤ |P1| ≤ · · · ≤ |Pm| ≥ · · · ≥ |Pr−1| ≥ |Pr |.

Definition

An order lowering operator is a linear map D : CP → CP such that

D · x =
∑
ylx

wt(y , x) · y , x ∈ Pi .
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Dx = y + 2z

Figure: An example of an order lowering operator.
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The Sperner property (via linear isomorphism)

Recall P = P0 t · · · t Pr is rank symmetric and rank unimodal.

Lemma (Stanley 1980)

If there exists an order lowering operator D such that

Dr−2i : CPr−i → CPi

is an isomorphism for any 0 ≤ i ≤ br/2c, then P is strongly Sperner.

Together with the hard Lefschetz theorem in algebraic geometry, Stanley
proved the following:

Theorem (Stanley 1980)

Let (W ,S) be a Coxeter system for which W is a Weyl group. Then the
(strong) Bruhat order on W or any parabolic quotient W J is rank
symmetric, rank unimodal and strongly Sperner.
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The Sperner property (via sl2 representations)

Definition

An sl2 representation on P consists of the following data:

an order lowering operator D : CPi → CPi−1, ∀i ,
a raising operator U : CPi → CPi+1, ∀i ,
(U doesn’t need to respect the order)

a modified rank function H : CPi → CPi , x 7→ (2i − r)x ,

such that UD − DU = H.

In fact, U,D,H make CP an sl2 representation.

Theorem (Proctor 1982)

A ranked poset P admits an sl2 representation if and only if P is rank
symmetric, rank unimodal and strongly Sperner.
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The weak and strong Bruhat orders (on Sn)

For w ∈ Sn, let `(w) denote the usual Coxeter length.
The (right) weak (Bruhat) order Wn is generated by

w lW wsi if `(wsi ) = `(w) + 1, where si = (i , i + 1).

The (strong) Bruhat order Sn is generated by

w lS wtij if `(wtij) = `(w) + 1, where tij = (i , j).
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Figure: The weak and strong order on S3.
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The weak and strong Bruhat orders (on Sn)

Stanley (1980) showed that the strong Bruhat order (on any Weyl group)
is strongly Sperner, and has a symmetric chain decomposition for types
An,Bn,Dn.

Björner (1984) conjectured that the weak Bruhat order is strongly Sperner.

Stanley (2017) suggested an order lowering operator

D · w =
∑

`(wsi )=`(w)−1

i · (wsi ).

Conjecture (Stanley 2017)

For D defined as above, D(n2)−2i : C(Wn)(n2)−i
→ C(Wn)i has nonzero

determinant for 0 ≤ i ≤
(n
2

)
/2. Thus, the weak Bruhat order Wn is

strongly Sperner.
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An sl2 action on the weak Bruhat order Wn

Proposition (Gaetz and G. 2018)

The following data give an sl2 action on Wn:

the order lowering operator suggested by Stanley

D · w =
∑

`(wsi )=`(w)−1

i · (wsi ),

a raising operator defined by

U · w =
∑
wlSu

||code(w)− code(u)||L1 · u,

H · w =
(
2`(w)−

(n
2

))
· w .

Recall code(w)i = {j > i : w(j) < w(i)}.
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An sl2 action on the weak Bruhat order Wn
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Figure: The order lowering operator D and the raising operator U

The (unique) raising operator U that corresponds to D doesn’t need to be
supported on the strong order. It’s just nice combinatorics.

Corollary (Gaetz and G. 2018)

The weak order Wn on the symmetric group is strongly Sperner.
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Open Problems

Conjecture

The weak Bruhat order is strongly Sperner for any Coxeter group.

Conjecture

The weak Bruhat order of type A has a symmetric chain decomposition.

•123
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Example (Leclerc 1994)

The weak order of H3 doesn’t have a symmetric chain decomposition, but
is strongly Sperner.

Yibo Gao (MIT) The weak order is Sperner FPSAC 2019 11 / 21



Formulas by Hamaker, Pechenik, Speyer and Weigandt

Hamaker, Pechenik, Speyer and Weigandt resolved the full determinant
conjecture by Stanley.

Theorem (Hamaker et al. 2018, conjectured by Stanley 2017)

detD(n2)−2k =

((
n

2

)
− k

)
!#(Wn)k

k−1∏
i=0

((n
2

)
− k − i

k − i

)#(Wn)i
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Formulas by Hamaker, Pechenik, Speyer and Weigandt

Definition (Schubert Polynomials)

The Schubert Polynomials Sw , for w ∈ Sn, can be defined as follows:

Sw0 = xn−11 xn−22 · · · xn−1,
Sw = ∂iSwsi if `(w) = `(wsi )− 1,

where ∂i f = (f − si f )/(xi − xi+1) is the ith divided difference operator.

Proposition (Hamaker et al. 2018)

Let ∇ =
∑

i ∂/∂xi . Then

∇Sw−1 =
∑

i : `(w)=`(wsi )+1

i ·Ssiw−1 .

Corollary (Macdonald’s Identity)∑
reduced sa1 ···saN=w0

a1 · · · aN =

(
n

2

)
!.
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Padded Schubert Polynomials

Recall that {Sw}w∈Sn form a basis of spanC{xα : α ≤ ρ} where
ρ = (n − 1, . . . , 1) is the staircase partition.

Definition (Gaetz and G. 2018)

The padded Schubert polynomial S̃w is the image of Sw under

xα 7→ xαyρ−α.

Define the following linear operators

∇ =
n−1∑
i=1

∂

∂xi
yi , ∆ =

n−1∑
i=1

∂

∂yi
xi .

Proposition (Hamaker et al. 2018; Gaetz and G. 2018)

1 ∇S̃w−1 =
∑

i : `(w)=`(wsi )+1 i · S̃siw−1 .

2 ∆S̃w−1 =
∑

u: u≥Sw
||code(u)− code(w)||L1 · S̃u−1 .
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Padded Schubert polynomials
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Figure: Schubert polynomials and padded Schubert polynomials on S3

We see that (∑ ∂

∂yi
xi

)
(x1y1y2 + y21 x2) = 3x1y1x2 + x21y2.
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Weights on the strong Bruhat order

l
•

• •

•i

j

w(i) w(j) u(j) u(i)

∅ ∅

A

B

C

D

A

B

C

D

•

•

•

•
•

Figure: Weights on the strong Bruhat order

Let awlu = {k < i : w(i) < w(k) < w(j)} and similarly define bwlu,
cwlu and dwlu.
For example, when w = 4127653, u = 4157623,

awlu = 1, bwlu = 2, cwlu = 1, dwlu = 0.
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Weighted enumeration of maximal chains

If wt : E → R is a weight function on covering relations, where R is a
commutative ring, we can define, for x ≤ y ,

mwt(x , y) =
∑

C :x→y
maximal chain

∏
e∈C

wt(e).

Theorem (Gaetz and G. 2019)

Let zA, zB , zC , zD be indeterminates and define a weight function on the
covering relations on the strong Bruhat order of Sn as follows:

wt(w l u) = 1 + zAawlu + zBbwlu + zCcwlu + zDdwlu.

Then if {zA, zB , zC , zD} = {0, 0, z , 2− z} as multisets,

mwt(id,w0) =

(
n

2

)
!.
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Weighted enumeration of maximal chains

Let wt(w l u) = 1 + zAawlu + zBbwlu + zCcwlu + zDdwlu.
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1 + zB

Figure: Weights on covering relations of S3

Then mwt(123, 321) = 4 + zA + zB + zC + zD , which is 6 = 3! if
{zA, zB , zC , zD} = {0, 0, z , 2− z}.
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Weighted enumeration of maximal chains

Theorem (Gaetz and G. 2019)

Let zA, zB , zC , zD be indeterminates and define a weight function on the
covering relations on the strong Bruhat order of Sn as follows:

wt(w l u) = 1 + zAawlu + zBbwlu + zCcwlu + zDdwlu.

Then if {zA, zB , zC , zD} = {0, 0, z , 2− z} as multisets,

mwt(id,w0) =

(
n

2

)
!.

Special cases:
1 (zA, zB , zC , zD) = (0, 1, 0, 1), wt(w l wtij) = j − i ,
2 (zA, zB , zC , zD) = (0, 0, 2, 0), wt(w l u) = ||code(w)− code(u)||L1 .

The “j − i” weight is commonly known as the Chevalley weight, which is
investigated by Stembridge (2002) and further by Postnikov and Stanley
(2009). It is still open to find a combinatorial proof.
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Thanks

Thanks: Alex Postnikov and Richard Stanley.

Thank you for listening!
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