Computer Search for Finite Saturated Pure Partial Planes of Certain Orders

Yibo Gao (Electrical Engineering and Computer Science), Faculty Advisor: Henry Cohn Research and Innovation Scholar

Project Background

The open problem of the existence of Finite Projective Planes of certain orders has interested mathematicians for decades.

Definition: A Finite Projective Plane (FPP) of order n is a collection of $n^{2}+n+1$ lines and $n^{2}+n+1$ points, such that:

- Every line contains $n+1$ points
- Every point is on $n+1$ lines
- Any two distinct lines intersect at exactly 1 point
- Any two distinct points lie together on exactly 1 line

L1 $=\{1,2,3\}$ L2 $=\{1,4,5\}$ L3=\{1,6,7\} L4 $=\{2,4,7\}$ L5 $=\{2,5,6\}$ L6 $=\{3,4,6\}$ L7=\{3,5,7\}

Finite Projective Plane of order 2

Technical Approach

The search space is too large!!
The number of possible lines is exponential in n , and the number of possible combinations of those lines is exponential in exponential in n. Ridiculously large!
Need to do Depth First Search (DFS) combined with clever
ways to use symmetry.

Properties about some SPPP

Here is an example of a SPPP of order $n=4$, size $m=9$. Its core structure:

ABC, DEF, RST are all regular triangles. Then what is the ratio $A E / A F$ if we'd like to keep the same ratio in each layer and keep on going inside?

Research Problem

My Project focuses on a highly related mathematical object, which has not been studied before.

Definition: A Saturated Pure Partial Plane (SPPP) of order n and size m is a collection of m lines and $n^{2}+n+1$ points, such that:

- Every line contains $n+1$ points
- Any two distinct lines intersect at exactly 1 point
- No more lines can be added to this collection of lines such that the above two conditions hold.

The GOAL is to
Find all SPPP for small orders (up to isomorphism)

- Study their properties
- Generalize to higher orders
 L1 $=\{1,9,10,3\}$
$L 2=\{3,6,7,5\}$
$\mathrm{L} 3=\{5,8,9,2\}$ $L 4=\{2,10,6,4\}$
$L 5=\{4,7,8,1\}$
Example of a SPPP of order 3 , size 5

Current Results \& Observations				
order	Size of FPP (if exists)	$\begin{aligned} & \text { Largest size } \\ & \text { Sppp } \\ & \text { (not FPP) } \end{aligned}$	Smallest size SPPP	Number of SPPPs
2	7	X	7	1
3	13	5	5	2
4	21	13	9	4
5	31	- 19	7	≥ 99
A FPP is always a SPPP, and is the largest size SPPP.				

We have finished the search for cases of order $\mathrm{n} \leq 4$ and got partial results for $n=5$. Some observations:

- If n is odd, the smallest size SPPP has size $n+2$. (Proved)
- There is a huge gap between the size of the FPP and the size of the largest SPPP, which is not a FPP.

Future Work

Technically, to search for all SPPPs of some higher orders ($n=5,6$), we need to further exploit symmetry since the search space grows really fast.

Theoretically, there are many meaningful asymptotic questions to ask, as n tends to infinity, what is:

- the approximate number of SPPPs?
- the ratio of the size of the largest SPPPs over $n^{2}+n+1$?
- The ratio of the size of the largest SPPP that is not a FPP over $n^{2}+n+1$?

