Computer Search for Finite Saturated Pure Partial Planes of Certain Orders

Yibo Gao (Electrical Engineering and Computer Science), Faculty Advisor: Henry Cohn Research and Innovation Scholar

Project Background

The open problem of the existence of Finite Projective Planes of certain orders has interested mathematicians for decades.

Definition: A *Finite Projective Plane (FPP) of order n* is a collection of n²+n+1 lines and n²+n+1 points, such that:

- Every line contains n+1 points
- Every point is on n+1 lines
- Any two distinct lines intersect at exactly 1 point
- Any two distinct points lie together on exactly 1 line

Research Problem

My Project focuses on a highly related mathematical object, which has not been studied before.

Definition: A *Saturated Pure Partial Plane (SPPP) of order n and size m* is a collection of m lines and n²+n+1 points, such that:

- Every line contains n+1 points
- Any two distinct lines intersect at exactly 1 point
- No more lines can be added to this collection of lines such that the above two conditions hold.

The GOAL is to Find all SPPP for small orders (up to isomorphism) Study their properties

Finite Projective Plane of order 2

Generalize to higher orders

Example of a SPPP of order 3, size 5

Current Results & Observations

order	Size of FPP (if exists)	Largest size SPPP (not FPP)	Smallest size SPPP	Number of SPPPs
2	7	Х	7	1
3	13	5	5	2
4	21	13	9	4
5	31 °	° <u> </u>	7	≥99
A FPP is always a SPPP, and is the largest size SPPP.				

We have finished the search for cases of order n≤4 and got partial results for n=5. Some observations:

- If n is odd, the smallest size SPPP has size n+2. (Proved)
- There is a huge gap between the size of the FPP and the size of the largest SPPP, which is not a FPP.

Properties about some SPPP

Here is an example of a SPPP of order n=4, size m=9. Its **core structure**:

R

ABC, DEF, RST are all regular triangles. Then what is the **ratio AE/AF** if we'd like to keep the same ratio in each layer and keep on going inside?

The answer is $\sqrt[3]{2}$. A nice number coming out of nowhere!!

Future Work

Technically, to **search for all SPPPs of some higher orders** (n=5,6), we need to further exploit symmetry since the search space grows really fast.

Theoretically, there are many meaningful asymptotic questions to ask, as n tends to infinity, what is:

- the approximate number of SPPPs?
- the ratio of the size of the largest SPPPs over n²+n+1?
- The ratio of the size of the largest SPPP that is not a FPP over n²+n+1?

