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1 Preliminaries from Geometric Measure Theory

1.1 Theory of varifolds
Definition. Let A C R"™* We define the n-dimensional Hausdorff measure

H"(4) = lim H3(4),

where for each 6 > 0, H} is defined by taking H}(0) = 0 and

n . > diam C;\"
Ha(A)—wnlnf;< 5 ) ,

where w;,, = Vol(B"(0)) and the infimum is taken over all (J; C; such that diamC; < ¢ and A C

Definition. Let p be an outer measure on R** and let € R*™*. We define the n-dimensional
upper and lower densities ©*"(u, z), OF (1, z) by

w0 p(By()
O™ z) = p—>0p H"™(By(x))

e i(B()
O (1) = limint 2o

If 0" (u,z) = ©%(p, x), then the common value will be denoted O™ (u, ).

Let (M™, g) be a n-dimensional smooth Riemannian manifold embedded in some RY. We denote
by Gi(M) the Grassmannian bundle of un-oriented k-planes over M. That is,

Gr(M) :={(z,P) :x € M,P C T, M is a k-dimensional subspace}.
When U C M, we have Gi(U) = G(M)|y.
Definition. A k-varifold V on U is a Radon measure on G (U).

Denote Vi (U) := {all k-varifolds}. Given V' € Vi (U), there exists a Radon measure py on U
defined by py (A) := V(r~1(A)), where A C U. We call py the weight of V and ||V||(U) := uy (U)
(or M(V)) the mass of V. The following lemma is a compactess result for k-varifolds.

Lemma 1.1. The set A C V;(U) such that M(V) < C < oo is satisfied for all V' € A is weakly
compact. When U is closed, M : A — R>( is continuous w.r.t. the weak topology.

Definition. A H*-measurable set M C U™ < R" is countably k-rectifiable if M C U;io M; such
that H*(Mp) = 0 and M; C F;(A;) for all j > 1, where F; : A; C RF — R" is Lipschitz for each j.
Definition. Let M C U™ C R” be a H*-measurable set and let § > 0 be a locally H{*-integrable

function on M. We say that P¥ < R™ is an approximate tangent plane of M at = w.r.t. 6 if
Vf e C(R),

lim F)0(x 4+ \y)dHE (y) / f(y)dH*(y
A—0 nxA(M)

where 7, » : R" — R" is the blow-up at x defined by 1, \(y) = (y — x)/A.
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The following theorem gives the important characterization of countably k-rectifiable sets in
terms of existence of approximate tangent planes w.r.t. a multiplicity function.

Theorem 1.2 (First Rectifiable Theorem). Let M C U™ C R" be a H*-measurable set. M is
countably k-rectifiable iff there exists a locally H*-integrable function § > 0 on M and a unique
approximate tangent plane T, M for HF-a.e. x € M.

Lemma 1.3. Given a countably k-rectifiable set M < U and a locally H*-integrable function 6 > 0
on M, we can define a k-varifold V := V (M, ) such that

V(M,80)(A) :/ 0(z)dH* (z), VYA C Gp(U).
{zeM:(z, T, M)A}

A natural question to ask is when a general varifold is rectifiable, i.e. when a measure is given
by Lipschitz subsets. This will be answered later by the rectifiability theorem.

Now, we move on to discuss the first variation of varifolds. Let U C R™ and let V' C Vi (U).
Suppose that ¢ : U — U’ 2 U is a diffeomorphism. We may view ¢ as a map ¢ : Gx(U) — Gg(U)
defined by ¢(z,S5) = (¢(x),dpz(S)), where S is a k-plane. Note that dyg|s is a n x k matrix
while (dyz|s)* is a k x n matrix. Hence, (dp.|s)* o dpy|s is a k x k matrix and the Jacobian of
d90w|S 0S5 — d‘Pm(S) is )

Jp(x,S) = det[(dpz|s)* o dps|s]2.

Then the pushforward of V' is defined as

(p£V)(A) ::/ ” Jo(x,S)dV(z,S), VA C Gr(U).
o

Given X € X.(U) a compactly supported smooth vector field in U, we have the local flow
X i (—€,€) x U — U with £¢X(¢,p) = X(¢X(t,p)). Then the first variation of V can be explicitly
computed as

d .
oV () = — ()£ V|| —/ divg XdV (z, S).
t=0 Gi(U)
Here, divs X := Y% (V.. X,7;), where {r1,...,7;} forms an orthonormal basis of S.

Remark. Recall that for minimal submanifolds ¥¥ < U, we have the first variation formula

d

Vol(oX (%)) = / divy, s X dVol.

t=0 b

We present a proof of the first variation formula of varifolds. Let (z,5) € Gx(U) and suppose
that {r1,..., 7} forms an orthonormal basis of S. Note that ¢} (z) = = + tX(z) + o(t?) and
(D~ o) = T]l- +tD7, X!+ o(t?). A simple calculation leads to

((dei* |s)* 0 dip¥ |s)ij = (Drpi ) - (Dryipit)!
— (TZZ + tDTin + 0(t2))(7']l- + tDTle + 0(t2))
= 6ij + t(Ti . DTjX + 75 D.,-ZX) + O(t2)

and

N

d d
S det[(def[s)* 0 dgs]? = | [1+Te(ri - Dy X + 75 - Dy X))
dt|—g dt|—g
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d
== [1+2tdivg X +o(t)]2
dt|,_q
=divg X,
which complete the proof.
Definition. V € V;(U) is stationary in U if V(X)) =0, VX € X.(U).
Remark. Stationary varifolds can be viewed as generalization of minimal surfaces.
Example 1.4. Triple junction surfaces are stationary.
Recall that given a minimal submanifold Yk < R™ with z¢ € Y, we have for all B,(xzg) C

B,(z0) C R",

dVol.

Vol(By(z0) N E)  Vol(By(z0) NE) / |(x — 20)N]?

p* ot By )\Bo(zo)ns [T — 0[P

The following theorem provides a monotonicity formula for varifolds analogous to that for minimal
submanifolds.

Theorem 1.5 (Monotonicity Formula). Let V' € Vi (U) be stationary in U. For all B;(0) C B,(0) C
U, we have

pv(B,(0)) — pv(Bs(0)) / |Dgrf?

o ot Gr(Bo(ON\Bs(0)) T

dv(z,S).

Here, D& = Pg.i(Vr), where S+ is the orthogonal complement of k-plane S C R”.
S S

Corollary 1.6. Let V € V;(U) be stationary in U. Then, O(||V]|, z) exists everywhere in U and is
bounded.

Definition. V € Vi (U) is said to have locally bounded first variation in U if for each W CC U,
there is a constant C' > 0 such that [V (X)| < Csupy | X]| for all compactly supported continuous
vector fields X in U.

Theorem 1.7 (General Monotonicity Formula). Suppose that V' € Vi (U) has locally bounded first
variation in U. Let x € U such that there is 0 < py < dist(z,0U) and A > 0 with

[[0V[(By(x)) < Apv (By()), 0< p < po.
Then for all 0 < 0 < p < po,

| Dgr|®

Or (|||, z) < eV Be@)) _ appv(Bo(@)) 1 :

= k -

( / v (y, S).
WEo Wgp Wk JG(Bp(x)\Bo(x)) T

Definition. Given V,W € Vi (U), the varifold distance between V' and W is defined as
F(V,W) :=sup / f(z,8)dV(zx,S) / f(z,8)dW (z,S) ¢,
G(U) Gr(U)

where the supremum is taken over all f € Lip(Gy(W)) with ||f||cc <1 and Lip(f) < 1.



1.1 Theory of varifolds 5

Definition. Let V € Vi (U) and let € U. We denote by VarTan(V, x) the varifold tangent at z,
which is the set of all weak limits

VarTan(V,z) := {C € Vi, (R") : C (e )2V}

= lim
)\i~>0
Let V; = (n2.,)4V and suppose that x is any point of U such that lim,_,0 p'=*|[6V||(B,(z)) = 0.

By the lower semicontinuity of the first variation, we have

1C|(By(x)) = lim inf [[Vi] | (B, (x)) = lim inf \=(|8V][ (B, (x)) = 0.

This shows that C' is stationary in R¥*. One may further deduce from definition of C' that

NCNBO) _  WVAllBo) _ oy VB _ vy .

wipk Ai—0 wypk Xm0 wpAFpk

Since 6C' = 0, the monotonicity formula implies that

DJ_ 2
/ | S;' dC(z,8) =0, Vp> 0.
Gi(B,(0) |7l

Then Pg.i (z) = 0 for all (x,S) € spt C. By choosing an appropriate vector field X and substituting
into the ODE obtained by the first variation, one may conclude that

M(Cllmoa(4)) = lIC]|(A), YA C R, x> 0.

Theorem 1.8 (Rectifiability Theorem). Let V' € Vi (U) be stationary in U. If @%(||V|[,z) > 0 for
||V]|-a.e. @ € U, then V is a k-rectifiable varifold. Indeed, V = V(M,#), where M = {z € U :
OF(||[V||,z) > 0} is a countably k-rectifiable set and 6 > 0 is a locally H*-integrable function on M.

Corollary 1.9. Assume ©%(||V]|,z) > Cy > 0 for ||V|]-a.e. € U. Then C is a k-rectifiable
varifold. Moreover, (1yx)#C = C.

Theorem 1.10 (Constancy Theorem). Let V € Vi (U) be stationary in U and let M* < U be a
connected, C*®-embedded submanifold. If spt ||[V|| € M*, then V = ¢- V(M).

Theorem 1.11 (Compactness Theorem). Let {V;} be a sequence of k-varifolds each stationary in U.
Suppose that ©F(||Vj]|,z) > 1 for ||Vj]|-a.e. € U and sup,{||V}||(K)} < C(K),VK cC U. Then a
subsequence of {V;} converges weakly (in the sense of Radon measures) to some k-rectifiable varifold
V € Vi(U). Moreover, we have ©%(||V||,z) > 1 for ||V|[-a.e. € U and the lower semicontinuity
|6V][(W) < liminf;_, ||6V;]|(W) for each W CC U.

Remark. An important additional result (also due to Allard [!]) is the Integral Compactness The-
orem, which asserts that if all V; above are integer multiplicity, then V' is also integer multiplicity.
We refer to [21] for a detailed proof.

Definition. Given V,W € Vi (U), the varifold distance between V and W is defined as

F(V,W) = sup { | fasaves) - f(w,S)dW(w,S)}-
JELip(Gr(U)),||floo<1,Lip f<1 Gr(U) Gr(U)

Remark. On {V € V(M) : ||V]| € L < oo}, the weak topology coincides with the F-distance
topology.
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Theorem 1.12 (Maximum Principle). Let V' € Vi (U) where U C R" is open. Suppose that
spt ||V || € Bs(0) \ B:(0) with 0 < ¢t < s and Bs(0) C U. Then spt ||V|| N dBs(0) = 0.

Corollary 1.13. Suppose that spt ||V|| N 9Bs(0) # 0. Then spt ||V|| N (U \ Bs(0)) # 0.

Theorem 1.14 (Sard Theorem). Let V' € Vi (U) be stationary in U and k-rectifiable. Let p € U
and let B,(p) cC U. Consider

T ={yespt||V||NBy(p) : T,V M TyaBd(w,y)(m)}.

Then T is a dense subset of spt ||V|| N B,(p).

1.2 Sets of locally finite perimeters

Definition. © C R"*! has locally finite perimeter if the characteristic function yq is of bounded
variation in U, that is, VX € XL(U), supp |X| C W CcC U,

/ div XdH™ ™ < C(W)sup | X]|.
Q

If we view the integral as a functional on X : U — R™! which is bounded on compact subsets,
then by the Riesz representation theorem, there is a Radon measure pgg = |Dxq| in U and a
poo-measurable vector field v = (v1,...,v,41) with |v| =1 for ugg-a.e. x in U such that

/ div XdH" ™! = / X -vdppa, VX € XL(U).
Q U
If 0C is C'*°-embedded, by the divergence theorem, we have

/ divXdH" ' = [ X - vgdH"™.

Q o0

This implies that pgo = H™ L 0Q and vgg is the inward unit normal to 9€2. The bounded variation
condition of xq in U reduces to H"(OQNW) < C(W). In general, we interpret ugq as a “generalized
boundary measure” and v as a “generalized inward unit normal.”

Definition. Let € R™"! be a set of locally finite perimeter. Define the reduced boundary 9*§) in
U by

) v(@)duag
o0 = {xEU:lim I,

exists and has length 1 3 .
20 pon(By()) ¢ }

By the density theorem, we have ugo(U \ 0*Q) = 0. Hence, pugo = pon L 0*Q. The following
theorem gives a characterization of 0*() as a countably n-rectifiable set.

Theorem 1.15. Suppose that  C R"*! has locally finite perimeter in U. Then 0*(2 is countably
n-rectifiable and pgn = H" L 0*Q. At each z € 0*(), the approximate tangent plane T, exists, has
multiplicity 1, and is given by

T, = {y € R"" .y . v(x) = 0}.

Definition. Denote the set of all sets with locally finite perimeter in U by C(U). A set Q € C(U)
is called a Caccioppoli set in U.
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Theorem 1.16 (Compactness Theorem). Given {€2;} C C(U) with

sup poa, (W) < C(W) < oo, VW CCU,
J

then a subsequence {Q;/} converges weakly to a limit 0, € C(U) in the sense that

® X0, —* Xau i Li, (U H");
® v, dla0; = Vo, QIO -

Moreover, we have the lower semicontinuity paq., (W) < liminf; . paq, (W) for each W CC U.

Remark. The first condition is equivalent to H" ™ (Q; AQu) = Vol(Qj AQs) — 0, where A is the
symmetric difference of two sets. The second condition is equivalent to [0€2;] converges as currents
to [0Qs], where [0€)] is in the dual space of A"(U) and given w a n-form and {e1,...,e,} an
orthonormal basis of 1,02,

00 (w) = /m@ Aeee At w)dHM,

Example 1.17. Due to the cancellations, the sequence €2; on left converges as Caccioppoli sets/currents
to © on right. However, 0€); does not converge to df2 in the sense of measure.

’ canted
—>| /| =
/ Z.—bbﬂ

7 7/ >
/ //.S'Lj_ JS / J /7

Definition. Given any 2 € C(U), the mass norm of 2 and 92 are defined to be

M(Q) = / dH™ = Vol(QNT), M(0Q) = / dH" = ppa(U).
QNU o0Nu

For each W CC U, define

My (Q) = / dH™ ™ = Vol(QN W), My (09) = / dH" = paa(W).
QNW oONw

Moreover, given any pair 21, € C(U), we set
M99, 00) = M(921 — 9€y).
Remark. If M(0€Q;,08) << 1, then Vol(0€1 AJs) is very small.
Definition. Given any pair Q;,Qs € C(U), the flat metric is defined as
F(Qq,Q9) := F(0Q,002) = inf{M(T) + M(S) : 0 — I =T + 05},

where the infimum is taken over all integer rectifiable n-current 7' and integer rectifiable (n + 1)-
current S such that S is a filling of 91 — 9 — T
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By considering S = 0 in the definition of flat metric, we immediately obtain the following
corollary, which suggests that flat metric is weaker than mass norm.

Corollary 1.18. F(9€1,02) < M(9Q; — 0Q2).

Proposition 1.19. There exists § << 1 such that if ©Q;,Qy € C(U) with ©Q;,Qy C U and
F(Q1,Q9) < §, and moreover if M(Q; — Q9) < Vol(U)/2, then

.F(Qh Qg) = min{M(QlAﬂg), M(U \ (Qlﬁﬁg))}
Definition. Given any 2 € C(U) with Q C U, the flat norm is defined as
F(Q) :=F(2,0) = min{Vol(Q), Vol(U \ 2)}.

The following proposition indicates that under certain condition, convergence as Caccioppoli sets
is equivalent to convergence in flat metric.

Proposition 1.20. On the set {90 : Q € C(U),M(0U) < L < oo}, we have
Qj = Qoo = F(Q2;,00) = 0.

Recall that if Q € C(U), then the reduced boundary 9*Q is a countably n-rectifiable set. More-
over, at each x € 0*(), the approximate tangent space T, exists and has multiplicity 1. Then it is
natural to define a n-rectifiable varifold corresponding to the pair (9*$2,6 = 1).

Definition. Given Q € C(U), we denote by |02 the n-rectifiable varifold induced by the countably
n-rectifiable set 0*(Q.

Definition. Given any pair Q;,Qs € C(U), the F-metric is defined as
F(Q1,Q2) = F(,Q2) + F(|0], |092]),
where F denotes the varifold distance.
Remark. By definition, 2; — Qo under the F-metric <= Q; — Qo weakly and |0Q;| — [0Q|.

Among all Caccioppoli sets in U, we pay special attention to those that are locally mass minimiz-
ing. Such sets possess good regularity results, which have been established by De Giorgi, Federer-
Fleming, Almgren, and Simons through a series of works.

Definition. Say that Q € C(U) is locally mass minimizing if Vp € U, 36 > 0 such that VQ' € C(U)
with Q'AQ CC B,(p), then M(99) < M(9¢Y).

Theorem 1.21 (De Giorgi, Federer-Fleming, Almgren, Simons, see [21]). Suppose that Q € C(U)
is locally mass minimizing in U. Then

e For3<(n+1) <7, 00isa (C>-embedded minimal hypersurface;

e Forn+1 =8, 00 is a C*-embedded minimal hypersurface away from discrete singular points;

e Forn+1 > 8, 00 is a C*°-embedded minimal hypersurface away from a singular set Sing(X)
of Hausdorff codimension 7.
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1.3 Mod-2 flat chains

Let (M™*! g) be a (n + 1)-dimensional closed Riemannian manifold. Assume that (M, g) is
isometrically embedded in some Euclidean space RY. The spaces we will work with are:

e the space P,(RY; G) of k-dimensional polyhedral chains in R with coefficients in G;

e the space Iy(M;Zs) of k-dimensional flat chains in R with coefficients in Zs and support
contained in M;

o the space Zi(M;Zs) of flat chains T' € I(M;Zs) such that 0T = 0.

For every P € Py(RY;G), we may write P = Zi:l a;[P;], where a; € G and {Pi,..., P} are
disjoint polyhedrons. Define the mass norm

l
M(P) =Y aH"(P)
=1

and the flat norm
F(P):=inf{M(R) + M(Q) : P = R+ 0Q, R € Px(RY;G),Q € P, (RY; &)}

Since F defines a metric in Py (RY;G), we may let Cx(RY; G) be the F-completion of Py (RY;G).
Under this definition, Cx(R™; G) consists of flat k-chains over G.

When coefficients are taken to be Zo, we say that a flat k-chain T is rectifiable if T is the limit
of C' flat k-chains in the M-topology. Moreover, we have the following rectifiability result.

Theorem 1.22. Every flat k-chain T" with coeflicients in Z, of finite mass is rectifiable.

Since every T € I,,11(M;Zs) has finite mass and finite boundary mass, we deduce that
L1 (M;Zo) = C(M).
The following lemma is a direct corollary of the constancy theorem.
Lemma 1.23. 0:1,41(M;Zy) =C(M) — Z,(M;Zs) is a double covering space.

Lemma 1.24. 0 satisfies lifting properties, that is, given a map o : I¥ = [0,1]* — Z,,(M;Zs) and
Up € C(M) such that 90Uy = o(0), there exists a unique map U : I¥ — C(M) such that U(0) = Uy
and OU (t) = o(t).

With the lemmas above, we are ready to prove the Almgren’s isomorphism theorem for codi-
mension 1 case.

Theorem 1.25 (Almgren’s Isomorphism Theorem, |2, 15]). Z,(M;Z2) is weakly homotopic to
RP>.
Proof. Let f : M — R be a Morse function with f(M) = [0, 1]. Define amap ® : RP*>* — Z,(M;Zs)
by

®([ag, a1, . ..,ax,0,0,...]) = 0{zx :ap+ a1 f(z) + - + apf(x)* < O}

This map is well-defined as both sides are scaling invariant. We claim that ® is a weak homotopy

equivalence, i.e.
D, : (RP™, %) = mp(2,(M;Z3),0)

are isomorphisms for all k.
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To start with, we show that I,,41(M;Z2) = C(M) is contractible. Define the map H : [0, 1] X
C(M)— C(M) by
H(t,Q)=QL{z: f(x) < t}.

Note that ¢ € [0,1] — QL {z: f(x) < t} is continuous in the flat norm. One can further check that
H is continuous and hence a homotopy between a constant map and the identity map. This shows
that C(M) is contractible.

Since RP* is an Eilenberg-MacLane space with 71 (RP*, %) = Zy and 7, (RP*°, %) = 0 for all
k > 2, it is sufficient to show that 71 (2, (M;Zs),0) = Ze and 7 (Z,(M;7Z3),0) = 0 for all k& > 2.
First, consider the case k > 2. Let ¥ : I¥ — Z,(M;Zs) be a map with ¥(9I¥) = 0. By the
lifting properties, there exists a unique map U : I* — C(M) with U(0) = () and oU(t) = ¥(t).
Moreover, we have U(9I*) = (). Since C(M) is contractible, U is homotopic to a constant map
relative to OI*. This implies that ¥ is homotopic to a constant map relative to OI* downstairs, i.e.
T (Zn(M;Z2),0) = 0.

Now, consider the case k = 1. Let o : [0,1] — Z,(M;Z2) be a map with ¢(0) = o(1) = 0. By
the lifting properties, there exists a unique map U : [0,1] — C(M) with U(0) = 0 and U (t) = o (t).
Since OU(1) = o(1) = 0, we have U(1) = ) or U(1) = M by the constancy theorem. Note that
U(1) = () < the lift of o stays as a loop upstairs <= ¢ is homotopic to a constant map relative
to {0,1}. If U(1) = M, then o is not nullhomotopic downstairs and o : [0,1] = Z,(M;Z3) defined
by o(t) = o{z : f(x) < t} generates m1(Z,(M;Zs),0) = Zs. In this case, ®|g1 : ST — RP>® —
Z,(M;Zs) is given by

O ([cos(mh),sin(7h), 0,0, ...]) = d{cos(wh) + sin(7h) f < 0} = O{f < —cot(nh)},

which induces an isomorphism on fundamental groups. This completes the proof that ® is a weak
homotopy equivalence. O

Corollary 1.26. The cohomology ring of Z,,(M;Zs) w.r.t. Zy coefficients is

H*(Z2,(M;Z2); Z2) = Za[Al,
where ) is the generator of H'(Z,,(M;Zs); Zs) = Z» (the fundamental cohomology class).
Remark. If o : St — Z,(M;Zs) is a loop, then

X -[0] # 0 <= o is homotopically nontrivial.

2 Almgren-Pitts min-max theorem

2.1 Sweepout and width

Theorem 2.1 (Almgren-Pitts Min-max Theorem [3, 17, 18]). Let (M™!, g) be a closed Riemmanian
manifold. Then there always exists a closed minimal hypersurface 3™ such that outside a singular
set Sing(X) of Hausdorff codimension 7, it is C*°-embedded. In particular, if 3 < (n+1) <7, ¥ is
c*=.

Definition. A sweepout (s.w.) is a map ¢ : [0,1] — (C(M), F) such that

e (0 is continuous w.r.t. the F-metric;

e ©(0) =0 and (1) = M.
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Example 2.2. Let f : M — R be a Morse function. Then ¢ : [0,1] — C(M) defined by
t — f71(]0,t]) is a sweepout. Note that ¢ is continuous w.r.t. F because t +— Vol(f~1([0,1]))
is continuous, and ¢ is continuous w.r.t. F because ¢ — dH"|s-1() is continuous.

Lemma 2.3. Given any sweepout ¢ : [0,1] — C(M), F), it is homotopic under the F-metric to the
sweepout by a Morse function.

Proof. Recall that in the proof of Theorem 1.25 we have shown that (C(M), F) is contractible. Since
a F-homotopy can be interpolated to a F-homotopy, we conclude that (C(M ), F) is contractible. [

Definition. The width of (M"*!, g) is defined as

W:= inf max M(9p(z)).

v is a s.w. z€[0,1]
Using the following lower bound for the isoperimetric profiles for small volumes, we show that
the width is always positive.
Lemma 2.4. There exists constants Cy > 0 and Vy > 0 depending only on M such that
Area(0Q) > Cjy Vol(Q)nLH, whenever Q € C(M) and Vol(2) < Vj.
Corollary 2.5. We have W > 0.

Proof. We shall present a heuristic proof here. Let ¢ : [0,1] — (C(M),F) be a sweepout. Then the
map = — Vol(p(z)) is continuous and there exists xy € (0,1) such that Vol(p(z¢)) = Vo. By the
isoperimetric profiles for small volumes, we have

n

z€|0,

Since ¢ is arbitrary, we conclude that W > 0. O
Definition. A minimizing sequence of sweepouts is a sequence {¢; : [0,1] — C(M)} such that
max,co,1] M(0¢j(z)) — W as j — oo.
Definition. The critical set of {¢;} is given by

Cl{pj}) = AV € V(M) : V = lim [9ipj,(a;)| with M(dj,(x:)) — W

Theorem 2.6. For every minimizing sequence {cp;-}, there exists another pull-tight minimizing
sequence {(;} that is homotopic to ¢} in (C(M),F) such that

e every V € C({yp;}) is stationary;
e there exists Voo € C'({¢;}) such that Vo = 22:1 m;[%;], where {X1, ..., %} are disjoint closed,
C*°-embedded minimal hypersurfaces away from a singular set of Hausdorff codimension 7.

2.2 Tightening process

In this section, we construct the tightening map adapted to the area functional (i.e. pseudo-
gradient flow of M over V,,(M)) and prove that after applying the tightening map to a minimizing
sequence, every element in the critical set is stationary.

Given the width defined above and A = {V € V(M) : ||V||(M) < W + 1,V is stationary},
the existence of a pseudo-gradient flow of M over V,, (M) is guaranteed by the following proposition.
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Proposition 2.7. There exists a continuous map
H:[0,1] x (C(M),F)n{Q:M(0Q) <W +1} = (C(M),F)n{Q: M(0Q) < W + 1}.
such that

1. H(0,9) =
2. H(t,Q) = Q, if |99] € Aue;
3. if |0Q] ¢ A, then

M(9H (1,9)) — M(99) < —L(F(|09], Ax)) < 0,
where L : [0,00) — [0, 00) is a continuous map with L(0) = 0 and L(t) > 0 if ¢ > 0.

Applying the tightening map H in Proposition 2.7 to a minimizing sequence of sweepouts yields
that

Proposition 2.8 (Tightening). Given any minimizing sequence of sweepouts {¢7} on (M1 g).
Let ;(x) = H(1,¢}(x)), Vo € [0,1]. Then {p;} is also a minimizing sequence of sweepouts. More-
over, C({p;}) C C({¢;}) and every V € C({yp;}) is stationary.

Proof. By property 3 and the definition of the width, we have

W< Jnax, M(0pj(x)) < Jnax M(9ypj(x)) = W,

which implies that {¢;} is also a minimizing sequence of sweepouts.
Given any V € C({y;}), we know that V = lim;_, [0¢j, (x;)|, where M(0gj,(x;)) — W. If we
denote V* = lim;_,o0 |09, (z;)|, then

IV71(M) = Jim (045, (22)|(M) < W
and by property 3,

0 = lim M(g;,(2,)) — lim M(2g}, (7)) < —L(lim F(|92}, ()], Acc))-
12— 00 1—> 00

1—00

If follows that F(V*, As) = 0 and V* is stationary. Since we have
V = Tim [0H (1, ¢j (i) = [OH (1, lim @ (:))| = |0 lim @ (3))] = lim |07 (2:))] = V7,
1—00 1—00 1—00 1—00
we conclude that C({¢;}) C C({¥}}). O

Now, we prove Proposition 2.7 by providing an explicit construction of the tightening map H,
which involves three major steps.

Proof of Proposition 2.7. Step I: Annular decomposition. Fix L > 0 (L = W + 1) and let
AL ={V e Va(M) - [|VI|(M) < L};
Aso = {V € ALY .V is stationary};

1 1 ,
Aj:{VeAL;ggF(V,AOO)SF}, jeN

One can check that A, and A; for all j € N are compact in AL under the F-metric.
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Lemma 2.9. For each j € N, there exists C; > 0 such that for each V' € A;, there exists Xy €
XY(M) such that
[ Xv|leiary <1 and 6V(Xy) < -Cj <0.

Proof. Suppose that such C; does not exist. Then there exists Vj, € A; such that

sup [0Ve(X)] =0 as k — oo.
XeX (M),|IX|lg1ap <t

By compactness of A;, the subsequence limit V' = limy_,, Vj, satisfies V' € A;. However, we have
SV(X) = klim SVe(X) =0, VX eX'(M),[|IX|lcra <1,
—00

which contradicts with V' € A;. O

Step II: A map from A" to X1(M). Given V € Aj, let Xy be given in Lemma 2.9. Since the
map (z,S) — divg Xy () is C*(G,(M)), we deduce that the map

W s 6W (Xy) = / divs Xy (2)dW (x, S)
Gn(M)

is continuous in F. Therefore, VV € A;, 30 < ry < 1/2j+1 such that YW € Uy, (V) = {W €
Vo (M) : F(W,V) < ry}, we have

1 1
5W(Xv) < §5V(Xv) < —50]‘ < 0.

Now {U,, 2 : V € A;} forms an open cover of A;. By compactness of Aj;, there exists finitely
many

w,

T3,

:Vj,iEAj,l SiSQj}
with 7;; = 7y, , such that

b Uz Urj’i/Q(‘/jyi) ) Aj
o U, ,(V;;) are disjoint from Ay if [k — j| > 2.

T,

(Vi) UT,,i/z(Vj’i), and Xy, , by Uj, ﬁj,i, and X;; respectively. By

J

writing 1, (V) = F(V, AL\ [7]1) and letting

In the following, we denote U, ,
_ ¥3i(V)
dAYp (V) ipe N1 < g < g}’

we see that {¢;; : j € N,1 <i < ¢;} forms a partition of unity subordinate to the covering {(7“}
The map X : A¥ — X!'(M) is defined by

X(V)=F(V,Ax) > ¢(V)Xj

JEN,1<i<q;

vji(V)

Lemma 2.10. We have that

1. the map X : ALY — X!(M) defined above is continuous w.r.t. the C'-topology on X(M);
2. for every V € Aj, let p(V) be the smallest radius of the ball Uy ; which contains V. Then we
have

W (X(V)) <

1 .
— =1 win{Cj-1,C;, Cja}, YW € Uy (V).
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Proof. We only give a proof of 2 here. By construction, these Uj; that contains V' must satisfy
|k — j|] < 1. Hence, we have

1
5W(X]m) < —5 min{Cj_l,C’j,C'j+1}, YW e Uk,i-

Assume that W € Uy (V). Since V' € ﬁkz and p(V) = min{ry;/2}, we know that W € Uy ;. As
F(V,Ay) < 1/2771 it follows that

SW(X(V)) = W(F(V, Ax) > ki (V) Xk)

1 .
< _F mln{Cj_l, Cj, Cj+1}.

O

Step III: A map from A” to the space of isotopies. Given V' € A%, let ®V : [0,00) x M — M be
the flow of diffeomorphisms generated by X (V'), i.e.

{(I)V(O,p) =P
LoV (t,p) = X(V)(®V(t,p))

Lemma 2.11. The map V € AF s @V (-,-) € C([0,T] x M, M) is continuous in the C'-topology
in CY([0,T] x M, M).

Lemma 2.12. Let ®(z,:) € C°([0,1],Diff}(M)). Then for every fixed V € V, (M), the map
z +— (P;).V is continuous from [0, 1] to V,(M).

Proof. Recall that
(®.V)(f) = / F(@(p), dD,(S))|JD(p, S)|dV (p, S).
Gn(M)

The continuity of the map = ++ (®,).V follows from the continuity of z + |J®,(p, S)| in C*(G,,(M))
and the continuity of z — f(®,(p), (d®:),(9)) in CO(G(M)). O

Corollary 2.13. Let ¢ : [0,1] — (C(M),F) be a sweepout. Write {Q; = ¢(x)}. Then for ¢ :
[0,1] — [0, Tp] a continuous function,

{Qo = 817 (1(2)) ()}

is also a sweepout.

Next, we can find two continuous functions g : R™ — RT and p : Rt — RT such that p(0) =0
and

SW(X(V)) <g(F(V,Ax)), HFW, V) <p(F(V, Ax))
In particular, if 2 € C(M) and F(|09|,V) < p(F(V, Ax)), then
30QU(X(V)) < g(F(V, Ax)).
Next, we construct a continuous time function 7" : [0, 00) — [0, 00) such that

o limy ,gT(t) =0, and T'(t) > 0 if t > 0;
o VYV € A%, denote v = F(V, Ax). Then V; = (®Y(1)).V € U,y (V),Y0 < t < T'(v).
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Note that YV € Aj, p = p(7), 3T > 0 such that V; € U,(V),V0 <t < Tyy. By compactness of A;
and the continuity of the map (¢, V') — V;, we may choose Ty such that Ty, > T; > 0 for all V € A,
where T; depends only on j. Using C*°-cutoff functions, one can interpolate between 7} and obtain
T(t) above.
Now, define
() =V (T(y)t,-), te][o,1].

Let L : Rt — R* with L(y) = T(y)g(y). Then L(0) = 0, and L(y) > 0 if v > 0. The map
H :[0,1] x A¥ — AL is defined as

H:(t, V)= Vi=Q = (8 (1)V C Uy (V) C Uy (109))
satisfying

1. H(0,V) =V,
2. If Ve A, then X (V) =0 and hence H(t,V) =V;
3. fV ¢ A, then v = F(V, A) > 0 and

()
Vi(M)[| = [V (M)]] —/O (OVe) (X (V))dt.
Since V; C U,y (V'), we have 6V;(X(V)) < —g(v), which implies that
[Vi(M)]| — [[V(M)]] < =T(7)g(7) = —L(7) < 0.

Similarly, we may define H : [0, 1] x (C(M),F)n{Q : M(092) < W+1} — (C(M),F)n{Q: M(0N) <
W +1} by
H: (£,9) = (7(0))(@)
satisfying
1. H(0,Q) =
2. If |09] € Aso, then X (|092]) = 0 and hence H(t, ) = §;
3. If 09| ¢ Axo, then v = F(|09], Aso) > 0 and

T(y
M(OH(1,Q)) — /O (51094 ) (X (|09 )dt

Since 9Q: C Upy(,)(992), we have 6|08 |(X (|0€2])) < —g(v), which implies that

M(0H(1,Q)) = M(09) < =T(y)g(y) = —L(y) <0.

This completes the construction of the tightening map H. O

2.3 Almost minimizing

To begin with, we explain why one cannot expect the min-max solution to be locally mass
minimizing. Then we introduce a notion of almost minimizing varifolds and present a proof of the
existence of such a varifold from min-max construction. Finally, we formulate and solve a natural
constrained minimization problem which will be used in the construction of replacements.

Ideally, assume that {¥7 = d¢(x)},ep0,1) is an optimal sweepout in (M"*1, g), i.e.

max M(3;) = W.
z€[0,1]
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Suppose by contradiction that 3, is not locally mass minimizing whenever M(X,,) = W. Then
for every o € [0, 1], if M(X;,) = W, there exists an open set Uy, C M such that ¥, is not mass
minimizing in Uy, i.e. there exists deformations ¥,, — {Ezo,t}te[o,l] such that

S0t ATz CC Uyy and M(Syp1) < M(Sg,) = W.

To derive a contradiction, we hope to deform nearby slices {¥, : |x — x| < 1} parallelly to
{3, : |z — z0| < 1} such that
max M(X,) < W.
z€[0,1]
The issue is that to maintain {3,} as a continuous family of z, we can only deform {Z,} to time
1 for x very close to g. Hence, we have to deform {X; : [x — 20| < 1} in another open set U, , and
moreover we require that

M(2;:) < M(X;) + 90
for every t € [0,1] and 6 < 1. This sheds light on the following heuristic definition of almost
minimizing.

Definition (Heuristic). Whenever M(X,,) = W, 3, is almost minimizing in the following sense:
given any pair of disjoint open subsets (U, Us) C M with

diSt(Ul, UQ) > 2 min{diam(Ul), diam(Ug)},

there exists one of them, WLOG say Uy, such that ¥, is (e, §)-almost minimizing in Uy, i.e. for any
deformation ¥, — {Ex(),t}te[o,lb if

1. 3 tAY,, CC Ut
2. M(2;,) < M(X;,) + 0 for every t € [0,1] and § < 1,

then we have M(X;,) < M(X4,1) + €.

Example 2.14. In the ball B3, consider the deformation of a catenoid ¥, to top and bottom planes
3. We have |¥'| < |S,| — €. But to deform X, to ', one has to pass through 3 with |S| > |S,] +4.
Hence, this example does not violate the (e, d)- almost minimizing property.

A

Theorem 2.15. Assume all the above. Then there exists ¥, with M(X,) close to W such that ¥,
is almost minimizing in the above sense.
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Heuristic Proof. Assume this is not true. Then for any such z, there exists a pair of disjoint open
subsets (Uy,1,Uz2) C M with

dist(Uy 1, Uz 2) > 2min{diam(Uy 1), diam(U, 2)}

such that on each U, ; (i = 1,2), there exists a deformation ¥, — {¥ i }ejo,1] With

1. 24,0AY, CC Uy
2. M(2;4) < M(X;) + 6 for every ¢t € [0,1] and § < 1;
3. but M(Exﬂ‘,l) § M(Ex) — €.

To derive a contradiction, it is sufficient to patch the deformations (via a covering) to deform
{Z:} to {E7} with max,cp ) M(X])) < W. Fix xg € (0,1) with M(3;,) > W — ¢/4. Choose Uy, 1
with deformation {¥, ¢}icp,1)- We can deform {X,} to {3, )} parallelly, where t(z) = 1 for x
close to g (¥ € B, /2(w0)) and t(z) = 0 outside a small neighborhood of z¢ (z ¢ By(70)). Then
we have

W —§, if |z — x| < 2
€

M (X, 40)) <
o) < Ly ¢

if 2 <z —x0| <o
For convenience, write {¥} = ¥, ;4)}. Pick 1 € (0,1) with M(X},) > W — ¢/4, 19/2 <

|z1 — x| < 7. There exists a pair of disjoint open subsets (Uy, 1,Us, 2) C M with
dist(Uz, .1, Uz, ,2) > 2min{diam(Uy, 1), diam(Uy, 2)}

such that on each U,, ; (i = 1,2), there exists a deformation of ¥/ . By requirements, at least one
of {Uz,,1,Uy, 2} is disjoint from Uy 1, say Uy, 2. As E;l = ¥, outside U, 1, we deform parallelly
again to obtain X! such that

M(Z!) < M(Z)) — = <M(S,) 4+ 5 - <W - &,

2 4 2 2
Hence, by a 2-step deformation process, we can deform {¥,} to {X7} with max,cjo 1) M(X}) < W,
which gives the desired contradiction. O

)

Remark. The key part of the proof is “parallel deformations,” which depends on the topology. If
the slices are C'*°-embedded minimal hypersurfaces, then we deform in the C'°°-topology. If the
distance between slices is measured by flat metric, then there are no deformations. In our case, we
deform in the M-topology.

Definition. Given €, > 0 and an open set U C M"t! define

A(U;e,6) :={Q € C(M) such that if Q = Qq,...,Q, € C(M) satisfying
L.spt(Q; — Q) CC U;
2.F(Qi, Qiy1) <0
3.M(09;) < M(9Q) + 4,
then M(09,,) > M(09) — €}.

Definition. Say a varifold V' € V, (M) is almost minimizing in U if there exists ¢, — 0, §; — 0, and
Q; € A(U; €, 90;) such that F(|0€;], V) < ¢; for every i.

Definition. A varifold V' € V, (M) is almost minimizing in small annuli if Vp € M, Fram(p) > 0
such that V' is almost minimizing in Ay, (p) = B,(p) \ Bs(p) for all 0 < s <7 < ram(p).
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Theorem 2.16 (Existence of almost minimizing varifold). Let {¢; : [0,1] — C(M)} be a pull-tight
minimizing sequence of sweepouts for (M1 g). Then there exists V € C({p;}) such that

1. V is stationary;
2. V is almost minimizing in small annuli.

Proof. The fact that V is stationary follows from the pull-tight process. Suppose that V is not
almost minimizing in small annuli. Then VV € C({¢;}), 3pv € M such that V@ > 0, Ir,s > 0
with 7 > r 4+ 2s > r —2s > 0 and ¢,0 > 0 such that VQ € C(M), if F(|092|,V) < ¢, then
Q¢ A _9sr12s(pvie, 0). Note that we can find

UV,l = Ar17251,r1+2s1 (pV) and UV,2 = Ar27232,r2+252 (pV)

such that

dist(Uy.1, Uy2) > 2min{diam(Uy ), diam(Uy2) }.
Since V' = lim;_,o0 |09y, (x;)] with M(9pj, (z;)) — W, we know that for ¢ large enough, dyj, (z;) ¢
Ar_2sr4+2s(pv;€,0). Since there are deformations on Uy, and Uya, one may follow the heuristic
proof to patch them together and deform {¢;,} to {¢;,} such that

lim sup max M(dg;,) < W,

1—00 .Z‘E[O,l]
which gives the desired contradiction. O

Now, we formulate and solve a natural constrained minimization problem which will be used in
the construction of replacements.

Lemma 2.17. Given ¢,0 > 0, an open set U C M, and Q2 € A(U;¢, ), we can do the following: for
each K CC U, let

Cq := {A € C(M) such that 3Q = Qp, ..., 2y, = A satisfying
1.spt(Q; — Q) C K;
2. F(, Qsr) < 6;
3.M(9€;) < M(09Q) + d}.

Then there exists Q* € C(M) such that

(i) QF € Cq and M(09*) = inf{M(0A) : A € Cq};
(i1) ©Q* is locally mass minimizing in int(K);
(ili) Q* € A(Us€,0).

Proof. (i) Take a minimizing sequence {A;} C Cq with lim;_,oc M(9A;) = inf{M(9A) : A € Cq}.
Since M(9A;) < M(992) + 6 for all j, by compactness theorem we may assume that A; — Q.
Moreover, we have the lower semicontinuity M(9Q*) < inf{M(0A) : A € Cq}. To check Q* € Cq,
consider the sequence Q = Qo,...,Qy = Aj, Q1 = QF. Observe that spt(A; — Q) C K implies
spt(2* — Q) C K, which yields 1. For j > 1, we have F(A;,Q*) < §, which yields 2. Since

M(9Q*) < inf{M(AA) : A € Cq} < M(Q) + 6,

we conclude that 2* € Cq and its boundary is minimizing in the class.
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(ii) It is sufficient to show that Vp € spt(9Q*), 3r, > 0 such that M(9Q*) < M(9A), VA € C(M)
with AAQ* CC B, (p). Choose r, < 1 such that

M(09* L B, (p)) <

N|

Suppose by contradiction that there exists Q' € C(M) with Q' AQ* CC B,(p) but
MO L B,(p)) < M(0Q*L B,.(p)) < §/2.

Consider the sequence Q = Qq,...,Q, = Q*, Q1 = ', which clearly satisfies 1, 2, and 3. Hence,
we have ' € Cq with M(9Q') < M(99*), but this contradicts with (i).

(iii) Suppose by contradiction that there exists Q* = Qg, ..., Q" € C(M) such that

1. spt(2f — Q%) cC U;
2. F(Q,Q5,) <6
3. M%) < M(2) +6

but M(0€2;,) < M(Q*) —e. Consider the sequence Q = Qp,...,Q, = Q" = QF,..., Q% which
clearly satisfies 1, 2, and 3. Hence, we have 1}, € Cq with

M(9Q) > M(Q) — e > M(IQ*) — e,

which gives the desired contradiction. O

2.4 Replacements

Proposition 2.18 (Existence and properties of replacements). Let V' € V,,(M) be almost minimiz-
ing in an open set U C M and let K CC U be a compact subset of U. Then there exists V* € V,,(M)
called a replacement of V' in K such that

1. VLG,(M\ K)=V*LG,(M\ K);

2. [[VII(M) = [[V]I(M);

3. V* is also almost minimizing in U;

4. V* = lim;_, |0€27| for some QF € A(U; ¢, 9;) with €;, 9; — 0 and £ is locally mass minimizing
in int K for all 1.

5. if V is stationary in M, so is V'*.

Proof. By definition of almost minimizing, we may write V' = lim;_,, |0€);| for some Q; € A(U; €;, 0;).

By Lemma 2.17, for each ¢ there is Q] € Cq, minimizing in the class such that €2 is locally mass

minimizing in int K and Qf € A(U;€;,6;). Up to a subsequence, we have V* = lim;_, o |09Q7].
Property 1 follows from the fact that spt(€2; — Q) C K. To see property 2, we observe that

M(0Q;) — & < M(9QF) < M(9%;)

for each i. Let i — oo give property 2. Since V* = lim; o, |0€2}| for some QF € A(U;¢€;,0;) with
€;,0; — 0, we know that V* is also almost minimizing in U, which proves property 3. By the
following lemma, V* is stationary in U. Since V* =V in G, (M \ K), V* is stationary in M \ K. Let
© € CX(U) be a cutoff function with 0 < ¢ <1 and ¢ =1 in a small neighborhood of K. Then for
all X € X.(M), we may write X = pX + (1 —¢X) with spt(¢X) C U and spt((1 —¢)X) C M\ K.
It follows that

OVHX) =0V (pX)+ 0V (1 —¢)X)=0

for all X € X.(M), i.e. V* is stationary in M. O
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Lemma 2.19. Under the hypotheses above, if V' is stationary in U, so is V*.

Proof. Suppose by contradiction that V* is not stationary in U. Then there exists ¢ > 0 and
X € X.(U) such that

[0V (X)| = ‘/ divs X(p)dV (p, S)| = 60/ | X|dpy > 0.
Gn (M) M

By changing the sign of X if necessary, we may assume that

/ divs XV (9. 5) <~ [ | X|duy <0
Gn (M) M

By continuity, there exists a constant €1 (e, V, X)) > 0 such that for all Q € C(M) with F(|0Q[,V) <
2¢1, we have

010010) = [ divon Xdpon < 5 [ Xlauy <0,
o0 2 Ju

If F(|09Q|,V) < €1, by deforming Q along the flow {®X(t) : 0 < ¢t < 7} for a uniform 7 > 0, we
obtain {2} such that

e the map t — ) is continuous in F-topology;
o M(9€) < M(99) — €y for some constant ex(eg, €1, V, X) > 0.

In summary, if we choose € = min{ej, €2} and § > 0, then given Q € C(M) with F(|0Q], V) < €, we
have Q ¢ A(Uj;e€,d), which gives the desired contradiction. O

Proposition 2.20 (Regularity of replacements). Let V' € V,,(M) be almost minimizing in an open
set U C M and let K CC U be a compact subset of U. Then V*L int K is an integer multiple of a
C*°-embedded minimal hypersurface away from a singular set Sing(3) of Hausdorff codimension 7.

Proof. By Proposition 2.18, we have V* = lim;_,, [0Q}| for some Qf € A(U;¢€;,0;) with €;,0; — 0
and 2 is locally mass minimizing in int K for all ¢. It follows from Theorem 1.21 that for each 7,
0 = ¥; is a C*-embedded minimal hypersurface in int K away from a singular set of Hausdorff
codimension 7. In particular, each ¥; is stable. Then the Schoen-Simon-Yau curvature estimates
(see Theorem 3.1) guarantees that 3; converges to V* L int(K) in the C°°-topology with a possibly
increased multiplicity. O

Theorem 2.21 (Lipschitz regularity of the min-max varifold). Let (M"*! g) be a Riemannian
manifold of dimension 3 < (n+1) < 7. Assume that V' € V,,(M) is stationary and almost minimizing
in small annuli. Then

1. V is n-rectifiable;
2. VarTan(V, p) consists of integer multiple of planes in R"*! and hence V is integer n-rectifiable.

Proof. We claim that ©™(V,p) > 0,Vp € spt ||V]||. Then applying Theorem 1.8 gives 1. Pick r; — 0
and let V* be replacements in A, o, (p). It follows from Proposition 2.20 that V;*L A, 2, (p) = X;
is a C*>°-embedded minimal hypersurface for each i. By the maximum principle, 3;N0Bs,, ;2(p) # 0,
so we may pick y; € ¥; N 0B, /2(p). Then the monotonicity formula implies that

* i\ "™
VN (Brj2) = 201 By pawi)] > wa (5)
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Based on the estimate above, we conclude that

. NVI(Bar(p) 1
" >1 fo e >
O I g S 1
To prove 2, we first apply the lemma below and obtain stable minimal hypersurfaces »; =
V¥ L Ay, 2r,(p). Consider the rescalings 7; = 7, defined by 7;(z) = (z — p)/r;. We know that as
1 — 00,

e 7;,(M) — T,M = R""! smoothly;
o (1;)4#V — W € VarTan(V, p) up to a subsequence;
o (1,)4V* = W* € V,(R" 1) up to a subsequence.

By the properties of replacements, we deduce that

[ ] W = W* n Gn(Rn+1 \A172<O))7

o [[WI[(Br(0)) = [[W*[|(Br(0)), VR > 2;

o W*L A;2(0) is the limit of stable minimal hypersurfaces ¥} = 7(%;) C 7(Ay, 20, (D)) =
Ai2(0)).

Moreover, the monotonicity formula implies the uniform area bound

" 1 1 . 1
511 = 154 < SV (Bors () = - IVII(Bar,(#) < C

(2 3

for some constant C' > 0. By the Schoen-Simon-Yau and Schoen-Simon curvature estimates (see
Theorem 3.1), a subsequence of ¥¥ converges graphically and smoothly to a C*°-embedded minimal
hypersurface Y. Since ©*(V,p) > C > 0, by Corollary 1.9 we know that W is n-rectifiable in R"*+1
and is a stationary cone, i.e. 7,.(W) = W. Since V;* are almost minimizing in small annuli, the same
density lower bound holds and W* is also n-rectifiable. Moreover, we have

[IW[(Br(0)) _ [IW](Br(0))

O"(W*,0) = IR = I — @ (W,0), VR > 2

and W* is also a stationary cone, i.e. 7.(W*) =W*. As W = W* outside A; 2(0), we deduce that
W = W* in R"*!. By Simons’ Theorem [22], which says that any smooth minimizing hypercone in
R with 3 < (n + 1) < 7 is flat, we conclude that W is an integer multiple of planes. O

Lemma 2.22. Let V € V,,(M) be almost minimizing in U. Then V is stable in U in the following
sense: for all X € X.(U) and the associated flow ®X (t), we have

d2

2| l@*®).vii@n) = o.

t=0

Proof. Recall that
(@), V| (M) = / 709V 0.9),

n

where |J®|(p, S) = /det(((d®;)p|s)*(dP¢)p|s). Hence, the map t — [[(®;).V||(M) is a smooth

function. Now, we proceed as in the proof of Lemma 2.19 and conclude that V is stable in U. [
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2.5 Smooth regularity

Theorem 2.23 (Smooth regularity). Let (M™! g) be a closed Riemannian manifold of dimension
3 < (n+1) <7. Assume that V € V,(M) is stationary and almost minimizing in small annuli.
Then V = I_IézlmiZi, where m; are all positive integers and {¥1,...,%;} is a disjoint collection of
closed, C"*°-embedded minimal hypersurfaces.

Before proving the theorem, we shall recall the maximum principle for minimal surfaces. For each
x € 0Bs(p), if x = lim;_,o0 x; with x; € spt||V|| N Bs(p), then x is a limit point of spt ||V|| \ Bs(p).
Suppose 0 < 8 < 7 < ram(p) and let T = {z € spt||V|| N Bs(p) : T,V M T,0Bs(p)}. By Theorem
1.14, the set T is dense in spt ||V|| N Bs(p) and hence x € T. On the other hand, we have

T NdBs(p) = spt [|[V*]| N Bs(p) N 9Bs(p) C spt ||[V*||\ Bs(p) N OB (p).

Since spt [|[V*|| = ¥ on A (p), we conclude that x € X.

As a result, if ¥ can be extended to a C*°-embedded minimal hypersurface when s — 0, then
we can prove that spt||V|| N Ags(p) is C*°-embedded. However, when we decrease s and move
inward, ¥ might also change. To show that 3 is invariant when s — 0, we use a 2-step replacement
argument. By applying the argument infinitely many times, we obtain the smooth regularity in the
punctured ball.

Proof of Theorem 2.23. Step I: Constructing successive replacements V* and V** on two overlapping
concentric annuli. Pick p € spt||V]| and suppose 0 < s < r < ram(p). Let V* be the replacement of
Vin Ag,(p). Then V* = 3 is a C*°-embdedded minimal hypersurface in A, (p). Pick 0 < t; <
s < ta < r such that 0By, (p) M X;. Let V** be the replacement of V* in Ay, 4, (p). Then V** = ¥y
is a C*°-embdedded minimal hypersurface in Ay, 4, (p). Note that V** = V* outside Ay, 4, (p).

Step II: Gluing the replacements smoothly as immersed hypersurfaces on the overlap. Our goal
is to show that 31 = X9 in A4, (p). Recall that to glue solutions w1, us of the weak formulation of
the minimal surface equation

Vu
VvV —_— =
V14 [Vul?
along a common boundary I', we only need

Ul = U onI’
Vui =Vug onT

In our case, it is sufficient to check that (i) 2o glues to X1 in C°, i.e. X9 N By, (p) = X1 N IBy, (p);
(ii) X2 glues to ¥y in CL.
Consider (i) first. By the maximum principle, we have

Y9 N Bty (p) = spt |[V**|| N By () N OBy, (p)
C (spt [[V**]|\ By, (p)) N OBy, (p)
= (31 \ Bi,(p)) N OBy, (p)
= Y1 N 0B, (p)

Conversely, fix z € 31 N By, (p). We know that VC € VarTan(V*, z), C = T,%; with T,%; M
T By, (p). Based on the Lipschitz regularity of the min-max varifold and the fact that

Ve Y1 outside By, (p)
| S, inside By, (p)
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we know that VC” € VarTan(V**, z), C" = T;;%; with T;;%1 M Ty By, (p). By the maximum principle,
we obtain x € spt ||[V**|| N 0By, (p) and X1 N By, (p) C X2 N By, (p).

For (ii), let 2} be the projection of ; onto I' = ¥5 N By, (p) inside Y. Let r; = distps (z;, 2}) =
dist(x;, I'). Write 7+, 1 y = (y — x7)/ri and consider the blow-up limit W = lim; o0 (72 ;) V™"
up to a subsequence. We claim that

e IV is stationary;

o O"(W,:) > 0;

o W is n-rectifiable;

o W =lim; 00 Tx;k’n(El) in an half space and hence is equal to T, %1 in an half space.
To begin with, we check that

[IW11(B-(0))

wpr™

= O"(W,0) =1 = O"(V*,z), Vr>0.

By the monotonicity formula, we have

(Tazr ) VI(BA0)  [[V](Brir(27))

wp ™ Wy (rim)™

< e IVII(Be(27))

W €e”
e IV Betd(a,az) ()
- W€
* n V** Be .2 )\ L
<o (14 @) VI Besaep ()
€ wp (€ + d(x, z7))"

< e (1 - W)n (1 +96).

Given ¢ > 0, there exists €(d,2) > 0 such that the last inequality holds true. As 6 — 0 and i — oo,
we obtain the desired inequality. The reverse inequality also follows from the monotonicity formula:

172206V BAO) WV |(Bry(a))

W™ wp (i)™

Hence, W is n-rectifiable and is a stationary cone. Since W = [-T.3 in an half space, we know
from the half space theorem for minimal surfaces that W =1-1T,3;.
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We proceed to show that Va; € ¥ with z; — x € X1 N 9By, (p), we have lim;_,o0 v™2(z;) —
v™1 (), where v¥i(-) is the unit normal vector field. Note that XoM B, (x;) is a stable, C*°-embedded
minimal hypersurface in M. By the Schoen-Simon-Yau and Schoen-Simon curvature estimates (see
Theorem 3.1), a subsequence of the blow-ups 7, ., (32 N By, (x;)) converges smoothly to a C'>°-
embedded minimal hypersurface Y. Since ¥, =1 -T,¥; in an half space, we know from the half
space theorem for minimal surfaces that Yoo = [ - T, 37. It follows that v*™2(z;) — v™ ().

Step III: Extending the replacements down to the point p to get a C*°-embedded minimal
hypersurface > in the punctured ball. As ¢; — 0, 31 U Xy extends by unique continuation to
a C*°-embedded minimal hypersurface ¥* in Ag,(p). For every replacement V** in Ay, 4, (p), if
x € spt||V]| N OBy (p) with T,V M T,0By, (p), then we may apply the maximum principle and
obtain € ¥*. By Theorem 1.14, we have spt ||V || N Ags(p) C £*. It follows from the constancy
theorem that spt ||V|| N Ag s(p) is an integer multiple of ¥* N A 5(p). Moreover, one can check that
¥* N A s(p) is stable.

Step IV: Showing that the singularity of ¥ = ¥* N Ay s(p) at p is removable. That is, we need
to verify the following proposition.

Proposition 2.24 (Removable singularity). Let (M"*1 g) be a closed Riemannian manifold of
dimension 3 < (n+ 1) < 7. Assume that ¥ C A s(p) is a 2-sided, stable, C*°-embedded minimal
hypersurface with Area(X) < C. Then ¥ extends to be a C*°-embedded minimal hypersurface in
By(p).

Proof. To begin with, we show that Vr; — 0, the blow-ups 7,,(X N Ay, 2r,(p)) converges weakly
to an integer multiple of P, where P C T,M™"! is a n-plane. As in the proof of Theorem 2.21,
the monotonicity formula gives a uniform area bound, which together with the 2-sided stability of
7r,(2NAy, 2r,(p)) implies that a subsequence of 7, (¥NA;, 2r,(p)) converges graphically and smoothly
to a 2-sided, stable, C"*°-embedded minimal hypersurface ., of multiplicity m. Since m - X is a
smooth minimizing hypercone in R"*! we know from Simons’ Theorem [22] that ¥, is a plane.

A major concern is that the tangent cone we obtained depends on the choice of blow-up sequences.
That is, given r; — 0 and r; — 0, we might have 7,,(3N A, 2, (p)) = m- P and 7,/ (XN A 9,0 (p)) —
m - P! with P # P’. But based on the previous arguments, we have the followiné corolla;y. '

OO

i
s
-

S—— b | . J
}Y"Y‘

Corollary 2.25. There exists rg << 1 such that Vr < rg, 3P" such that
LN A2 (p) = Uézlmi - Graph u;,
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where Graph u; denotes the graph of u; over P with u; < --- < u; and Zi‘:l m; = m.
Note that ¥ N A, 2,(p) = I_Iézlmz- - %i(r),Y0 < r < rg. Using the corollary, we may extend each
Y;(r) to a connected ¥; in A07T0/2(p), We claim that

Area(X; N B,(0))

wpr™

—1 asr—0.

Once we show the claim, 7, . (X;) converges weakly to a plane of multiplicity 1. Since ¥; converges
to a plane of multiplicity at least 1, we have

Area(X; N B;(0))

>1.
Wpr™ -
Conversely, since
l
Area(X N B, ( Area(X; N B,(0
Zmi:m:lim reaf —hmE:mZ rea( at )),
r—0 Wy " r—0 wpr"
we have
Area(X; N B;(0)) <1

Wpr™
which completes the proof of the claim.
We proceed to show that 3; extends across {p} to a C°°-embedded minimal hypersurface. A

key ingredient is the following theorem, which forms a pillar of the theory of minimal surfaces. A
proof can be found in [21] or [9].

Theorem 2.26 (Allard Regularity Theorem [1]). Let V € V,,(B**1(p)) be stationary in B, (p) with
O"(||V|],z) > 1,V a.e. = € spt||V||. Moreover, assume that there exists ¢ > 0 such that

Then VL B, 5(p) is a graph of C1® functions over some plane P.

By Allard Regularity Theorem, ¥; extends to be a C*°-embedded minimal hypersurface in Bs(p).
By the maximum principle, we have 31 = --- = ¥;. This completes the whole proof.

3 Weyl Law for the volume spectrum and Yau's Conjec-
ture

3.1 Convergence of minimal hypersurfaces

Definition. Let (M™*! g) be a closed Riemannian manifold and let U C M be an open set. A
sequence {%;} of C*°-embedded minimal hypersurfaces in U with 9%; N U = () is said to converge
to a C*®-embedded X in U if

e Vp € ¥, d a neighborhood B C U of p such that 3; N B is a multi-sheeted graphs of

Uiy -5 Ujy. OVET Moo N B and uy; — 0 smoothly as 7 — oo.
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Prior to stating Sharp’s Compactness Theorem, we shall recall the definitions of second variation,
stability, and Morse index of minimal hypersurface as well as review the Schoen-Simon-Yau and
Schoen-Simon curvature estimates.

For an embedded minimal hypersurface > < U, the second variation is defined for all X € X.(U)
and the associated flows ®X of X:

2
PN(X,X) = % Area(®;¥ (%)).
t=0

This is a quadratic form on I'(T'M|y).
Definition. Say that ¥ is stable if §°3(X, X) > 0,VX € T'.(TM|yx).

Definition. The Morse index of ¥ is the maximum number a set of linearly independent vector
fields in T'.(TM|s) along which 623 is negatively definite.

Remark. In the case ¥ is 2-side (there exists a normal vector field v), X = v with ¢ € CX(X),
the second variation formula becomes:

"B (v, pv) = /E (IVsel? — (|A% + RicY (v,1))¢?] dps = — /E pLspdps,

where Ly := —Axp — (|A¥|? + Ric™ (v, 1)) is the stability operator.

By the classical spectral theory of linear elliptic operators, there exists a discrete spectrum
Al < Ay < A3 < --- with Lyp; = Ajp; for each 7. Note that Ap is simple and ¢ cannot change sign.

Remark. ¥ is stable iff A; > 0. The Morse index is given by
index(X) = #{\; : \; <0}
while the nullity is given by
nul(X) = #{\i : \; =0}.

Theorem 3.1. (Schoen-Simon-Yau [19], Schoen-Simon [18]) Assume 3 < (n+1) < 7. Let " be a
C>-embedded minimal hypersurface in an open set U C M"™+! with 90X NU = (. If

e Y is 2-sided and stable,
o H'(X) < C,

then

sup |A¥|?(z) dist?(z,0U) < C,
zeXNU

where C1 = C1(C, M) is a constant.

Corollary 3.2. With all conditions above, let {¥;} be a sequence of embedded minimal hypersur-
faces satisfying

e Y, is 2-sided and stable for each ¢,
o H"(X;) < C for some uniform constant C,

then a subsequence of {3;} converges smoothly to a 2-sided stable embedded limit ¥, possibly with
integer multiplicity.
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Now, we are ready to state the compactness theorem for minimal hypersurfaces with bounded
index. We no longer require ¥; to be stable but instead impose a uniform bound on Morse index.

Theorem 3.3 (Sharp [20]). Let %; be closed, embedded minimal hypersurfaces in (M"!, g) with
3<(n+1)<7. Assume that

e index(X;) < k for some uniform constant k,
o H"(X;) < C for some uniform constant C.

Then a subsequence of {¥;} converges smoothly to a closed, embedded limit ¥, possibly with
integer multiplicity in the following sense: there exists a set of at most k points {Py,..., P}, I <k
such that VU cC M\ {P,..., P}, ¥; = mX smoothly.

o Assume Y is 2-sided:

1. When m = 1, ¥; — X smoothly globally and there exists a nontrivial ¢ € C*®(X)
such that Ly__¢ = 0 (a Jacobi field),

2. When m > 1, there exists ¢ > 0,9 € C*(X) such that Ly_¢ = 0. This implies
A1(Lx,,) =0 and X is weakly stable.

o Assume Y is 1-sided:

1. If all X; are 2-sided, then m > 1. The 2-sided connected double cover ioo — Yo 1S
weakly stable. N

2. If m = 1, then ¥; are all 1-sided for i > 1 and X; — Y smoothly globally and ¥, — ¥
admits a Jacobi field.

The following lemma gives the lower semicontinuity of Morse index under the smooth conver-
gence, which will be used in the proof of Theorem 3.3.

Lemma 3.4. If ¥; — mX, smoothly in U with 0%X; NU = (), then

index(Xs) < liminfindex(%;).
1—00
Proof of Theorem 3.3. We divide the proof into four steps: (i) convergence away from {Pi, ..., P};
(ii) removable singularity of Yo across {Psc 1, .., Pso,}; (iil) construction of the Jacobi field ¢; (iv)
removable singularity of ¢ when m > 1.

For (i), we have the first fact: V{U,...,Ui41} disjoint open sets in M, 3 U; such that ¥ is
stable in Uj, where index(X) < k. To check this, we proceed by contradiction. If ¥ is unstable in
all Uj, then 3X; € X.(U;) such that §22(X;, X;) < 0. Since X;’s have pairwise disjoint support,
{X1,..., Xk+1} is a linearly independent set, which contradicts with index(X) < k. The second fact
is a direct consequence of the first fact, which says: Vr > 0, 3 at most k points {Plz, ce 7Plz},l <k
such that ¥ is stable in any B, (p) C M\ Ué‘:l BT(PjE).

Now, Vr > 0, V3, 3{B,(P;;)}i_, such that %; is stable in any ball B,(p) C M\ i, Bx(P5).
Foreach j=1,...,1,let {P; ;} = {Px;}. Then ¥ is stable in any ball B,(p) C ]\4\U;.:1 By, (P j)
for i > 1. By Theorem 3.1, a subsequence of {¥;} converges smoothly to Yo in M\ J; Bar(Prc,j)-
Let r — 0, and a further subsequence of {3;} converges smoothly to ¥ in M \ {Psc1,..., P}
By Lemma 3.4, we conclude that there are at most k such points.

For (ii), we claim that VP ;, 3r < 1 such that Eoo‘AOJ(Poo,j) is stable. To check this, we
proceed by contradiction. If ¥ Aor(Ps;) 18 1Ot stable, then we may use cutoff functions to con-
struct an infinitely number of linearly independent X, € X.(M) supported in Ag,(Ps, ;) with
82Y00(Xa, Xo) < 0. This contradicts with index(3;) < k for i > 1.
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When m =1, ¥; = X smoothly in M \ {Px1,...,Px;}. By Allard Compactness Theorem
[1], ¥ — ¥ as varifolds. Moreover, we have

H"(X; N Br(p)) . H" (Yoo N Br(p))

wpr™ wpr™

—1 asr—0.

By Allard Regularity Theorem (see Theorem 2.26), we conclude that the convergence must be
smooth and graphical everywhere over M.
For (iii), assume that ¥ is a graph over X,. Then there is a function u € C*°(X) such that

2 = {exp, (u(@))ve, (z) ¢ € Xoo},

where vy is the unit normal of £+ pointing toward . Let v(z,t) = 4 exp,(tvs, ) and let Z(z,t) =
n(x)vs,,, where n € CX(X) is a test function. Since ¥ and ¥, are minimal hypersurfaces, we

have
dive Z = Hx =0
divey  Z=Hx_ =0

Denote the path of smooth hypersurfaces by 3; := {exp, (tu(z)vs(z)) : € X}, t € [0,1]. From
the fundamental theorem of Calculus we deduce

1
d
0=divy Z —divy  Z = / %(diVEt Z)dt.
0

Write X = 0t = u(z)v(z,t). A further computation leads to
%(divzt Z) = %ggjwaiz, ;)
=— gfkgfl%(gt)klwzfﬁl 8;) + g7 (VorVaiZ,0;) + g7 (Vi Z, V 0:0;)
= =2V, X,e;)(Ve, Z,¢j) + 9 (VoiVx Z = R(X,0)Z,0;)
+ 97 (Ve Z, er)er + (Ve, Z, vs, s, (Ve X enper +(Ve; Xy vs, )vs,)
= — 2V, X, e\ (Ve, Z,e5) + g7 (VaiVx Z,8;) — RicM (X, Z)
+(Ve, X, e)(Ve, Z,ej) + (Ve, X, vw, ) (Ve, Z, vs,)
= g7 (VoiVxZ,0;) — Ric™ (X, Z) — (Ve, X, ej)(Ve, Z,¢) + (Ve, X, v5,) (Ve Z, s, ).
Note that
VxZ = V@, (n(@)ve) = u(z)n(x) Vv = 0.

Since we have

lim i(dngt Z) = —RicM(vg_,vs u-n— A% Pu-n+ Vs _u-Vy_1n,
t—0 dt

the function u solves the following equation for all n € C°(X):
0= | Vs u-Vs n— Ric" (vag,vn,) + A7 P)u-n+o(--).
Yoo

When m = 1, we know from Allard Regularity Theorem (see Theorem 2.26) that ¥; — Y
smoothly. Let u; be the height function of ¥; over Y. The standard elliptic estimates give a
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smooth control over the L?-renormalized function u; := ;/||u|| [2(S.) and convergence of u; to a
nontrivial solution ¢ to the Jacobi equation:

—App — (|A< |2 + RicM (vg_,vs_)) = 0.

When m > 1, let u; be the height function of ¥;; over 3;_, where >;; and ¥;_ denote the
outmost sheets. For 2 CC Y, and some fixed point y € €, we have a Harnack estimate for the
renormalized function u; := w;/u;(y), which gives an L estimate. By standard elliptic estimates,
we conclude that u; converges locally and smoothly to a nontrivial solution ¢ to the Jacobi equation.
Moreover, the maximum principle gives ¢ > 0 outside the singular set.

Finally, we prove (iv) when m > 1. Let p € ¥, be a singularity and let B(p) be a ball of radius
€ in ¥, around p. For € > 0, consider the cylindrical neighborhoods C. = B.(p) x (—¢, €) around p.
We have the following facts:

1. ¥, NCe = X5 N Ce in Hausdorff distance,

2. if ¥j+ N (0Bc(p) x (—€,€)) = Graphy_ (uj+), then w;1 > u;— and u;+ — 0 smoothly in a
neighborhood of ¥ N 0Bc(p),

3. fix ujr : O0Bc(p) — (—¢,€). By the Inverse Function Theorem, V|t| < d(e), 3 a foliation of
minimal hypersurfaces ¥+ ; in Ce with 0%+ ; = Graphy_ (ui+ +t).

/ ”:_P~‘ le__ ‘
" Ce

Ce=Belpx(-£.€) gropliuin = Zr+ N 2Ce
grophiui-) = Zi- NaCk

By standard elliptic estimates, ¥;+ o — X smoothly. Let u; be the height function of ¥;4 o
over ¥;_o. Fact 1 and the maximum principle imply that ¥; N C¢ should lie within 3;_ o and ¥, .
Hence for some fixed point y in a smaller domain, the normalized function u;(z) = u;/u;(p) is
uniformly bounded. From this we deduce that ¢ admits a global bound, yielding full regularity over
all of M. By the maximum principle, ¢ must remain strictly positive on M, which completes the
whole proof. ]

Remark. When m > 1, we cannot expect smooth and graphical convergence over all of M. As
an example, consider a sequence of catenoids converging to a plane of multiplicity 2. The Allard
Regularity Theorem fails to apply and the convergence is not smooth across the center.

I~ —V .2
M&
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3.2 Volume spectrum and Weyl Law

Given m € N, I'"™ denotes the m-dimensional cube I" = [0, 1]™. For each j € N, I(1,j) denotes
the cube complex on I' whose 1-cells and O-cells are, respectively,

(0,377],[379,2-377]...,[1=377,1] and [0],[377],...,[1 —377],[1].
We denote by I(m, j) the cell complex on I"™:
I(m,j)=I(1,j)®---®I(1,7) (m times).
Then @ = a1 @ -+ @ quy, is a g-cell of I(m,j) if and only if «; is a cell of I(1, ) for each ¢ and
S, dim(as) = g
Definition. X C I(m,j) is a cube complex if it is a union of cells in I(m, j).

Definition ([1]). Let X be a cube complex and let p € N. A continuous map ¢ : X — Z,,(M; F;Zs)
is a p-sweepout if

O*(\P) £ 0 € HP(X; Zo).
This is equivalent to say that there exists A € H'(X;Zs) such that
e for any loop 7 : S — X, we have \(y) # 0 iff ® oy : S' — Z,(M;F;Zs) is homotopically

nontrivial.

o N =A— - A#£0in HP(X;Z).

Remark. 1. If dim X < p, then there are no p-sweepouts.
2. If ® is a p-sweepout, then @ is a (p — 1)-sweepout.

Given A a symmetric N x N matrix with Av, = \yv, (A1 < Ay < --+), the Rayleigh formula
gives a min-max characterization of eigenvalues of A:
(Av,0)

Ap = inf —  inf
BT ey Uefélf?\)f()} (v, v) RPk-1RPN-1 [v]gIlRaﬁ}ifl QD

where Q(v) = (Av,v)/(v,v) is scaling invariant.
Let (M™*1 g) be a compact Riemannian manifold isometrically embedded in RY. Given the
Laplacian A : W12(M) — W12(M), we also have a min-max characterization of eigenvalues of A:

\V4 2
A = inf max Miﬁ = inf max  Q([u]),
RFWL2(M) ueRF\{0} [ U RPk—1RP [u] R Ph—1

where Q(u) = ([,; |Vul?)/(f,, u?) is scaling invariant. In 1911, Weyl proved an asymptotic formula
for the sequence of eigenvalues {\,},cn that impacted mathematics profoundly. The celebrated
Weyl Law [27] states that

__2 __2
pll)rgo Ap - p~ 1 = a(n)vol(M)™ »+1,
where a(n) = 472 vol(B)~%(+1) and B is the unit ball in R"*+,
In this section, we present a summary of Liokumovich-Marques-Neves’s proof on the Weyl Law
for the volume spectrum |1 1] that was conjectured by Gromov [6]. We shall start by introducing the
p-width.



3.2 Volume spectrum and Weyl Law 31

Definition. Let p € N. The p-width (p-th volume spectrum) of (M, g) is the number

wp(M, g) = élggpzegig@l\/l(@(x)%

where

Pp={®: X = Z,(M;F;Zs) : ®*(N) # 0 € HP(X;Z9)}
and dmn(®) denotes the domain of ®.

Remark. Since every p-sweepout is a (p — 1)-sweepout, we see that {w,(M, g)}pen is a monotone
increasing sequence.

Now, the Weyl Law for the volume spectrum is formulated as below.

Theorem 3.5 (Weyl Law, Liokumovich-Marques-Neves 16 |1 1]). There exists a constant a(n) > 0
such that, for every compact Riemannian manifold (M™*!, g) with (possibly empty) boundary, we
have ) .

lim w,(M)p~ "+ = a(n) Vol(M)=+1.

p—o0

The Weyl Law for the volume spectrum is first proven for Lipschitz domains and then modified
to prove for compact Riemannian manifolds. One of the main tools in the proofs is the Lusternik-
Schnirelmann inequality, which is stated below.

Lemma 3.6 (Lusternik-Schnirelmann Inequality [0, 7]). Let Q C R™"! be a Lipschitz domain with
Vol(Q2) = 1. Let {Q}Y, be disjoint Lipschitz subsets of Q. For every p € N, we have

N
wp(Q) 2 D wp, (),
i=1

where p; = |p Vol(Q2})].
Proof. Fix € > 0 and pick ® € P,(€2). Consider

U = {z € X : Area(d(z) N Q) < wy, () — %}.
The map ® : U; — Z,(2}; Zy) defined by restricting currents to QF, i.e. ®(z) = ®(x) N Q2 does not
belong to Py, (). Once we show that X \ N, Ui # 0, we may pick 2o € X \ UY, U; and obtain

Area(®(x0) N1 Q) > wy, () —

for every 4. It follows that

N N
Area(®(z0)) > Y Area(®(z0) N Q) > > wy, () —e.
i=1 =1

Since € and ® are arbitrary, we derive the inequality.

To verify that X \ Ufi 1 Ui # 0, we may assume X = Ufi 1 Ui and proceed by contradiction.
Let ¢; : U; — X denote the inclusion map. The LES of cohomology for the pair (X, U;) with Zs
coefficients is given by

o HPHX, Uy T) — s HP (X ) — s HPH (U Zig) —— - -
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As @ ¢ P, (QF), we have tf(APi) = 0, where \ is the generator of H'(X;Z). By exacteness,

APi = j*); for some \; € sz( ,Ui; Z2). By considering the relative cup product
HPY (X, Uy; Zg) X - x HPN (X, Up; Zg) — U Us; 7o) =
with p < p, we obtain A\; — ---— Ay = 0. This contradicts with

j*()\lv...v)\N):j*)\lv...vj*)\N:)\ﬁ#O

since every p-sweepout is a p-sweepout for p < p.

Corollary 3.7. Let w,(Q2) := wp(Q)p_T}rl be the renormalized volume spectrum and let €; :=
Vol(21)~/ (D be a domain similar to Q7. Then

>Zw %L>C$W

where C(n, ) is a positive constant and V' = min{|Q7|,..., [Q}]}.

Proof. A direct calculation using the Lusternik-Schnirelmann inequality leads to

~ J
wp(Q2) =p "Hwy(Q)
L N
2 P_m pri(Qz)

=p n+1 ZVOI t n+1w (Q)

1

o [ Di ntl

= ZVol(Qi)"“ — wp, ()

=1 p

N o AN
> " Vol(Q) e <V01(QZ-) — p) Dp; ()

i=1

3 Vol () (1 1 i Q
—ZZ; 0(1')(—])\/()1@;)) wp, (€2;)

N

> " Vol(Q)@p, () —
=1

C(n,Q)
pV

for some positive constant C'(n, ) > 0. O

Theorem 3.8 (Weyl Law for Cubes). Let C = [0,1]""!. There exists a constant a(n) > 0 such
that
lim @,(C) = a(n).

p—o0
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Proof. Our goal is to check that

lim sup w,(C) = lim inf @, (C).
P

pP—00 —+00

Pick {m},{g;} C N such that
lim sup w,(C) = lim wy, (C) and liminfw,(C) = lim w,, (C).

P—00 l—00 p—00 J—0o0

Fix p; and consider ¢; > p; with N; ~ ¢;/p; € N. By dividing C into a disjoint collection of subcubes
{Cr }fvzjl of the same volume and applying the Lusternik-Schnirelmann inequality, we obtain that

C(n)

Nj
> 1(C)w -
m_;WQmwo%w@>

Since ¢; Vol(C}) ~ qj/N;j ~ p; and lim;j_,o N; Vol(C) = 1, we have

C(n) - C(n)
lim inf w,(C) > lim N; Vol(C; C) — =Wy, (C) — —=2.
minf@(C) > lim N; Vol(C) (C) = = = 5 (C) = =]
As p; — 00, we obtain the desired equality. ]

Theorem 3.9 (Weyl Law for Domains). For every compact Lipschitz domain © C R"*! with
Vol(2) = 1, we have
lim @, () = a(n).

p—>00
Proof. 1t is sufficient to check that

liminf W, () > a(n) and limsupw,() < a(n).

p—0 P—+00
For the lower bound, we prove by chopping the domain into cubes and then applying the Lusternik

Schnirelmann inequality. For every e > 0, there exists a collection of cubes {C} }fil with pairwise
disjoint interiors contained in € such that Z;\le Vol(C}) > 1 —e. For every p > 1,

C(n,Q)
) > ; N |
Z Vol(C7)@\pvol(c)| (C) pmin{Vol(C})}

As p — 00, we have

N
hmlnpr Q) > (Z VOl(C{‘)) a(n) = (1 —e€)a(n),
i=1

p—o0

which gives the desired lower bound as ¢ — 0.

For the upper bound, we prove by rescaling domains to fill in the cube and then applying the
Lusternik Schnirelmann mequahty For every ¢ > 0, there are pairwise disjoint regions {Q* i1
contained in C' such that ZZ 1 Vol(€27) > 1 — €. Observe that

a(n) = lim @,(C) > Vol(Q}) limsup wy, () + ZVOI ) liminf Wy, (€2).

pP—00 P—00 pP—00

Since liminf, o wp(2) > a(n) and 1 — Zf; Vol(€27) < Vol(2]) + €, we deduce that

N
a(n)(Vol(2%) + €) > a(n) (1 - Zvol(n;f)> > Vol(Q}) lim sup @, (),
1=2

p—o0

which gives the desired upper bound as € — 0. O
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Theorem 3.10 (Weyl Law for Compact Manifolds). For every compact Riemannian manifold
(M™+1 g) with Vol(M) = 1, we have

lim w,(M, g) = a(n).

p—o0

Proof. It is sufficient to check that

liminf w,(M, g) > a(n) and limsupw,(M,g) < a(n).

p—0 p—00

For the lower bound, note that for every € > 0, there exists 7 > 0 such that for all » < 7, we have
bili
B, (p) ~ B,(0), where B,(p) is a ball in (M, g) \ M around p and B,(0) is a ball in (R"*! gg)

around the origin. In particular, if (14 ¢)72g < go < (1 + €)?g, then
(14~ FIVOl(B,(p)) < [B,(0)] < (1+ )" Vol(B:(p))

and
wp(Br(p)) = (14 €) "wp(B,(0)), VpeN.

Choose a collection of pairwise disjoint geodesic balls B; ¢ M \ OM with r; < 7 such that
SN Vol(B;) > 1/(1 +€). Let B denote a ball in R*"! of unit volume and let B; denote an
Euclidean ball with the same radius as B;,7 = 1,..., N. By the Lusternik-Schnirelmann inequality,
we obtain that

1

wp(M) = p~ 1wy (M)

N
__1_
>p > wipvols)) (Bi)
=1
N

> p 1 Y (14 ¢) " Bil 7wy, (B)

i=1
N
o Vol(B; 1 n+1
>(1+¢€) 12\/1(/@)(’ ’B(|)| p|B‘> &y, (B)
i=1 ¢ ¢

As p — 0o, we have

N
lim inf @,(M) > (1+€)"""2) " Vol(B;)a(n)

1=
> (1+€) 7" a(n),

which gives the desired lower bound as e — 0.

For the upper bound, the strategy is to first construct a connected region  C R"*! by decom-
posing M into almost Euclidean regions and adding tiny tubes to connect their bilipschitz images
in R**!. Then given a p-sweepout ® of Q, we cook up a p-sweepout ¥ of M whose elements have
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masses comparable with those of ®. As p — o0, the increased mass is negligible compared to
pt/ (1) which gives the desired upper bound.

Let C = {C;}, be a collection of domains such that (i) for alli = 1,...,N, C; PP C; c Rt
with bilipschitz constant (1+¢/2); (ii) C is a covering of M; (iii) C;’s have mutually disjoint interiors.
By connecting the N disjoint regions C; C R™*! consecutively by tiny tubes, we obtain a conncted
Lipschitz domain © ¢ R™*! that satisfies

Q] < (1+ &)™ Vol(M) = (1 + )"

Consider ® € P,(2) with X = dmn(®). By restricting the cycles to C;, we obtain ®; € P,(C;)
with domain X satisfying ®;\ = A = ®*\ and

M(®;(2)) < (14 ¢)"M(®(z)LC;), Vz € X.

We shall use the maps {®;}¥; to cook up a p-sweepout of M. Since ®;(x) has boundary in dC;, one
may choose Z;(z) € I,41(Ci; Z2) such that the cycle 0Z;(x) coincides with ®;(z) on the interior of
C;. Note that the choice is not unique and C; + Z;(x) is an alternative. Let Z denote the bilipschitz
image of Z; in C;. Given x, we argue that a choice of Z; induces choices of Zs, ..., Z, such that
(8Z1 + - -+ 0Zy)(x) is a relative cycle of M independent of the choices of Z;. Then we show that
the map W defined by W(z) = (8Z) + - - - + 0Zy)(x) is the desired p-sweepout of M.

For eachi=1,..., N, set

SXi={(z,2) v € X,Pi(x) —0Z € 1,(0C;; Z2)} C X x L,,11(C; Zs).

Let 7; : SX; — X be the projection map and we claim that 7; is a double covering space for all
i (17 4x) = {(=,Zs), (x,Ci + Z;)}). The proof is analogous to the verification of C(M) as the
double covering space of Z,(M;Zs), which is a direct corollary of the constancy theorem. Under

the bijective correspondence
{double covering spaces of X}/ = <= Hom(m (X),Zs) = H'(X;Zs),

one can check that the element o; € H'(X;Zs) that classifies SX; is identical to A for all 4. As a
result, S X is isomorphic to SX; for all ¢ and let F; : SX; — SX; be the corresponding isomorphism.
For eachi =1,..., N, by composing the projection map SX; — I, 11(C;; Z2) with the bilipschitz
diffeomorphism from C; to C;, we form the map FE; : SX; — 1,41(C;;Z3). Define U SX, —
Zn,rel (M7 8M7 ZZ) by
N
U(y) =Y 9(Eio F(y)).
i=1
The map is continuous in the flat topology with \i’(aj, Ci+2) = \if(m, Z). Hence, ¥ descends to
amap ® : X — Z, . (M,0M;Z5) continuous in the flat topology. By lifting a homotopically
nontrivial loop v : ' — X upstairs and comparing *\(v) with A(7), we deduce that U*\ = \. As
AP =£ 0, this shows that ¥ is a p-sweepout of M.
For all x € X, we claim that

N
M(¥(2)) < (14 €)?"®(x) + (1 +¢)" Z |0C5].
i=1

To see this, we choose (z,Z2) € SX;. Since 0Z; — ®;(z) € 1,,(0C;; Z2), we have
M(0Z;) < M(®(x)) + |0C;| < (1 + €)"M(P(x) L C;) + [0C4.



3.3 Positive Ricci curvature case 36

It follows that

N N
M(P(z)) < (1+€e)" ZM(@Z) < (14 )>"M(®(z)) + (1 + )" Z |0C;].
i=1 i=1
Given § > 0, pick ® € Pp(Q2) such that sup,cx M(®(z)) < wy(2) + . We have the following
estimate

N
wy(M) < sugM(W(a:)) <(1+e)? sup M(®(2)) + (1 +¢)™ Y _|0C|
pAS A i=1

N
< (146 (wp(Q) +6) + (L+e)" Y 9C]]
i=1

N
= (14 6)?"wy(Q) + (1 + )" Z |0C;|, asd — 0.
i=1

Dividing the estimate above by pt/ (1) and letting p — oo, we obtain that

lim sup wy,(M) < a(n)(1 + )2 Q7T < a(n)(1 + )",

p—o0

which gives the desired upper bound as € — 0. O

3.3 Positive Ricci curvature case

In the early 80’s, Yau formulated a conjecture [31, Problem 88| on the existence of infinitely
many closed minimal surfaces in an arbitrary closed 3-manifold. This conjecture has been confirmed
by combining works of Marques-Neves [11] and Song [25] as follows.

Theorem 3.11 (Marques-Neves [11], A. Song [25]). In any closed Riemannian manifold of dimen-
sion at least 3 and at most 7, there exist infinitely many distinct closed, C*°-embedded minimal
hypersurfaces.

In the following sections, we shall present the proofs of Yau’s Conjecture in positive Ricci curva-
ture case, generic metric case, and general case. To begin with, consider the positive Ricci curvature
case.

Theorem 3.12 (Marques-Neves 13 [14]). Let (M™*1 g) be a compact Riemannian manifold of
dimension 3 < (n + 1) < 7. If the Ricci curvature of g is positive, then M contains an infinite
number of distinct closed, C*°-embedded minimal hypersurfaces.

The following theorem is essential in the sense that it links the Almgren-Pitts min-max theory
and the definition of the volume spectrum.

Theorem 3.13 (Min-max Theorem associated with p-width). Let (M™*! g) be a compact Rie-
mannian manifold of dimension 3 < (n+ 1) < 7 and let p € N. There exists a disjoint collection of
closed, C*°-embedded minimal hypersurfaces {EZ ) such that

lp

wp(M, g) = Z m¥ Area(X, k).
k=1
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Proof. By definition, there exists ¢; : X; — Z,(M;F;Zs) such that

max M(®;(z)) — wp(M, g).

Let XZ»(p) denote the p-th skeleton of X;. We have ®; 0 : XP — X; — Z,(M;F;Zy). We claim
that (I)Z"XKP)

coefficient theorem implies that

is a p-sweepout. By cellular homology, we have H),(X;, Xi(p )) = 0. Then the universal

H?(X;, XP); Zy) = Hom(H,(X;, X)), Zy) = 0.

The LES of cohomology for the pair (X, Xi(p )) with Zo coefficients is given by

S HP(X, X 2) = 0 HP(Xi Z0) — s HP(XP) Z) —— -
By exactness, ¢* is injective. It follows that

(®ily) () =0 (@il ) (V) 20

7

Hence, ®; : Xi(p) — Z,(M; F;Zy) is a p-sweepout.
For each ®;, consider

I, = {U: X — 2,(M;F;Zy) : ¥ is homotopic to ®;}

with the fixed parameter space X ()

;7 and define the min-max value as

L(Hi):\yiglfq’ max M(¥(z)).

ia:eXip

Since L(II;) > 0 and 3 < (n 4+ 1) < 7, the Almgren-Pitts Min-max Theorem guarantees that there
exists a disjoint collection of closed C*°-embedded hypersurfaces X7, such that

l;
L(1L;) = Z m; i, Area(X; k).
k=1
Based on the fact that

wp(M, g) <L) < grﬂré%gil\/[(fbl(:c)) — wp(M, g) as i — oo,

we deduce that L(II;) — w, as i — co. By a result of Marques-Neves, we have the upper Morse

index bound
l;

Zindex(E@k) < dim Xi(p) =p.
k=1
By Sharp’s Compactness Theorem, we conclude that

l; lp
U m; ik — U myYp, k as @ — 00
k=1 k=1

and
ZP

wp(M, g) = Z m¥ Area(X, k).
k=1
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Theorem 3.14 (Gromov 88 [5], Guth 09 [7], Marques-Neves 13 [11]). There exists a positive
constant C' = C(M) such that

wp(M, g) < Cpi.

Proof. Tt is sufficient to show this for M = 1"t = [0,1]"*!/ ~, where opposite faces of I"*1 are
identified. We denote by I(n+1, k) the cell complex on I"*!. To start with, let v € R™*! and define
a Morse function f, : I""1 — R by f,(z) = (z,v). Let C(k) consist of all centers of (n + 1)-cells in
I(n+1,k). We claim that for almost all v € S™, the level set f, !(¢) contains at most one point in
C(k). To see this, one first observe that the set {x —y : 2,y € C(k)} is finite. Then

B={veS": (v,x—vy)#0,Vo,y € C(k)}

is open with full measure in S™, which proves the claim.

Now, our propose is to apply Guth’s bend-and-cancel argument. Note that if a hyperplane P
passes through the center, then we cannot radially project it to cells in the n-skeleton I(n + 1, k),
and cancel the mass. Hence, we need to consider two separate cases: (i) P N Bg-x(C(k)); (ii)
P\ By (C(R)).

For case (i), the claim above implies that

f(Beg—k(x)) N f(Be-r(y)) =0, Vx #y e Ck).

It follows that
Area(f1(t) N B« (C(k))) < wpe"3™™* VteR.

When it comes to case (ii), the following lemma is important.

Lemma 3.15. There exists positive constants C' = C(I(n+1,k)) and ey = eg(I(n+1, k)) such that
for all k € N and 0 < € < ¢y we can find a Lipschitz map F : I(n+ 1,k) — I(n + 1, k) satisfying

e [ is homotopic to the identity map.
o F(I"™\ Bs_«(C(k))) C I(n+1,k),.
e [DF| < €.

Define ®y : RP? — Z,,(I(n+ 1,k); Z2) by
Qo([ag,at,...,ap)) =0{z a0+ arf(z) +-- -+ apf(x)’ <0}

We claim that &g € P,. Since m(RPP,0) = Zy, every homotopically nontrivial loop in RP? is
homotopic to 7 : S* — RPP defined by

v(e?) = [cos(n8), sin(7),0, ..., 0].
Then ®goy: St — Z,(I(n+1,k); Zs) defined by
@ ([cos(md), sin(7h), 0,0, ...]) = O{cos(mh) + sin(nh) f < 0} = O{f < — cot(n0)}
is homotopically nontrivial. Since the generator A € H!(RPP;Zs) satisfies A(y) = 1, we have for
any loop v in RPP, A\(vy) # 0 iff ®y o v is homotopically nontrivial. This, together with AP # 0,
gives @y € Pp,. If we let § = [ao,...,ap], then ®y(f) consists of at most p hyperplanes. Define

O = Fypo®y: RPP = Z,(I(n+ 1,k);Zs). Since F is homotopic to the identity map, we have
¢ € Pp.
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Our goal is to bound Area(®(6)) by Cp'/("*+1 . Then for each p € N there exists a map ® € Pp
and a positive constant C' = C'(M) such that

wp(Ma g) < sup Area(@(&)) < Cpﬁ
OcR PP

As F is a Lipschitz map, we obtain that
Area(®@|(nq1,k)\I(n+1,k),) = Area(Fy o (®o(0) N Bs-x(C(k))))

< (C> Area(®y(0) N B (C(k))

€

< (C>np - wn(e37F)"

€
=Cp-37M,

Since we are using Zg coefficients, the multiplicity is at most one and hence ®|;(,11 ), contains at
most n-dimensional faces in I(n + 1, k),. This leads to the estimate

k 1 —k —k 1 __n_ 1
Area(®(0)) < (3")" 1. (37" + Cp- 37" < pnti + Cp-p ntl < Cpnt
if we choose k such that 3% < pt/(nt1) < gk+1, O

Next, we prove the following theorem by employing a Lusternik-Schnirelmann type argument.

Theorem 3.16. If w,(M,g) = wp1(M,g), then there exists infinitely number of distinct closed,
C*°-embedded, minimal hypersurfaces.

Proof. Suppose that there are only finitely many closed, C>° embedded, minimal hypersurfaces
¥1,...,%;. Assume that there exists a (p + 1)-dimensional cube complex X and II = {¥ : X —
Z,(M;Z2)} a homotopy class of (p + 1)-sweepouts such that

wpt1(M, g) = inf sup M(®(z)).

Pell zex
Denote l
S={V € Va(M) :spt V. => m;%; with |[V][(M) < wpy1 + 1}
=1
and

l
T={T € Z,(M;Zs): T=0o0r sptT =Y my[Si] and M(T) < wp41 + 1}.
=1

By the compactness theorem, one can check that Ve > 0, dn > 0 such that
F(T|,8) <n= F(T,T) <e

In other words, if T' € Z,,(M;Zs) is close to S in F metric, then T is close to 7 in the flat topology.
Lemma 3.17. There exists € > 0 such that

BI(T) ={T € 2,(M;Zs) : F(T,T) < €}

has trivial fundamental group, i.e. any ® : S* — B (7)) is homotopically trivial.
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Pick ® : X — Z,(M;Zs) such that

max M(®(z)) = wp+1(M, g).

Write A = ®*(\) € HY(X;Zo) with A1 2£ 0 in HPTY(X;Zs). Let Z C X be a subspace defined as
Z:={re X :F(®(x),S) <n}

and let Y := X \ Z. We claim that ®|y is a p-sweepout. Let 41 : Z — X and iz : Y — X denote
the inclusion maps. By definition, we have ®(Z) C B/ (T). Then Lemma 3.17 implies that for
all p: St — Z, ® o pu(Sh) is homotopically trivial. Hence, i\ = 0 in H'(Z;Zs). The LES of
cohomology for the pair (X, Z) with Zy coefficients is given by

S HNX, Z:Z0) — L HN(X: ) s HN(Z:Z0) —— -
By exactness, A = j*\; for some \; € HY(X, Z;Zs). If i5(AP) = 0, then the LES of cohomology for
the pair (X,Y) with Zy coefficients is given by

- —— HP(XY; Zs) AN HP(X;Zs) e, HP(Y;Zg) — -
By exactness, \? = j*\g for some Ao € HP(X,Y;Zs). By considering the relative cup product

HY(X,Z;Zy) x HP(X,Y;Zy) — HPYY(X,Y U Z;Z,) = 0,
we obtain A1 — Ao = 0, which contradicts with
F5O = Xg) = AL — 5 Ao = APTL L,

Hence, i5(AP) # 0 and ®|y is a p-sweepout.
As ®|y € P,, we know that
wp(M, ) < max M(2(2)) < wp+1(M, 9) = wp(M, g) = max M(®(z)) = wp(M, g).
Assume that all varifolds in the critical set C(® : X — Z,,(M;Zz)) are stationary. Then all varifolds
in the critical set C(® : Y — Z,(M;Zsy)) are stationary. At least one such varifold V € C(® :

Y — Z,(M;Zsy)) is almost minimizing in small annuli. Hence, V' € S, which contradicts with the
definition of Y. O

Now, we are ready to prove Yau’s Conjecture in positive Ricci curvature case.

Theorem 3.18 (Marques-Neves 13 [11]). Let (M™% g) be a compact Riemannian manifold of
dimension 3 < (n + 1) < 7. If the Ricci curvature of ¢ is positive, then M contains an infinite
number of distinct closed, C*°-embedded minimal hypersurfaces.

Proof. By contradiction, suppose that the set £ of all connected, closed, C*°-embedded minimal
hypersurfaces of M is finite. For every p > 1, we have

wp(M) = |[Vp[| (M),

for some V), on M, where V), is the varifold of a closed, C*°-embedded minimal hypersurface, with
possible multiplicities. We may write

lp
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with ng ), ceey Zl(p ) all disjoint. As the Ricci curvature of g is positive, (M, g) satisfies the embedded
Frankel propert}z i.e. any two closed, C°°-embedded minimal hypersurfaces of M intersect each
other. It follows that I, = 1 for every p > 1.

Since L is finite, the previous theorem implies that {w,} is a strictly increasing sequence. Hence,
we have

#{wp (M) k=1,...,p} =p.
Let 0 := min{Area(X) : ¥ € L} > 0. The upper bound for the volume spectrum gives w,(M) <
Cp'/ (1) which implies that n® e {1,...,|Cp"/ ™tV /§|} and
#lop(M):k=1,...,p} < C'pwit

for a constant C’ > 0 independent of p. As p grows, we obtain a contradiction. O

3.4 Generic metrics case

In this section, we present a sketch of Irie-Marques-Neves’s proof on Yau’s Conjecture in generic
case.

Theorem 3.19 (Irie-Marques-Neves 17 [3]). Let M™*! be a closed manifold of dimension 3 <
(n 4+ 1) < 7. Then for a C*-generic Riemannian metric g on M, the union of all closed, C°-
embedded minimal hypersurfaces is dense.

The main ingredients in the proof are the Weyl Law for volume spectrum (see Theorem 3.5) and
the min-max theorem associated with p-width (see Theorem 3.13). The structure theory of White is
also essential, which says a generic metric is bumpy, meaning that every closed minimal hypersurface
is nondegenerate. To prepare for the proof, we shall first introduce the Manifold Structure Theorem
of White |28, 29].

Definition. Let X, %; be minimal surfaces in M™ of dimension k. We denote by Ns(X) the o-
neighborhood of ¥ and N () the normal bundle of ¥. Say ¥ is C! close to X if ¥1 C Ns(¥) and
¥ is the graph of a section u : X1 — R™™% € T(N (X)) with ||ul| < 1.

Theorem 3.20 (Manifold Structure Theorem [29]). Let M™ be a smooth manifold and let I'+2)
be an open set of C'*? Riemannian metrics on M. Consider the map

{All C' immersions ©F < M} x re+2) M4, Cl+2(M)-

The set of pairs M = H™1(0) = {(X¥,g) : 3i : ¥ — (M, g) an C! minimal immersion} is a C?
separable Banach manifold. The projection map

m: M —s 102
(Z,9)—yg

is a C? Fredhom map with Fredholm index 0. Moreover, the kernel of DH|(E,9) has dimension equal
to the kernel of DH|s 4), where

Dl ) : TizgM — C(%)
is the linear projection and
DH|s 4 : To{All C! immersions} x T,I'+2 — CH2(x%)

is the Jacobi operator Ly, = —Ayx — Ricy (v, v) — |AJ%
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Theorem 3.21 (Sard-Smale [23]). The regular values of II are generic in T*+?) in the sense of
Baire.

A direct corollary of this is the Bumpy Metrics Theorem of White [29, 30].
Theorem 3.22 (Bumpy Metrics Theorem [29]). A generic metric in the sense of Baire is bumpy.

Proof. Since M is separable and IT is proper, the regular values of IT are generic in T(*2) by Theorem
3.21. This proves the theorem for any fixed 3. Since there are only countably many diffeomorphism
types of X, we are done. O

Recall the definition of p-width. The following lemma will be used in the proof of Theorem 3.19
to derive a contradiction.

Lemma 3.23. The p-width w,(M, g) depends continuously on the metric g in the CP-topology.

Proof. Suppose g; — ¢ in the C°-topology. Given € > 0, pick ® € P,(M) such that

Sup{My(®())} < wp(M. g) + &

where M (T') is the mass of T' w.r.t. g. Since

wp(M, g;) < igg{Mgi(‘P(x))}

zeX

gi(vvv) %
. (ii% gw)) ey tMs(2())

gi(v,v)

< (iilg g(v,v)) (wp(M, g) + €),

we have limsup;_, o wp(M, g;) < wp(M, g) as e = 0.
Conversely, let €; > 0 satisfying lim;_,oc ¢; — 0. Pick ®; € P,(M) such that

wp(M, gi) = 5;1)13_{Mg¢(¢(w))} — €.

Since

wp(M, gi) > xsg}g{Mgi(@(x))} — €

> (Sup 9(v,v) > sup {My(®(z))} — &

v#0 gi(v,v) zeX;

%
g (Sup 9(”7”) ) wp(Ma g) — €,

v#£0 9i (’U, ’U)

we have liminf; o wp(M, gi) > wy(M, g), which completes the proof. O

Lemma 3.24. Let ¥ be a closed, C*°-embedded minimal hypersurface in (M"*! g). Then there
exists a sequence of metrics g; on M, i € N, converging to g in the C°°-topology such that ¥ is a
nondegenerate minimal hypersurface in (M"™*1, g;) for every i.
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Proof of Theorem 3.19. Let U C M be a nonempty open set. Define

My ={g: g is a smooth Riemannian metric such that there exists
a nondegenerate, closed, C*°-embedded minimal
hypersurface ¥ C (M, g) satisfying XN U # 0}.

It is sufficient to prove that My is open and dense in the C°°-topology.

Let g € My with some X, C (M, g) satisfying ¥, N U # 0. Since X, is nondegenerate, the
Inverse Function Theorem implies that for every ¢’ close to g in the C*°-topology, there exists
a unique nondegenerate, closed, C*°-embedded minimal hypersurface ¥, close to X, satisfying
Yg MU # 0. This shows that My is open.

To see that My is dense, consider an arbitrary smooth Riemannian metric g and an arbitrary
neighborhood V of g in the C*-topology. By Theorem 3.22, there exists ¢’ € V such that all closed,
C*°-immersed minimal hypersurfaces in (M, ¢’) are nondegenerate. If ¢ € My, then we are done.
Otherwise, suppose that all closed, C*°-embedded minimal hypersurfaces in (M, g’) are contained
in M \ U. By Sharp’s Compactness Theorem, we deduce that the set

N
C= {Z m; Volg(X;) : N € N, {mj};\lzl CN, {Zj}é»v:l are disjoint, closed,
j=1

C*°-embedded minimal hypersurfaces in (M, g')}.

is countable.

Now, choose h : M — RZ% a smooth function such that supph C U and h(z) > 0 for some
x € U. If we perturb the metric slightly by letting ¢’(¢) = (1 + th)g’ for t > 0, then there exists
to > 0 such that ¢'(t) € V for t € [0,to] and Vol(M, ¢'(ty)) > Vol(M,¢'). Because of the Weyl Law
for volume spectrum, it follows that w,(M, ¢'(to)) > wyp(M, ¢') for some p € N. This, together with
the fact that C is countable and the p-width w,(M,¢'(t)) is continuous in ¢, guarantees that there
exists a closed, C*°-embedded minimal hypersurface ¥ 5y C (M, g'(s)) satisfying Xy NU # 0,
where s € [0, t9]. By Lemma 3.24, we may perturb ¢'(s) slightly to ¢” such that ¢” € VN My, which
shows that My is dense. O

3.5 General case

In this section, we present a sketch of Song’s proof on Yau’s Conjecture in general case where
the metric may not be generic.

Theorem 3.25 (A. Song 18 [25]). In any closed Riemannian manifold of dimension at least 3 and
at most 7, there exist infinitely many distinct closed, C°°-embedded minimal hypersurfaces.

The proof builds on the following result obtained by Marques and Neves.

Theorem 3.26 (Marques-Neves 13 [14]). Let (M™% g) be a compact Riemannian manifold of
dimension 3 < (n + 1) < 7. Suppose that M satisfies the embedded Frankel property (any two
closed, C*°-embedded minimal hypersurfaces of M intersect each other). Then M contains an
infinite number of distinct closed, C*°°-embedded minimal hypersurfaces.

In the proof, Song introduced a Weyl Law type formula called the cylindrical Weyl Law and
developed the min-max theory on a non-compact manifold with cylindrical ends. This builds on
Liokumovich-Marques-Neves’s proof on the Weyl Law for volume spectrum and Li-Zhou’s work on
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the free bounary min-max theory. The cylindrical Weyl Law and the min-max theory on a non-
compact manifold with cylindrical ends turn out to be crucial for proving other interesting results,
such as the generic scarring phenomenon of minimal hypersurfaces along a stable hypersurface (see
Song-Zhou’s work [20]) or a generalization of the Yau’s Conjecture to some classes of complete
non-compact manifolds (see Song’s work [24]).

In addition, a geometric topology approach was employed in the proof to form a non-compact
manifold with cylindrical ends. To this end, one need to first cut M along minimal hypersurfaces
which are area minimizing at least on one side to obtain a new manifold U whose boundary, if
not empty, has a contracting neighborhood. Then by attaching the cylinders to U along U, one
obtains the non-compact manifold with cylindrical ends C(U) and settles the stage for applying the
cylindrical Weyl Law.

To prepare for the proof, we shall first introduce the p-width of a non-compact manifold and the
cylindrical Weyl Law.

Definition. Let (N”“,g) be a complete non-compact manifold. Let K1 € Ky C ---K; C --- be
an exhaustion of N by compact (n + 1)-submanifolds with smooth boundary. The p-width of (NN, g)
is the number
wp(N, g) = lim w,(K;, g) € [0, 0].
11— 00
Remark. Since w,(Kj;,g) is a nondecreasing sequence of nonnegative numbers, w,(N,g) is well-
defined. Moreover, it is independent of the choices of the compact exhaustion {K;}.

Let (C, h) be a complete (n+1)-dimensional manifold with cylindrical ends, i.e. outside a compact
subset, the manifold is isometric to 3 x [0, 00) endowed with a product metric by @ dt? (here ¥ is a
smooth n-dimensional manifold).

Theorem 3.27 (Cylindrical Weyl Law, A. Song 18 [25]). Let (C,h) be an (n + 1)-dimensional
connected non-compact manifold with cylindrical ends as above. Let X1,...,%; be the connected
components of ¥ and suppose that 31 has the largest n-volume among these components:

|X1] > max{|Xa|,..., %]}
Then wy,(C) = wy(C, h) is finite for all p and the following holds:
1. wi(C) > |¥1] and for all p € {1,2,...},
wp+1(C) = wp(C) = [Xn];
2. there exists a constant C' > 0 depending on h such that for all p € {1,2,...},
wp(C) < pIS1| + Cpis.

Proof. To begin with, we check that for all i € {1,...,1}, wi(3; x [0, L]) = |3;| for L large enough.
Since the hypersurfaces {¥; x {r}},c(o,r] give an explicit sweepout in P1, we have the upper bound

For the lower bound, by applying the free boundary min-max theory we obtain a varifold V' with
spt V' a smooth, almost properly embedded free boundary minimal hypersurface. By the maximum
principle and the monotonicity formula, for L large enough we have the lower bound
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Next, consider the 1-width of By, = (¥, U--- U X)) x [0, L]. Applying the argument above to
each component yields that

wi(Br) = max{|Sil, .., %} = 5.

It follows immediately that wi(C) > [31]|. We show the rest of property 1 by using a Lusternik-
Schnirelmann type argument. Given € > 0, fix x9 € C and choose R, large enough such that

wp(BR,(0)) > wp(C) — €.
Based on the fact that Bg, (z0) U B} C C where B} is isometric to By, the Lusternik-Schnirelmann
inequality (see Lemma 3.6) gives
wp+1(C) Z wp(Br, (20)) +wi(Br) = wp(C) + 5] — €.

Since € is arbitrary, we show property 1.

Finally, we show property 2 by using the gluing technique of Liokumovich-Marques-Neves, which
enables us to combine the p-sweepouts over the same domain X of compact regions with disjoint
interiors into one p-sweepout over X of their union. By assumption, we may write C = UL(X [0, c0))
where U is a compact submanifold with boundary. Fix p € N, and we know from Theorem 3.14 that
there exists a p-sweepout ®; : RPP — Z,,(U; 0U; Z9) satisfying

1
Jnax, M(@1(2)) < Opr=t.

Recall that By, = (X1 U---UX%;) x [0,L]. Let f : By, — R be the Morse function defined by

flx,t) = —1)L+tif (x,t) € ¥; x [0, L]. Consider ® : RP? — Z,,(Br; 0Br;Z2) defined by
®([ao, a1, ..., ap]) = 0{z rap +ar f(x) + -+ ap fz)’ <O}

Then ®, is a p-sweepout satisfying

M(® < p|34].
max M(®a(x)) < plS|

By adding tiny tubes to connect the regions and gluing the p-sweepouts ®; and ®, together, we
obtain a p-sweepout ® : RPP — Z, (U U Br; 0(U U Bp); Z2) satisfying

<
2o MO()) = g MUB1()) + s, MI:(0)) + €

1
< Cprtt +p|24|+ C
1
< Cpm1 +p[¥.
This completes the whole proof. ]

Let (U, g) be a connected compact Riemannian manifold with boundary endowed with a smooth
metric g. Suppose that QU is a minimal surface which admits a strictly mean convex foliation. In
other words, we assume that there is a diffeomorphism

®:0U x [0,1] = U

where ®(0U x {0}) = OU is a minimal surface, and for all t € (0,#], the leaf ®(dU x {t}) has non-zero
mean curvature vector pointing towards oU.

By attaching the cylinders U x [0,00) to U via the identifying map ¢ : U x {0} — 9U, we
obtain the following non-compact manifold with cylindrical ends:

C(U) :=UU, (U x [0,00)).
The metric h satisfies h = g on U and h = (gL 0U) @ ds?.
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Theorem 3.28 (A. Song 18 [25]). Let (C(U), h) be constructed as above. For all p € {1,2,...},
there exist disjoint, connected, closed, C"*°-embedded minimal hypersurfaces ¥1,..., Xy contained
in U \ OU and positive integers my, ..., my such that

N
wp(C(U)) = Z mi| X
=1

Besides, if ¥; is one-sided, then the corresponding multiplicity m,; is even.

Proof. By varying the metric and resolving singularities around OU, we form the compact smooth
approximations (U, h¢) of (C(U),h). Fix p € N. Applying the free boundary min-max theory
developed by Li-Zhou gives a varifold V, with spt V., = S, = uf\iﬁlmi’eﬁi,e a smooth, compact, almost
properly embedded free boundary minimal hypersurface such that

Ne
wp(Ua he) = M(‘/e) = Zmi,e Zi,e‘-
i=1

Since the boundary ®(OU x {e}) is strictly mean-concave, the monotonicity formula together with
the maximum principle implies that S, must be compact in Ue \ ®(OU x {€}).

As € — 0, we have wy(Ue, he) = wp(C(U),h). Then for a sequence e, — 0, the varifold V,
converges in the varifold sense to a varifold Vg in C(U) of total mass M(Va) = w,(C(U), h). By the
index bound of Marques-Neves and Sharp’s Compactness Theorem, the restriction of spt Voo = Seo
to C(U) \ 9U is a C*°-embedded minimal hypersurface. The maximum principle by White implies
that if Soo N (C(U) \ U) # 0, Se would be a connected component of some slice OU x {§}, which
contradicts with the strictly mean-concaveness of the foliation. As a consequence, S, is contained
in the compact set (U, g). Since S is a g-stationary integral varifold, the maximum principle by
White implies that S is confined in U. This completes the proof that S, is a C°°-embedded
minimal hypersurface in U. O

Proof of Theorem 8.25. Let (M"™*!, g) be any closed Riemannian manifold of dimension 3 < (n +
1) < 7. Suppose by contradiction that (M, g) contains finitely many closed, C*°-embedded minimal
hypersurfaces. Each one of them has either a contracting, expanding, or mixed neighborhood. Cut
M along minimal hypersurfaces in a maximal way such that we obtain a new manifold “core” U
whose boundary, if not empty, has a contracting neighborhood. By construction, the core satisfies
the embedded Frankel property, i.e. all minimal hypersurfaces embedded in int U must intersect.
By Theorem 3.26, (M, g) contains at least two disjoint minimal hypersurfaces. Hence, there is at
least one nontrivial cut of M and the boundary 9U is not empty.

By attaching the cylinders to U along U, we form the non-compact manifold with cylindrical
ends C(U). Let X7 be a component of U with largest n-volume and WLOG assume that |%;] =
1. By Theorem 3.28, each w,(C(U)) is realized as an integer multiple of closed, connected, C'*°-
embedded minimal hypersurface in int U. Since all the closed, C*°-embedded minimal hypersurfaces
in int U have their volume larger than that of ¥;, the p-widths w,(C(U)) satisfies

o Wy (C(U)) > mylSal;
o w1 (C(0)) 2 wp(CU)) + 2] = wy(C(U)) + 1.

By an arithmetic result, we obtain for a ¢y > 0 and all p large enough,
Wp > (1 + 60)])7

which contradicts with the upper bound in Theorem 3.27. This completes the whole proof. O
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4  Multiplicity One Conjecture

4.1 CMC/PMC min-max theorem

In 33, 34], Zhou-Zhu developed a min-max theory for CMC/PMC surfaces in any closed manifold
M. In this section, we will state their main theorem and give an overview of the proof.

Definition. Let (M"*! g) be a closed Riemannian manifold of dimension 3 < (n + 1) < 7. Given
¢ € R or a smooth function h : M — R, we define the weighted area functionals for all Q@ € C(M):

AS(Q) = M(99) — cH"TH(Q);

AM(Q) = M(09) — /Q hdvol, .

We have the following characterization of the perscribed mean curvature (PMC) hypersurfaces.

Lemma 4.1 (PMC). If ¥" = 9Q is a C*°-embedded hypersurface, then 3" is stationary w.r.t. the
functional A" iff Hy, = hlx.

Proof. By a similar computation as in Section 1.1, we have the first variation formula for A" along
X e X(M):
JA" o(X) = / divao Xduaa — / h(X,v)duaq,
o0 o0

where v is the outward unit normal on 92. When the boundary 90 = ¥ is a C*°-embedded
hypersurface, the first variation becomes

5 A|g(X) = / (Hs — hls}) (X, v)dps.
>

From this we conclude that ¥ is stationary iff Hy, = hly. O

Lemma 4.2. Under the assumption above, the second variation formula for A" along normal vector
fields X € (M), X = pv with ¢ € C*°(X) is given by

(52Ah]Q(X, X) = / [\V@]Z — (|AE\2 + RicM(V, v)— 8,,h)g02] dus.
>

Definition. Let U C M be an open set. Say that ¥ is a stable h-hypersurface in U if
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L4 HE = h|27
o 52AM (v, pr) > 0,Yp € C°(X) with spt € XN U.

For stable h-hypersurfaces, we have the following variant of the famous Schoen-Simon-Yau and
Schoen-Simon curvature estimates (see Theorem 3.1). The compactness statement follows in the
standard way from the curvature estimates.

Corollary 4.3. Let U C M be an open set. Given A > 0 and h € C°°(M), there exists a constant
C = C(U,g,A,h) such that if ¥ < (U, g) is a smooth, 2-sided, stable h-hypersurface in U with
X NU = () and Area(X) < A, then

C
A¥P*p)< —————, Vpel.
AT p) < dist2,(p, OU) P
Let {¥;} be a sequence of smooth, 2-sided, stable h-hypersurfaces in U with 9%; N U = 0 and
sup; Area(Y;) < oo. Then up to a subsequence, ¥; converges locally smoothly to a stable h-
hypersurface Yo in U possibly with integer multiplicity.

Proposition 4.4 (1-sided Maximum Principle). Let Hy, = ¢ for a constant ¢ > 0. If 3; and ¥, are
graphs over R™ with opposite orientations, then either 31 N ¥y is contained in a (n — 1)-dimensional
submanifold or £; N Xy = 0.

In the following paragraph we shall introduce the theory of relative sweepouts, which sets the
basis for stating the CMC/PMC min-max theorem. Let (M™*!, g) be a closed Riemannian manifold
of dimension 3 < (n+ 1) <7. Let X be a k-dimensional cube complex with Z C X a subcomplex.
For each ®¢ : (X,Z) — (C(M),F) continuous under the F-metric, consider the relative homotopy
class

II(®g) = {P: (X, Z) — (C(M),F) continuous under the F-metric such that
®|, = ®y|z and @ is homotopic to ®q rel Z.}

with the fixed parameter space (X, Z) and define the A"-min-max value as

h s h
L (1) = inf max A"(®(x)).

Now, we are ready to state the CMC/PMC min-max theorem confirmed by Zhou-Zhu [33, 34, 32].

Theorem 4.5 (CMC/PMC Min-max Theorem [33, 34]). Under the hypotheses above, if the non-
triviality condition is satisfied, i.e.

LA(IT) > max A" (®o(z)),

then there always exists a smooth, almost embedded (embedded outside the touching set) hypersur-
face X" = 09 for some Q € C(M) such that

e Hy, = hly;
o AMX)=L"(2);
e index(X) < k.

Corollary 4.6. For every positive ¢ € R, there always exists a smooth, closed, almost embedded
(embedded outside the touching set) hypersurface X" of Hy, = c.
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Example 4.7. Consider the special case when X = [0,1] and Z = {0,1}. Given a Morse function
f: M — R, define ®; by ®o(x) = f~1([0,2]). Note that ®¢(0) = 0, ®o(1) = M, and Pq is
continuous under the F-metric. Under the assumptions that sup,, |h| = ¢ < oo and [}, hdvol, > 0,
the L"-min-max value satisfies Lh(H) > 0. We shall present a heuristic proof here using the lower
bound for the isoperimetric profiles for small volumes (see Lemma 2.4).

Proof. Let Cy > 0 and Vy > 0 be the constants in Lemma 2.4, and fix 0 < V < Vj such that
Vit > 2¢/Cy. Consider any smooth 1-parameter family {Q, : z € [0,1]} satisfying Qo = () and
)y = M. By the Intermediate Value Theorem, there exists zp € (0,1) such that Vol(Q,,) = V. By
the isoperimetric profiles for small volumes, we have

m[%}i] AM(Qy) > AN Q) > CoVitl —cV > ¢V > 0.
ze|0,

Since this holds for any sweepout, we conclude that L"(IT) > 0. O

Definition. The critical set of {®;} is given by
C{®;}) = {0, Vo) € C(M) X V(M) : Qoo = lim Py, (z4), Voo = lim |0, (z4)],
1—00 1—00

and A"(®;, (2;)) — L"(I1)}.

Similarly as in Section 2.2, we shall construct the tightening map adapted to the A" functional
and prove that after applying the tightening map to a critical sequence, every element in the critical
set has c-bounded first variation, where ¢ = sup,, |h|. This variational property is a generalization
of bounded mean curvature, and is loose enough to be satisfied by the min-max limit V (after
tightening) while providing enough control to develop the regularity theory. In particular, varifolds
with c-bounded first variation satisfy a uniform monotonicity formula, and any blowup is stationary.

Proposition 4.8 (Tightening). Assume L*(IT) > 0. For any critical sequence {@7} for II, there
exists another critical sequence {®;} for II such that C({®;}) C C({®}}) and each pair (€2, V) €

C({®;}) is At-stationary, i.e. VX € X(M),

d T xT
0= AND{(Q),27(V))
t=0
:/ dideV(m,S)—/ hX, v)dpaq.
Gn (M) o0

Corollary 4.9. Under the hypotheses above, V has c¢-bounded first variation.

Proof. This comes from the following estimate:

VO <1 [ X r)duon] <c [ [Xlduv,
oN M

where ¢ = sup,, |h/. O

We proceed to introduce the notion of h-almost minimizing varifolds, and construct h-replacements
for any h-almost minimizing varifold after solving a natural constrained minimization problem.
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Definition. Given €, > 0 and an open set U C M" !, define

AN (U;€,6) .= {Q € C(M) such that if Q = Qq,...,Q, € C(M) satisfying
1.spt(; — Q) CC U;
2.F(Qi, Qiy1) < 0
3.AMNQ) < A Q) + 6,
then A"(Q,,) > A"(Q) — €}

Definition. Say a varifold V' € V, (M) is h-almost minimizing in U if there exists ¢; — 0, §; — 0,
and Q; € AMU;e€;,8;) such that F(|0;], V) < ¢; for every i.

Definition. A varifold V' € V,(M) is h-almost minimizing in small annuli if Vp € M, Jran,(p) > 0
such that V' is h-almost minimizing in A, ,(p) = B;(p) \ Bs(p) for all 0 < s <7 < ram(p).

Theorem 4.10 (Existence of h-almost minimizing varifold). Assume L*(IT) > 0 and let {®;} be
a pull-tight minimizing sequence of sweepouts for II. Then there exists a nontrivial pair (2,V) €
C({®;}) such that

1. V has c-bounded first variation;
2. V is h-almost minimizing in small annuli.

Proposition 4.11 (Existence and properties of h-replacements). Let V € V,,(M) be h-almost
minimizing in an open set U C M and let K CC U be a compact subset of U. Then there exists
V* €V, (M) called an h-replacement of V' in K such that, with ¢ = sup,; |A/,

VLM\K)=V*L(M\K);

—eVol(K) < [[V[|(M) — [[V¥]|(M) < e Vol(K):

V* is also h-almost minimizing in U;

V* = lim; 00 |09 for some QF € A*(Us;e;,8;) with €;,6; — 0 and QF locally minimizes A" in
int K for all i.

5. if V has c-bounded first variation in M, so does V'*.

D =

Proposition 4.12 (Regularity of h-replacement). Let 3 < (n+1) < 7. Under the same hypotheses
as Proposition , if ¥ = spt ||V*||Nint K, then X is a smooth, almost embedded, stable h-hypersurface.

Theorem 4.13 (Main regularity). Let (M™! g) be a closed Riemannian manifold of dimension
3 < (n+1) <7 Given a smooth function h : M — R, set ¢ = sup,, |h|. Assume that V € V,,(M)
has c-bounded first variation in M and is h-almost minimizing in small annuli. Then V is induced
by ¥, where ¥ is a closed, almost embedded h-hypersurface.

4.2 Free boundary min-max theorem

In [10], Li-Zhou developed the min-max theory for free boundary minimal hypersurfaces in the
general Almgren-Pitts setting. In this section, we will state their main theorem without giving a
proof.

Definition. Let (M"*! 0M,g) be a Riemannian manifold with boundary. A hypersurface ¥ <
(M™*1 OM) is called properly embedded if

e int> Cint M,
e 0¥ COM.
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Define the collection of tangential vector fields as
XH(M) :={X € X(M): X(p) € T,(0M),Vp € OM}.

Any compactly supported X € X'(M) generates a smooth one parameter family of diffeomorphisms
®;X such that ®X(X) is a family of properly embedded hypersurfaces in M. By the first variation
formula, we have VX € X*(M),

0X(X) : 4

=7 Area(®X (%))

t=0
:/ divs XdH"
b

:-/(X,H)d?-["+/ (X, pydo™ 1,
P ox

where H is the mean curvature vector of > and p is the outward unit co-normal of 03.

Definition. A properly embedded minimal hypersurface ¥ < (M"*!, M) is called a free bound-
ary minimal hypersurface (FBMH) if the mean curvature of ¥ vanishes and ¥ meets M orthogonally
along 03.

Proposition 4.14. A FBMH X" — (M,0M) is a stationary point of the area functional.

Recall that in Section 1.3, we have introduced the space of mod-2 flat chains Z(M;Zs). To set
up the free boundary min-max theory, we restrict our attention to the space of mod-2 flat chains
relative to boundary Zy(M;0M;Z2). An analogous result for Almgren’s Isomorphism Theorem is
stated below:

Theorem 4.15. Z,(M;0M;Zs) is weakly homotopic to RP*°.

Let (M"Y, OM, g) be a compact Riemannian manifold with boundary of dimension 3 < (n+1) <
7. Let X be a k-dimensional cube complex. For each ®g : X — Z,,(M;Zs2) continuous under the
F-metric, consider the homotopy class

II(Py) ={P: X — Z,(M;0M;Zs) continuous under the F-metric
such that ® is homotopic to ®¢}

with the fixed parameter space X and define the free boundary min-max value as

L(II) = <11>Ielfngg}({M(q)(x))

Now, we are ready to state the free boundary min-max theorem confirmed by Li-Zhou [10].

Theorem 4.16. Under the hypotheses above, if L(II) > 0, then there exists a disjoint collection of
smooth, almost properly embedded FBMHs {¥;} such that

l
L(II) = ZmZ Area(%;).
i=1

Remark. Here, the almost properly embedded FBMHs are those FBMHs that may have non-empty
touching sets, i.e. int(3X) N IM # (.
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4.3 Multiplicity One Conjecture

Note that the Almgren-Pitts min-max theory works for families of cycles within a homotopy class,
while the definition of the volume spectrum concerns all families via the cohomological condition. To
link them together, Marques-Neves systematically studied the Morse index for minimal hypersurfaces
produced by the Almgren-Pitts theory [13]. In particular, they proved the following version of the
min-max theorem.

Theorem 4.17. Let (M"*! g) be a closed Riemannian manifold of dimension 3 < (n+ 1) < 7.
For each k£ € N, there exists a disjoint collection of connected, closed, C*°-embedded minimal

hypersurfaces {¥¥ : 4 = 1,--- 1} with integer multiplicities {m¥ :4 =1,--- 14} C N, such that
lk lk
wi(M,g) = me - Area(X¥)  and Zindex(Ef) <k.
i=1 i=1

The possible existence of multiplicities greater than 1 formed a major obstacle in applications of
the Almgren-Pitts theory since the 1980s. In addition to the possible repeated occurrence of minimal
hypersurfaces when applying Theorem 4.17 to {wg }xen, min-max varifolds with higher multiplicities
cannot fit into the program of Marques-Neves [15] to obtain Morse index lower bounds (see also
[12]). The following famous conjecture was formulated by Marques |1] and Neves [16]; see also [15].

Conjecture (Multiplicity One Conjecture). For a bumpy metric on M™ 3 < (n 4+ 1) < 7,
there exists a collection {3F} as in Theorem 4.17, such that every component ¥¥ is 2-sided and of
multiplicity one.

This conjecture was confirmed by Zhou in [32].
Theorem 4.18. Multiplicity One Conjecture is true.

Theorem 4.18 together with the program on Morse index lower bounds developed by Marques-
Neves [15] imply that for bumpy metrics, there exists a closed minimal hypersurface of Morse index
k and area wyg(M,g) for each & € N. The above works together established a satisfactory global
Morse theory for the area functional. Later, Marques-Montezuma-Neves proved Morse inequalities
for the area functional [12], and hence established a local Morse theory as well.

By Sharp’s Compactness Theorem, the same conclusions in Theorem 4.18 hold true for metrics
with positive Ricci curvature.

Sketch of proof of Theorem 4.18. The key idea of the proof is to approximate the area functional
by the weighted A"-functional used in the PMC min-max theory (see Section 4.1). There are
two crucial parts in the proof. First, we show that given a bumpy metric the volume spectrum
wik(M) can be realized by the area of some minimal hypersurfaces coming from relative min-max
constructions using sweepouts of boundaries. Next, we observe that, still assuming bumpiness, if
one approximates Area by a sequence {A%"}.cn where ¢, — 0, and if h : M — R is carefully
chosen, then the limit min-max minimal hypersurfaces (of min-max PMC hypersurfaces associated
with A%") are all 2-sided and have multiplicity one.

Part 1: Given a bumpy metric, for each k € N by [13], there exists a free homotopy class I of maps
O : X — Z,(M;Zsy), where X is a fixed k-dimensional parameter space, such that

L = inf A () = M).
Jnf max rea(®(r)) = wy(M)
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Choose @ € II so that max,cx Area(®o(x)) is very close to L. Since C(M) forms a double cover
of Z,(M,Zz) via the boundary map (see Lemma 1.23), we can lift ®¢ to &g : X — C(M), where
m: X — X is also a double cover. Together they satisfy the following diagram:

X e

WJ aj
X~ 2,(M; Zy)
Next, denote

S={¥C M:Xis aclosed, C*°-embedded minimal hypersurface with
Area(¥) <L +1 and index(X) < k}.

and
Y ={z e X :F(Po(x),S) < €}.

Set Z = X \Y. As S is a finite set by [20], Y is topologically trivial, and hence Y = 7 1(Y)is a
disjoint union of two homeomorphic copies of Y, thatis, Y = YT UY ™ with Y ~ Y+ ~Y~. On
the other hand, since no element in ®y(Z) is close to being regular, we can deform ®¢|z based on
Pitts’s combinatorial argument [17], so that

max Area(®y(z)) < L.

Now consider the (X, Z)-relative homotopy class of maps generated by ®o: II = {¥ : X — C(M) :
V|7 = @[z}

Lemma 4.19. The min-max value L of II satisfies

L := inf max Area(0¥(z)) > L = wi(M).
vell zeX

Hence we have the nontriviality condition L > max,cz Area(®q(z)).

Proof. If the conclusion were false, then since

max Area(8®g(z)) = max Area(®q(z)) < L,
zeZ ez

one can deform <T>0 on Y so that the maximum area is less than L. However, as Y™ and Y~ are
disjoint, the deformations on Y (or on ¥ ~) can be passed to the quotient to give deformations of
Ooly in Z,(M,Zs). As all the maps are fixed on Z, we then obtain deformations of ®( after which
the maximum area is less than L, which is a contradiction. ]

Part 2: The main conclusion follows from the result below.

Theorem 4.20 (X. Zhou 19 [32]). In the above notation, if g is bumpy, L can be realized as the
area of a multiplicity one, closed, C*°-embedded, 2-sided, minimal hypersurface.

To derive Theorem 4.18, first note that by the choice of @, we know L is very close to L. By
the bumpiness of g, the values of L should stabilize to L when they are close enough.
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Proof of Theorem 4.20. To simplify notions, we will drop all the tilde’s in this part. Given a smooth
function h : M — R, and € > 0, we can approximate L by the min-max values for the A“-functional:
L = inf max A (¥(z)),

Well zeX
that is, L* — L as ¢ — 0. Note that we require Uiz = Pp|z for all ¥ € II. By the fact

L > maxgcz Area(0®g(z)), and that the term € [, hdM in A () is uniformly small, we have, for
€ small enough,

L > max A" (¥(z)). (4.21)
xeZ
For a generic choice of h, applying the multi-parameter PMC min-max theory [32] (based on the one

parameter version in Section 4.1), we obtain a smooth, almost embedded hypersurface X = 09, for
some 2 € C(M) such that

o Hy_ =c¢h|y;
° AEh(Qe) — Leh;
e the Morse index (w.r.t. A) index(Z,) < k.

Letting € — 0, by the above and compactness theorem for PMCs with bounded index [32], up to
taking a subsequence, ¥, converge locally smoothly away from a finite set WV to a closed embedded
minimal hypersurface ¥y with an integer multiplicity m € N. Therefore L = m Area(Xy), and it
remains to prove that Y is 2-sided (which is skipped here) and m = 1.

The convergence implies that ¥, locally decomposes as an m-sheeted graph over ¥y \ W, with
graphing functions: u! < u? < ... < u™. And by Proposition 4.4, the outward unit normal of €2,
will alternate orientations along these sheets. The proof proceeds depending on whether m is odd
or even.

Claim 1. If m > 3 is odd, then X is degenerate, hence a contradiction.

Proof. Since m is odd, the top and the bottom sheets have the same orientation, so by subtracting
the PMC equations of the two sheets, we have

L(u" —u) + o(u" — ug) =0,
where L is the Jacobi operator associated with 62%. After renormalizations, the height differences

u™ — ul will converge subsequentially to a positive Jacobi field of ¥y \ W, which extends to X by
standard trick. O

; T
2= o —t— )
>_-M'< - > <{

m s odol J \J_:I'/(H

m is even

Claim 2. If m is even, there exists a solution of Ly = 2h|y, which doesn’t change sign.
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Proof. Now the top and the bottom sheets have opposite orientations. Thus
L(ul —ue) + o(ud" — ug) = xe(h(z,ug) + h(z,uf")).

Using the renormalization procedure again and noting that u™ — ul > 0, we get either a positive
Jacobi field (which cannot happen) or a positive function ¢ satisfying Ly = 2h|x, or Ly = —2hly,.
O

The following key lemma says that Claim 2 cannot hold for a suitably chosen h. Hence the proof
of Theorem 4.20 is complete.

Lemma 4.22. For a suitably chosen h, the solutions of Ly = 2h|y on a closed, C*°-embedded
minimal hypersurface ¥ with Area(X¥) < C and index(X) < k must change sign.

Proof. By Sharp’s Compactness Theorem, the set of minimal hypersurfaces with Area < C and
index < k is finite, which we denote by {¥;,¥9,--- ,Xn}. Take pairwise disjoint neighborhoods
U Ji C X; and a smooth function f defined on (JU ji with compact support such that
1. f \U+ is non-negative and is positive at some point;
J

2. f ‘Uj‘ is non-positive and is negative at some point.

Next extend Lf to some hy € C*°(M) and take a generic h as close to hg as we want. Then any
solution ¢ of Ly = 2h[s; would be close to 2f for each ¥;, and hence must change sign. O

Z:
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