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This course is divided into two parts: harmonic map theory and Almgren-Pitts min-max theory.
The second part covers the basic setups and regularity theory, and extends the discussion to some
recent developments in the field, including the notion of volume spectrum and their Weyl Law, the
proof of Yau’s Conjecture on the existence of infinitely many closed minimal hypersurfaces, and the
Multiplicity One Conjecture. This part involves Geometric Measure Theory.
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1 Preliminaries from Geometric Measure Theory

1.1 Theory of varifolds

Definition. Let A ⊆ Rn+k. We define the n-dimensional Hausdorff measure

Hn(A) = lim
δ→0

Hn
δ (A),

where for each δ > 0, Hn
δ is defined by taking Hn

δ (∅) = 0 and

Hn
δ (A) = ωn inf

∞∑
j=1

(
diamCj

2

)n

,

where ωn = Vol(Bn(0)) and the infimum is taken over all
⋃

j Cj such that diamCj < δ and A ⊆⋃
j Cj .

Definition. Let µ be an outer measure on Rn+k and let x ∈ Rn+k. We define the n-dimensional
upper and lower densities Θ∗n(µ, x),Θn

∗ (µ, x) by

Θ∗n(µ, x) = lim sup
ρ→0

µ(Bρ(x))

Hn(Bρ(x))

Θn
∗ (µ, x) = lim inf

ρ→0

µ(Bρ(x))

Hn(Bρ(x))

If Θ∗n(µ, x) = Θn
∗ (µ, x), then the common value will be denoted Θn(µ, x).

Let (Mn, g) be a n-dimensional smooth Riemannian manifold embedded in some RN . We denote
by Gk(M) the Grassmannian bundle of un-oriented k-planes over M . That is,

Gk(M) := {(x, P ) : x ∈M,P ⊂ TxM is a k-dimensional subspace}.

When U ⊂M , we have Gk(U) = Gk(M)|U .

Definition. A k-varifold V on U is a Radon measure on Gk(U).

Denote Vk(U) := {all k-varifolds}. Given V ∈ Vk(U), there exists a Radon measure µV on U
defined by µV (A) := V (π−1(A)), where A ⊂ U . We call µV the weight of V and ||V ||(U) := µV (U)
(or M(V )) the mass of V . The following lemma is a compactess result for k-varifolds.

Lemma 1.1. The set A ⊂ Vk(U) such that M(V ) ≤ C < ∞ is satisfied for all V ∈ A is weakly
compact. When U is closed, M : A→ R≥0 is continuous w.r.t. the weak topology.

Definition. A Hk-measurable set M ⊂ Un ↪→ Rn is countably k-rectifiable if M ⊂
⋃∞

j=0Mj such
that Hk(M0) = 0 and Mj ⊂ Fj(Aj) for all j ≥ 1, where Fj : Aj ⊂ Rk → Rn is Lipschitz for each j.

Definition. Let M ⊂ Un ⊂ Rn be a Hk-measurable set and let θ > 0 be a locally Hk-integrable
function on M . We say that P k ↪→ Rn is an approximate tangent plane of M at x w.r.t. θ if
∀f ∈ C∞

c (Rn),

lim
λ→0

∫
ηx,λ(M)

f(y)θ(x+ λy)dHk(y) = θ(x)

∫
P
f(y)dHk(y),

where ηx,λ : Rn → Rn is the blow-up at x defined by ηx,λ(y) = (y − x)/λ.
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The following theorem gives the important characterization of countably k-rectifiable sets in
terms of existence of approximate tangent planes w.r.t. a multiplicity function.

Theorem 1.2 (First Rectifiable Theorem). Let M ⊂ Un ⊂ Rn be a Hk-measurable set. M is
countably k-rectifiable iff there exists a locally Hk-integrable function θ > 0 on M and a unique
approximate tangent plane TxM for Hk-a.e. x ∈M .

Lemma 1.3. Given a countably k-rectifiable set M ↪→ U and a locally Hk-integrable function θ > 0
on M , we can define a k-varifold V := V (M, θ) such that

V (M, θ)(A) =

∫
{x∈M :(x,TxM)∈A}

θ(x)dHk(x), ∀A ⊂ Gk(U).

A natural question to ask is when a general varifold is rectifiable, i.e. when a measure is given
by Lipschitz subsets. This will be answered later by the rectifiability theorem.

Now, we move on to discuss the first variation of varifolds. Let U ⊂ Rn and let V ⊂ Vk(U).
Suppose that φ : U → U ′ ∼= U is a diffeomorphism. We may view φ as a map φ : Gk(U) → Gk(U)
defined by φ(x, S) = (φ(x), dφx(S)), where S is a k-plane. Note that dφx|S is a n × k matrix
while (dφx|S)∗ is a k × n matrix. Hence, (dφx|S)∗ ◦ dφx|S is a k × k matrix and the Jacobian of
dφx|S : S → dφx(S) is

Jφ(x, S) = det[(dφx|S)∗ ◦ dφx|S ]
1
2 .

Then the pushforward of V is defined as

(φ#V )(A) :=

∫
φ−1(A)

Jφ(x, S)dV (x, S), ∀A ⊂ Gk(U).

Given X ∈ Xc(U) a compactly supported smooth vector field in U , we have the local flow
φX : (−ϵ, ϵ)×U → U with d

dtφ
X(t, p) = X(φX(t, p)). Then the first variation of V can be explicitly

computed as

δV (x) :=
d

dt

∣∣∣∣
t=0

||(φX
t )#V || =

∫
Gk(U)

divS XdV (x, S).

Here, divS X :=
∑k

i=1⟨∇τiX, τi⟩, where {τ1, . . . , τk} forms an orthonormal basis of S.

Remark. Recall that for minimal submanifolds Σk ↪→ U , we have the first variation formula

δΣ(x) :=
d

dt

∣∣∣∣
t=0

Vol(φX
t (Σ)) =

∫
Σ
divTxΣX dVol .

We present a proof of the first variation formula of varifolds. Let (x, S) ∈ Gk(U) and suppose
that {τ1, . . . , τk} forms an orthonormal basis of S. Note that φX

t (x) = x + tX(x) + o(t2) and
(Dτjφ

X
t )l = τ lj + tDτjX

l + o(t2). A simple calculation leads to

((dφX
t |S)∗ ◦ dφX

t |S)ij = (Dτiφ
X
t )l · (Dτjφ

X
t )l

= (τ li + tDτiX
l + o(t2))(τ lj + tDτjX

l + o(t2))

= δij + t(τi ·DτjX + τj ·DτiX) + o(t2)

and

d

dt

∣∣∣∣
t=0

det[(dφX
t |S)∗ ◦ dφX

t |S ]
1
2 =

d

dt

∣∣∣∣
t=0

[1 + Tr(τi ·DτjX + τj ·DτiX)]
1
2
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=
d

dt

∣∣∣∣
t=0

[1 + 2tdivS X + o(t)]
1
2

= divS X,

which complete the proof.

Definition. V ∈ Vk(U) is stationary in U if δV (X) ≡ 0, ∀X ∈ Xc(U).

Remark. Stationary varifolds can be viewed as generalization of minimal surfaces.

Example 1.4. Triple junction surfaces are stationary.

Recall that given a minimal submanifold Σk ↪→ Rn with x0 ∈ Σ, we have for all Bσ(x0) ⊂
Bρ(x0) ⊂ Rn,

Vol(Bρ(x0) ∩ Σ)

ρk
− Vol(Bσ(x0) ∩ Σ)

σk
=

∫
(Bρ(x0)\Bσ(x0))∩Σ

|(x− x0)
N |2

|x− x0|k+2
dVol .

The following theorem provides a monotonicity formula for varifolds analogous to that for minimal
submanifolds.

Theorem 1.5 (Monotonicity Formula). Let V ∈ Vk(U) be stationary in U . For all Bσ(0) ⊂ Bρ(0) ⊂
U , we have

µV (Bρ(0))

ρk
− µV (Bσ(0))

σk
=

∫
Gk(Bρ(0)\Bσ(0))

|D⊥
S r|2

rk
dV (x, S).

Here, D⊥
S = PS⊥(∇r), where S⊥ is the orthogonal complement of k-plane S ⊂ Rn.

Corollary 1.6. Let V ∈ Vk(U) be stationary in U . Then, Θ(||V ||, x) exists everywhere in U and is
bounded.

Definition. V ∈ Vk(U) is said to have locally bounded first variation in U if for each W ⊂⊂ U ,
there is a constant C > 0 such that |δV (X)| ≤ C supU |X| for all compactly supported continuous
vector fields X in U .

Theorem 1.7 (General Monotonicity Formula). Suppose that V ∈ Vk(U) has locally bounded first
variation in U . Let x ∈ U such that there is 0 < ρ0 < dist(x, ∂U) and Λ ≥ 0 with

||δV ||(Bρ(x)) ≤ ΛµV (Bρ(x)), 0 < ρ < ρ0.

Then for all 0 < σ ≤ ρ < ρ0,

Θk(||V ||, x) ≤ eΛσ
µV (Bσ(x))

ωkσk
≤ eΛρ

µV (Bσ(x))

ωkρk
− 1

ωk

∫
Gk(Bρ(x)\Bσ(x))

|D⊥
S r|2

rk
dV (y, S).

Definition. Given V,W ∈ Vk(U), the varifold distance between V and W is defined as

F(V,W ) := sup

{∫
Gk(U)

f(x, S)dV (x, S)−
∫
Gk(U)

f(x, S)dW (x, S)

}
,

where the supremum is taken over all f ∈ Lip(Gk(W )) with ||f ||∞ ≤ 1 and Lip(f) ≤ 1.
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Definition. Let V ∈ Vk(U) and let x ∈ U . We denote by VarTan(V, x) the varifold tangent at x,
which is the set of all weak limits

VarTan(V, x) := {C ∈ Vk(Rn) : C = lim
λi→0

(ηx,λi
)#V }.

Let Vi = (ηx,λi
)#V and suppose that x is any point of U such that limρ→0 ρ

1−k||δV ||(Bρ(x)) = 0.
By the lower semicontinuity of the first variation, we have

||δC||(Bρ(x)) = lim inf
i→∞

||δVi||(Bρ(x)) = lim inf
i→∞

λ1−k
i ||δV ||(Bρ(x)) = 0.

This shows that C is stationary in Rk+l. One may further deduce from definition of C that

||C||(Bρ(0))

ωkρk
= lim

λi→0

||Vi||(Bρ(0))

ωkρk
= lim

λi→0

||V ||(Bρ(x)

ωkλ
k
i ρ

k
= Θk(||V ||, x).

Since δC = 0, the monotonicity formula implies that∫
Gk(Bρ(0))

|D⊥
S r|2

|x|k
dC(x, S) = 0, ∀ρ > 0.

Then PS⊥(x) = 0 for all (x, S) ∈ sptC. By choosing an appropriate vector field X and substituting
into the ODE obtained by the first variation, one may conclude that

λk||C||(η0,λ(A)) = ||C||(A), ∀A ⊂ Rk+l, λ > 0.

Theorem 1.8 (Rectifiability Theorem). Let V ∈ Vk(U) be stationary in U . If Θk(||V ||, x) > 0 for
||V ||-a.e. x ∈ U , then V is a k-rectifiable varifold. Indeed, V = V (M, θ), where M = {x ∈ U :
Θk(||V ||, x) > 0} is a countably k-rectifiable set and θ > 0 is a locally Hk-integrable function on M .

Corollary 1.9. Assume Θk(||V ||, x) ≥ C0 > 0 for ||V ||-a.e. x ∈ U . Then C is a k-rectifiable
varifold. Moreover, (η0,λ)#C = C.

Theorem 1.10 (Constancy Theorem). Let V ∈ Vk(U) be stationary in U and let Mk ↪→ U be a
connected, C∞-embedded submanifold. If spt ||V || ⊂Mk, then V = c · V (M).

Theorem 1.11 (Compactness Theorem). Let {Vj} be a sequence of k-varifolds each stationary in U .
Suppose that Θk(||Vj ||, x) ≥ 1 for ||Vj ||-a.e. x ∈ U and supj{||Vj ||(K)} ≤ C(K), ∀K ⊂⊂ U . Then a
subsequence of {Vj} converges weakly (in the sense of Radon measures) to some k-rectifiable varifold
V ∈ Vk(U). Moreover, we have Θk(||V ||, x) ≥ 1 for ||V ||-a.e. x ∈ U and the lower semicontinuity
||δV ||(W ) ≤ lim infj→∞ ||δVj ||(W ) for each W ⊂⊂ U .

Remark. An important additional result (also due to Allard [1]) is the Integral Compactness The-
orem, which asserts that if all Vj above are integer multiplicity, then V is also integer multiplicity.
We refer to [21] for a detailed proof.

Definition. Given V,W ∈ Vk(U), the varifold distance between V and W is defined as

F(V,W ) := sup
f∈Lip(Gk(U)),||f ||∞≤1,Lip f≤1

{∫
Gk(U)

f(x, S)dV (x, S)−
∫
Gk(U)

f(x, S)dW (x, S)

}
.

Remark. On {V ∈ Vk(M) : ||V || ≤ L < ∞}, the weak topology coincides with the F-distance
topology.
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Theorem 1.12 (Maximum Principle). Let V ∈ Vk(U) where U ⊂ Rn is open. Suppose that
spt ||V || ⊂ Bs(0) \Bt(0) with 0 < t < s and Bs(0) ⊂ U . Then spt ||V || ∩ ∂Bs(0) = ∅.

Corollary 1.13. Suppose that spt ||V || ∩ ∂Bs(0) ̸= ∅. Then spt ||V || ∩ (U \Bs(0)) ̸= ∅.

Theorem 1.14 (Sard Theorem). Let V ∈ Vk(U) be stationary in U and k-rectifiable. Let p ∈ U
and let Bρ(p) ⊂⊂ U . Consider

T = {y ∈ spt ||V || ∩Bρ(p) : TyV ⊤∩ Ty∂Bd(x,y)(x)}.

Then T is a dense subset of spt ||V || ∩Bρ(p).

1.2 Sets of locally finite perimeters

Definition. Ω ⊂ Rn+1 has locally finite perimeter if the characteristic function χΩ is of bounded
variation in U , that is, ∀X ∈ X1

c(U), supp |X| ⊂W ⊂⊂ U ,∫
Ω
divXdHn+1 ≤ C(W ) sup |X|.

If we view the integral as a functional on X : U → Rn+1 which is bounded on compact subsets,
then by the Riesz representation theorem, there is a Radon measure µ∂Ω = |DχΩ| in U and a
µ∂Ω-measurable vector field v = (v1, . . . , vn+1) with |v| = 1 for µ∂Ω-a.e. x in U such that∫

Ω
divXdHn+1 =

∫
U
X · vdµ∂Ω, ∀X ∈ X1

c(U).

If ∂C is C∞-embedded, by the divergence theorem, we have∫
Ω
divXdHn+1 =

∫
∂Ω
X · v∂ΩdHn.

This implies that µ∂Ω = Hn ∂Ω and v∂Ω is the inward unit normal to ∂Ω. The bounded variation
condition of χΩ in U reduces to Hn(∂Ω∩W ) ≤ C(W ). In general, we interpret µ∂Ω as a “generalized
boundary measure” and v as a “generalized inward unit normal.”

Definition. Let Ω ⊂ Rn+1 be a set of locally finite perimeter. Define the reduced boundary ∂∗Ω in
U by

∂∗Ω =

{
x ∈ U : lim

ρ→0

∫
Bρ(x)

v(x)dµ∂Ω

µ∂Ω(Bρ(x))
exists and has length 1

}
.

By the density theorem, we have µ∂Ω(U \ ∂∗Ω) = 0. Hence, µ∂Ω = µ∂Ω ∂∗Ω. The following
theorem gives a characterization of ∂∗Ω as a countably n-rectifiable set.

Theorem 1.15. Suppose that Ω ⊂ Rn+1 has locally finite perimeter in U . Then ∂∗Ω is countably
n-rectifiable and µ∂Ω = Hn ∂∗Ω. At each x ∈ ∂∗Ω, the approximate tangent plane Tx exists, has
multiplicity 1, and is given by

Tx = {y ∈ Rn+1 : y · v(x) = 0}.

Definition. Denote the set of all sets with locally finite perimeter in U by C(U). A set Ω ∈ C(U)
is called a Caccioppoli set in U .
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Theorem 1.16 (Compactness Theorem). Given {Ωj} ⊂ C(U) with

sup
j
µ∂Ωj

(W ) ≤ C(W ) <∞, ∀W ⊂⊂ U,

then a subsequence {Ωj′} converges weakly to a limit Ω∞ ∈ C(U) in the sense that

• χΩj′ → χΩ∞ in L1
loc(U,Hn+1);

• v∂Ωj
dµ∂Ωj

→ v∂Ω∞dµ∂Ω∞ .

Moreover, we have the lower semicontinuity µ∂Ω∞(W ) ≤ lim infj→∞ µ∂Ωj
(W ) for each W ⊂⊂ U .

Remark. The first condition is equivalent to Hn+1(Ωj′△Ω∞) = Vol(Ωj′△Ω∞) → 0, where △ is the
symmetric difference of two sets. The second condition is equivalent to [∂Ωj ] converges as currents
to [∂Ω∞], where [∂Ω] is in the dual space of Λn(U) and given ω a n-form and {e1, . . . , en} an
orthonormal basis of Tx∂Ω,

[∂Ω](ω) =

∫
∂Ω

⟨e∗1 ∧ · · · ∧ e∗n, ω⟩dHn.

Example 1.17. Due to the cancellations, the sequence Ωj on left converges as Caccioppoli sets/currents
to Ω on right. However, ∂Ωj does not converge to ∂Ω in the sense of measure.

Definition. Given any Ω ∈ C(U), the mass norm of Ω and ∂Ω are defined to be

M(Ω) =

∫
Ω∩U

dHn+1 = Vol(Ω ∩ U), M(∂Ω) =

∫
∂Ω∩U

dHn = µ∂Ω(U).

For each W ⊂⊂ U , define

MW (Ω) =

∫
Ω∩W

dHn+1 = Vol(Ω ∩W ), MW (∂Ω) =

∫
∂Ω∩W

dHn = µ∂Ω(W ).

Moreover, given any pair Ω1,Ω2 ∈ C(U), we set

M(∂Ω1, ∂Ω2) = M(∂Ω1 − ∂Ω2).

Remark. If M(∂Ω1, ∂Ω2) << 1, then Vol(∂Ω1△∂Ω2) is very small.

Definition. Given any pair Ω1,Ω2 ∈ C(U), the flat metric is defined as

F(Ω1,Ω2) := F(∂Ω1, ∂Ω2) := inf{M(T ) +M(S) : ∂Ω1 − ∂Ω2 = T + ∂S},

where the infimum is taken over all integer rectifiable n-current T and integer rectifiable (n + 1)-
current S such that S is a filling of ∂Ω1 − ∂Ω2 − T .
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By considering S = 0 in the definition of flat metric, we immediately obtain the following
corollary, which suggests that flat metric is weaker than mass norm.

Corollary 1.18. F(∂Ω1, ∂Ω2) ≤ M(∂Ω1 − ∂Ω2).

Proposition 1.19. There exists δ << 1 such that if Ω1,Ω2 ∈ C(U) with Ω1,Ω2 ⊂ U and
F(Ω1,Ω2) < δ, and moreover if M(Ω1 − Ω2) < Vol(U)/2, then

F(Ω1,Ω2) = min{M(Ω1△Ω2),M(U \ (Ω1△Ω2)).}

Definition. Given any Ω ∈ C(U) with Ω ⊂ U , the flat norm is defined as

F(Ω) := F(Ω, ∅) = min{Vol(Ω),Vol(U \ Ω)}.

The following proposition indicates that under certain condition, convergence as Caccioppoli sets
is equivalent to convergence in flat metric.

Proposition 1.20. On the set {∂Ω : Ω ∈ C(U),M(∂U) ≤ L <∞}, we have

Ωj → Ω∞ ⇐⇒ F(Ωj ,Ω∞) → 0.

Recall that if Ω ∈ C(U), then the reduced boundary ∂∗Ω is a countably n-rectifiable set. More-
over, at each x ∈ ∂∗Ω, the approximate tangent space Tx exists and has multiplicity 1. Then it is
natural to define a n-rectifiable varifold corresponding to the pair (∂∗Ω, θ ≡ 1).

Definition. Given Ω ∈ C(U), we denote by |∂Ω| the n-rectifiable varifold induced by the countably
n-rectifiable set ∂∗Ω.

Definition. Given any pair Ω1,Ω2 ∈ C(U), the F-metric is defined as

F(Ω1,Ω2) = F(Ω1,Ω2) + F(|∂Ω1|, |∂Ω2|),

where F denotes the varifold distance.

Remark. By definition, Ωj → Ω∞ under the F-metric ⇐⇒ Ωj → Ω∞ weakly and |∂Ωj | → |∂Ω∞|.

Among all Caccioppoli sets in U , we pay special attention to those that are locally mass minimiz-
ing. Such sets possess good regularity results, which have been established by De Giorgi, Federer-
Fleming, Almgren, and Simons through a series of works.

Definition. Say that Ω ∈ C(U) is locally mass minimizing if ∀p ∈ U , ∃δ > 0 such that ∀Ω′ ∈ C(U)
with Ω′△Ω ⊂⊂ Br(p), then M(∂Ω) ≤ M(∂Ω′).

Theorem 1.21 (De Giorgi, Federer-Fleming, Almgren, Simons, see [21]). Suppose that Ω ∈ C(U)
is locally mass minimizing in U . Then

• For 3 ≤ (n+ 1) ≤ 7, ∂Ω is a C∞-embedded minimal hypersurface;
• For n+1 = 8, ∂Ω is a C∞-embedded minimal hypersurface away from discrete singular points;
• For n+ 1 > 8, ∂Ω is a C∞-embedded minimal hypersurface away from a singular set Sing(Σ)

of Hausdorff codimension 7.



1.3 Mod-2 flat chains 9

1.3 Mod-2 flat chains

Let (Mn+1, g) be a (n + 1)-dimensional closed Riemannian manifold. Assume that (M, g) is
isometrically embedded in some Euclidean space RN . The spaces we will work with are:

• the space Pk(RN ;G) of k-dimensional polyhedral chains in RN with coefficients in G;
• the space Ik(M ;Z2) of k-dimensional flat chains in RN with coefficients in Z2 and support

contained in M ;
• the space Zk(M ;Z2) of flat chains T ∈ Ik(M ;Z2) such that ∂T = 0.

For every P ∈ Pk(RN ;G), we may write P =
∑l

i=1 ai[Pi], where ai ∈ G and {P1, . . . , Pl} are
disjoint polyhedrons. Define the mass norm

M(P ) :=

l∑
i=1

aiHk(Pi)

and the flat norm

F(P ) := inf{M(R) +M(Q) : P = R+ ∂Q,R ∈ Pk(RN ;G), Q ∈ Pk+1(RN ;G)}.

Since F defines a metric in Pk(RN ;G), we may let Ck(RN ;G) be the F-completion of Pk(RN ;G).
Under this definition, Ck(RN ;G) consists of flat k-chains over G.

When coefficients are taken to be Z2, we say that a flat k-chain T is rectifiable if T is the limit
of C1 flat k-chains in the M-topology. Moreover, we have the following rectifiability result.

Theorem 1.22. Every flat k-chain T with coefficients in Z2 of finite mass is rectifiable.

Since every T ∈ In+1(M ;Z2) has finite mass and finite boundary mass, we deduce that

In+1(M ;Z2) = C(M).

The following lemma is a direct corollary of the constancy theorem.

Lemma 1.23. ∂ : In+1(M ;Z2) = C(M) → Zn(M ;Z2) is a double covering space.

Lemma 1.24. ∂ satisfies lifting properties, that is, given a map σ : Ik = [0, 1]k → Zn(M ;Z2) and
U0 ∈ C(M) such that ∂U0 = σ(0), there exists a unique map U : Ik → C(M) such that U(0) = U0

and ∂U(t) = σ(t).

With the lemmas above, we are ready to prove the Almgren’s isomorphism theorem for codi-
mension 1 case.

Theorem 1.25 (Almgren’s Isomorphism Theorem, [2, 15]). Zn(M ;Z2) is weakly homotopic to
RP∞.

Proof. Let f :M → R be a Morse function with f(M) = [0, 1]. Define a map Φ : RP∞ → Zn(M ;Z2)
by

Φ([a0, a1, . . . , ak, 0, 0, . . .]) = ∂{x : a0 + a1f(x) + · · ·+ akf(x)
k < 0}.

This map is well-defined as both sides are scaling invariant. We claim that Φ is a weak homotopy
equivalence, i.e.

Φ∗ : πk(RP∞, ∗) → πk(Zn(M ;Z2), 0)

are isomorphisms for all k.
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To start with, we show that In+1(M ;Z2) = C(M) is contractible. Define the map H : [0, 1] ×
C(M) → C(M) by

H(t,Ω) = Ω {x : f(x) < t}.

Note that t ∈ [0, 1] 7→ Ω {x : f(x) < t} is continuous in the flat norm. One can further check that
H is continuous and hence a homotopy between a constant map and the identity map. This shows
that C(M) is contractible.

Since RP∞ is an Eilenberg–MacLane space with π1(RP∞, ∗) ∼= Z2 and πk(RP∞, ∗) = 0 for all
k ≥ 2, it is sufficient to show that π1(Zn(M ;Z2), 0) ∼= Z2 and πk(Zn(M ;Z2), 0) = 0 for all k ≥ 2.
First, consider the case k ≥ 2. Let Ψ : Ik → Zn(M ;Z2) be a map with Ψ(∂Ik) = 0. By the
lifting properties, there exists a unique map U : Ik → C(M) with U(0) = ∅ and ∂U(t) = Ψ(t).
Moreover, we have U(∂Ik) = ∅. Since C(M) is contractible, U is homotopic to a constant map
relative to ∂Ik. This implies that Ψ is homotopic to a constant map relative to ∂Ik downstairs, i.e.
πk(Zn(M ;Z2), 0) = 0.

Now, consider the case k = 1. Let σ : [0, 1] → Zn(M ;Z2) be a map with σ(0) = σ(1) = 0. By
the lifting properties, there exists a unique map U : [0, 1] → C(M) with U(0) = ∅ and ∂U(t) = σ(t).
Since ∂U(1) = σ(1) = 0, we have U(1) = ∅ or U(1) = M by the constancy theorem. Note that
U(1) = ∅ ⇐⇒ the lift of σ stays as a loop upstairs ⇐⇒ σ is homotopic to a constant map relative
to {0, 1}. If U(1) = M , then σ is not nullhomotopic downstairs and σ : [0, 1] → Zn(M ;Z2) defined
by σ(t) = ∂{x : f(x) < t} generates π1(Zn(M ;Z2), 0) ∼= Z2. In this case, Φ|S1 : S1 ↪→ RP∞ →
Zn(M ;Z2) is given by

Φ([cos(πθ), sin(πθ), 0, 0, . . .]) = ∂{cos(πθ) + sin(πθ)f < 0} = ∂{f < − cot(πθ)},

which induces an isomorphism on fundamental groups. This completes the proof that Φ is a weak
homotopy equivalence.

Corollary 1.26. The cohomology ring of Zn(M ;Z2) w.r.t. Z2 coefficients is

H∗(Zn(M ;Z2);Z2) ∼= Z2[λ̄],

where λ̄ is the generator of H1(Zn(M ;Z2);Z2) ∼= Z2 (the fundamental cohomology class).

Remark. If σ : S1 → Zn(M ;Z2) is a loop, then

λ̄ · [σ] ̸= 0 ⇐⇒ σ is homotopically nontrivial.

2 Almgren-Pitts min-max theorem

2.1 Sweepout and width

Theorem 2.1 (Almgren-Pitts Min-max Theorem [3, 17, 18]). Let (Mn+1, g) be a closed Riemmanian
manifold. Then there always exists a closed minimal hypersurface Σn such that outside a singular
set Sing(Σ) of Hausdorff codimension 7, it is C∞-embedded. In particular, if 3 ≤ (n+ 1) ≤ 7, Σ is
C∞.

Definition. A sweepout (s.w.) is a map φ : [0, 1] → (C(M),F) such that

• φ is continuous w.r.t. the F-metric;
• φ(0) = ∅ and φ(1) =M .
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Example 2.2. Let f : M → R be a Morse function. Then φ : [0, 1] → C(M) defined by
t 7→ f−1([0, t]) is a sweepout. Note that φ is continuous w.r.t. F because t 7→ Vol(f−1([0, t]))
is continuous, and φ is continuous w.r.t. F because t 7→ dHn|f−1(t) is continuous.

Lemma 2.3. Given any sweepout φ : [0, 1] → C(M),F), it is homotopic under the F-metric to the
sweepout by a Morse function.

Proof. Recall that in the proof of Theorem 1.25 we have shown that (C(M),F) is contractible. Since
a F-homotopy can be interpolated to a F-homotopy, we conclude that (C(M),F) is contractible.

Definition. The width of (Mn+1, g) is defined as

W := inf
φ is a s.w.

max
x∈[0,1]

M(∂φ(x)).

Using the following lower bound for the isoperimetric profiles for small volumes, we show that
the width is always positive.

Lemma 2.4. There exists constants C0 > 0 and V0 > 0 depending only on M such that

Area(∂Ω) ≥ C0Vol(Ω)
n

n+1 , whenever Ω ∈ C(M) and Vol(Ω) ≤ V0.

Corollary 2.5. We have W > 0.

Proof. We shall present a heuristic proof here. Let φ : [0, 1] → (C(M),F) be a sweepout. Then the
map x 7→ Vol(φ(x)) is continuous and there exists x0 ∈ (0, 1) such that Vol(φ(x0)) = V0. By the
isoperimetric profiles for small volumes, we have

max
x∈[0,1]

M(∂φ(x)) ≥ M(∂φ(x0)) ≥ C0Vol(φ(x0))
n

n+1 = C0V
n

n+1

0 .

Since φ is arbitrary, we conclude that W > 0.

Definition. A minimizing sequence of sweepouts is a sequence {φj : [0, 1] → C(M)} such that
maxx∈[0,1]M(∂φj(x)) →W as j → ∞.

Definition. The critical set of {φj} is given by

C({φj}) := {V ∈ Vn(M) : V = lim
i→∞

|∂φji(xi)| with M(∂φji(xi)) →W}.

Theorem 2.6. For every minimizing sequence {φ∗
j}, there exists another pull-tight minimizing

sequence {φj} that is homotopic to φ∗
j in (C(M),F) such that

• every V ∈ C({φj}) is stationary;
• there exists V∞ ∈ C({φj}) such that V∞ =

∑l
i=1mi[Σi], where {Σ1, . . . ,Σl} are disjoint closed,

C∞-embedded minimal hypersurfaces away from a singular set of Hausdorff codimension 7.

2.2 Tightening process
In this section, we construct the tightening map adapted to the area functional (i.e. pseudo-

gradient flow of M over Vn(M)) and prove that after applying the tightening map to a minimizing
sequence, every element in the critical set is stationary.

Given the width defined above and A∞ = {V ∈ Vn(M) : ||V ||(M) ≤ W + 1, V is stationary},
the existence of a pseudo-gradient flow of M over Vn(M) is guaranteed by the following proposition.
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Proposition 2.7. There exists a continuous map

H : [0, 1]× (C(M),F) ∩ {Ω : M(∂Ω) ≤W + 1} → (C(M),F) ∩ {Ω : M(∂Ω) ≤W + 1}.

such that

1. H(0,Ω) = Ω;
2. H(t,Ω) = Ω, if |∂Ω| ∈ A∞;
3. if |∂Ω| /∈ A∞, then

M(∂H(1,Ω))−M(∂Ω) ≤ −L(F(|∂Ω|, A∞)) < 0,

where L : [0,∞) → [0,∞) is a continuous map with L(0) = 0 and L(t) > 0 if t > 0.

Applying the tightening map H in Proposition 2.7 to a minimizing sequence of sweepouts yields
that

Proposition 2.8 (Tightening). Given any minimizing sequence of sweepouts {φ∗
j} on (Mn+1, g).

Let φj(x) = H(1, φ∗
j (x)), ∀x ∈ [0, 1]. Then {φj} is also a minimizing sequence of sweepouts. More-

over, C({φj}) ⊂ C({φ∗
j}) and every V ∈ C({φj}) is stationary.

Proof. By property 3 and the definition of the width, we have

W ≤ max
x∈[0,1]

M(∂φj(x)) ≤ max
x∈[0,1]

M(∂φ∗
j (x)) →W,

which implies that {φj} is also a minimizing sequence of sweepouts.
Given any V ∈ C({φj}), we know that V = limi→∞ |∂φji(xi)|, where M(∂φji(xi)) → W . If we

denote V ∗ = limi→∞ |∂φ∗
ji
(xi)|, then

||V ∗||(M) = lim
i→∞

|∂φ∗
ji(xi)|(M) ≤W

and by property 3,

0 = lim
i→∞

M(∂φji(xi))− lim
i→∞

M(∂φ∗
ji(xi)) ≤ −L( lim

i→∞
F(|∂φ∗

ji(xi)|, A∞)).

If follows that F(V ∗, A∞) = 0 and V ∗ is stationary. Since we have

V = lim
i→∞

|∂H(1, φ∗
ji(xi))| = |∂H(1, lim

i→∞
φ∗
ji(xi))| = |∂ lim

i→∞
φ∗
ji(xi))| = lim

i→∞
|∂φ∗

ji(xi))| = V ∗,

we conclude that C({φj}) ⊂ C({φ∗
j}).

Now, we prove Proposition 2.7 by providing an explicit construction of the tightening map H,
which involves three major steps.

Proof of Proposition 2.7. Step I: Annular decomposition. Fix L > 0 (L =W + 1) and let

AL = {V ∈ Vn(M) : ||V ||(M) ≤ L};
A∞ = {V ∈ AL : V is stationary};

Aj = {V ∈ AL :
1

2j
≤ F(V,A∞) ≤ 1

2j−1
}, j ∈ N.

One can check that A∞ and Aj for all j ∈ N are compact in AL under the F-metric.
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Lemma 2.9. For each j ∈ N, there exists Cj > 0 such that for each V ∈ Aj , there exists XV ∈
X1(M) such that

||XV ||C1(M) ≤ 1 and δV (XV ) ≤ −Cj < 0.

Proof. Suppose that such Cj does not exist. Then there exists Vk ∈ Aj such that

sup
X∈X1(M),||X||C1(M)≤1

|δVk(X)| → 0 as k → ∞.

By compactness of Aj , the subsequence limit V = limk→∞ Vk satisfies V ∈ Aj . However, we have

δV (X) = lim
k→∞

δVk(X) = 0, ∀X ∈ X1(M), ||X||C1(M) ≤ 1,

which contradicts with V ∈ Aj .

Step II: A map from AL to X1(M). Given V ∈ Aj , let XV be given in Lemma 2.9. Since the
map (x, S) 7→ divS XV (x) is C0(Gn(M)), we deduce that the map

W 7→ δW (XV ) =

∫
Gn(M)

divS XV (x)dW (x, S)

is continuous in F. Therefore, ∀V ∈ Aj , ∃0 < rV < 1/2j+1 such that ∀W ∈ UrV (V ) = {W ∈
Vn(M) : F(W,V ) < rV }, we have

δW (XV ) ≤
1

2
δV (XV ) ≤ −1

2
Cj < 0.

Now {UrV /2 : V ∈ Aj} forms an open cover of Aj . By compactness of Aj , there exists finitely
many

{Urj,i : Vj,i ∈ Aj , 1 ≤ i ≤ qj}

with rj,i = rVj,i such that

•
⋃

i Urj,i/2(Vj,i) ⊃ Aj

• Urj,i(Vj,i) are disjoint from Ak if |k − j| ≥ 2.

In the following, we denote Urj,i(Vj,i), Urj,i/2(Vj,i), and XVj,i by Uj,i, Ũj,i, and Xj,i respectively. By
writing ψj,i(V ) = F(V,AL \ Ũj,i) and letting

φj,i(V ) =
ψj,i(V )∑

{ψp,q(V ) : p ∈ N, 1 ≤ q ≤ qp}
,

we see that {φj,i : j ∈ N, 1 ≤ i ≤ qj} forms a partition of unity subordinate to the covering {Ũj,i}.
The map X : AL → X1(M) is defined by

X(V ) = F(V,A∞)
∑

j∈N,1≤i≤qj

φj,i(V )Xj,i.

Lemma 2.10. We have that

1. the map X : AL → X1(M) defined above is continuous w.r.t. the C1-topology on X(M);
2. for every V ∈ Aj , let ρ(V ) be the smallest radius of the ball Ũk,i which contains V . Then we

have
δW (X(V )) ≤ − 1

2j−1
min{Cj−1, Cj , Cj+1}, ∀W ∈ Uρ(V )(V ).
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Proof. We only give a proof of 2 here. By construction, these Uk,i that contains V must satisfy
|k − j| ≤ 1. Hence, we have

δW (Xk,i) ≤ −1

2
min{Cj−1, Cj , Cj+1}, ∀W ∈ Uk,i.

Assume that W ∈ Uρ(V )(V ). Since V ∈ Ũk,i and ρ(V ) = min{rk,i/2}, we know that W ∈ Uk,i. As
F(V,A∞) ≤ 1/2j−1, it follows that

δW (X(V )) = δW (F(V,A∞)
∑

φk,i(V )Xk,i)

≤ − 1

2j−1
min{Cj−1, Cj , Cj+1}.

Step III: A map from AL to the space of isotopies. Given V ∈ AL, let ΦV : [0,∞)×M →M be
the flow of diffeomorphisms generated by X(V ), i.e.{

ΦV (0, p) = p
d
dtΦ

V (t, p) = X(V )(ΦV (t, p))
.

Lemma 2.11. The map V ∈ AL 7→ ΦV (·, ·) ∈ C1([0, T ]×M,M) is continuous in the C1-topology
in C1([0, T ]×M,M).

Lemma 2.12. Let Φ(x, ·) ∈ C0([0, 1],Diff1(M)). Then for every fixed V ∈ Vn(M), the map
x 7→ (Φx)∗V is continuous from [0, 1] to Vn(M).

Proof. Recall that

(Φ∗V )(f) =

∫
Gn(M)

f(Φ(p), dΦp(S))|JΦ(p, S)|dV (p, S).

The continuity of the map x 7→ (Φx)∗V follows from the continuity of x 7→ |JΦx(p, S)| in C0(Gn(M))
and the continuity of x 7→ f(Φx(p), (dΦx)p(S)) in C0(Gn(M)).

Corollary 2.13. Let φ : [0, 1] → (C(M),F) be a sweepout. Write {Ωx = φ(x)}. Then for t :
[0, 1] → [0, T0] a continuous function,

{Ω̃x = Φ|∂Ωx|(t(x))(Ωx)}

is also a sweepout.

Next, we can find two continuous functions g : R+ → R+ and ρ : R+ → R+ such that ρ(0) = 0
and

δW (X(V )) ≤ g(F(V,A∞)), if F(W,V ) ≤ ρ(F(V,A∞))

In particular, if Ω ∈ C(M) and F(|∂Ω|, V ) ≤ ρ(F(V,A∞)), then

δ|∂Ω|(X(V )) ≤ g(F(V,A∞)).

Next, we construct a continuous time function T : [0,∞) → [0,∞) such that

• limt→0 T (t) = 0, and T (t) > 0 if t > 0;
• ∀V ∈ AL, denote γ = F(V,A∞). Then Vt = (ΦV (t))∗V ∈ Uρ(γ)(V ), ∀0 ≤ t ≤ T (γ).
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Note that ∀V ∈ Aj , ρ = ρ(γ), ∃TV > 0 such that Vt ∈ Uρ(V ), ∀0 ≤ t ≤ TV . By compactness of Aj

and the continuity of the map (t, V ) 7→ Vt, we may choose TV such that TV ≥ Tj > 0 for all V ∈ Aj ,
where Tj depends only on j. Using C∞-cutoff functions, one can interpolate between Tj and obtain
T (t) above.

Now, define
ΨV (t, ·) = ΦV (T (γ)t, ·), t ∈ [0, 1].

Let L : R+ → R+ with L(γ) = T (γ)g(γ). Then L(0) = 0, and L(γ) > 0 if γ > 0. The map
H : [0, 1]×AL → AL is defined as

H : (t, V ) 7→ Vt = Ωt = (ΨV (t))∗V ⊂ Uρ(γ)(V ) ⊂ Uρ(γ)(|∂Ω|)

satisfying

1. H(0, V ) = V ;
2. If V ∈ A∞, then X(V ) = 0 and hence H(t, V ) = V ;
3. If V /∈ A∞, then γ = F(V,A∞) > 0 and

||V1(M)|| − ||V (M)|| =
∫ T (γ)

0
(δVt)(X(V ))dt.

Since Vt ⊂ Uρ(γ)(V ), we have δVt(X(V )) ≤ −g(γ), which implies that

||V1(M)|| − ||V (M)|| ≤ −T (γ)g(γ) = −L(γ) < 0.

Similarly, we may define H : [0, 1]×(C(M),F)∩{Ω : M(∂Ω) ≤W+1} → (C(M),F)∩{Ω : M(∂Ω) ≤
W + 1} by

H : (t,Ω) 7→ (Ψ|∂Ω|(t))(Ω)

satisfying

1. H(0,Ω) = Ω;
2. If |∂Ω| ∈ A∞, then X(|∂Ω|) = 0 and hence H(t,Ω) = Ω;
3. If |∂Ω| /∈ A∞, then γ = F(|∂Ω|, A∞) > 0 and

M(∂H(1,Ω))−M(∂Ω) =

∫ T (γ)

0
(δ|∂Ωt|)(X(|∂Ω|))dt.

Since ∂Ωt ⊂ Uρ(γ)(∂Ω), we have δ|∂Ωt|(X(|∂Ω|)) ≤ −g(γ), which implies that

M(∂H(1,Ω))−M(∂Ω) ≤ −T (γ)g(γ) = −L(γ) < 0.

This completes the construction of the tightening map H.

2.3 Almost minimizing
To begin with, we explain why one cannot expect the min-max solution to be locally mass

minimizing. Then we introduce a notion of almost minimizing varifolds and present a proof of the
existence of such a varifold from min-max construction. Finally, we formulate and solve a natural
constrained minimization problem which will be used in the construction of replacements.

Ideally, assume that {Σn
x = ∂φ(x)}x∈[0,1] is an optimal sweepout in (Mn+1, g), i.e.

max
x∈[0,1]

M(Σx) =W.
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Suppose by contradiction that Σx0 is not locally mass minimizing whenever M(Σx0) = W . Then
for every x0 ∈ [0, 1], if M(Σx0) = W , there exists an open set Ux0 ⊂ M such that Σx0 is not mass
minimizing in Ux0 , i.e. there exists deformations Σx0 → {Σx0,t}t∈[0,1] such that

Σx0,t∆Σx0 ⊂⊂ Ux0 and M(Σx0,1) <M(Σx0) =W.

To derive a contradiction, we hope to deform nearby slices {Σx : |x − x0| ≪ 1} parallelly to
{Σ̃x : |x− x0| ≪ 1} such that

max
x∈[0,1]

M(Σ̃x) < W.

The issue is that to maintain {Σ̃x} as a continuous family of x, we can only deform {Σx} to time
1 for x very close to x0. Hence, we have to deform {Σx : |x− x0| ≪ 1} in another open set Ux′

0
, and

moreover we require that
M(Σx,t) ≤ M(Σx) + δ

for every t ∈ [0, 1] and δ ≪ 1. This sheds light on the following heuristic definition of almost
minimizing.

Definition (Heuristic). Whenever M(Σx0) = W , Σx0 is almost minimizing in the following sense:
given any pair of disjoint open subsets (U1, U2) ⊂M with

dist(U1, U2) > 2min{diam(U1), diam(U2)},

there exists one of them, WLOG say U1, such that Σx0 is (ϵ, δ)-almost minimizing in U1, i.e. for any
deformation Σx0 → {Σx0,t}t∈[0,1], if

1. Σx0,t∆Σx0 ⊂⊂ U1;
2. M(Σx0,t) ≤ M(Σx0) + δ for every t ∈ [0, 1] and δ ≪ 1,

then we have M(Σx0) ≤ M(Σx0,1) + ϵ.

Example 2.14. In the ball B3, consider the deformation of a catenoid Σx to top and bottom planes
Σ′. We have |Σ′| < |Σx|− ϵ. But to deform Σx to Σ′, one has to pass through Σ̃ with |Σ̃| > |Σx|+ δ.
Hence, this example does not violate the (ϵ, δ)-almost minimizing property.

Theorem 2.15. Assume all the above. Then there exists Σx with M(Σx) close to W such that Σx

is almost minimizing in the above sense.
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Heuristic Proof. Assume this is not true. Then for any such x, there exists a pair of disjoint open
subsets (Ux,1, Ux,2) ⊂M with

dist(Ux,1, Ux,2) > 2min{diam(Ux,1),diam(Ux,2)}

such that on each Ux,i (i = 1, 2), there exists a deformation Σx → {Σx,i,t}t∈[0,1] with

1. Σxi,t∆Σx ⊂⊂ Ux,i;
2. M(Σx,i,t) ≤ M(Σx) + δ for every t ∈ [0, 1] and δ ≪ 1;
3. but M(Σx,i,1) ≤ M(Σx)− ϵ.

To derive a contradiction, it is sufficient to patch the deformations (via a covering) to deform
{Σx} to {Σ′′

x} with maxx∈[0,1]M(Σ′′
x) < W . Fix x0 ∈ (0, 1) with M(Σx0) ≥ W − ϵ/4. Choose Ux0,1

with deformation {Σx0,t}t∈[0,1]. We can deform {Σx} to {Σx,t(x)} parallelly, where t(x) = 1 for x
close to x0 (x ∈ Br0/2(x0)) and t(x) = 0 outside a small neighborhood of x0 (x /∈ Br0(x0)). Then
we have

M
(
Σx,t(x)

)
≤

{
W − ϵ

2 , if |x− x0| ≪ r0
2

W + ϵ
4 , if r0

2 ≤ |x− x0| ≤ r0
.

For convenience, write {Σ′
x = Σx,t(x)}. Pick x1 ∈ (0, 1) with M(Σ′

x1
) ≥ W − ϵ/4, r0/2 ≤

|x1 − x0| ≤ r0. There exists a pair of disjoint open subsets (Ux1,1, Ux1,2) ⊂M with

dist(Ux1,1, Ux1,2) > 2min{diam(Ux1,1),diam(Ux1,2)}

such that on each Ux1,i (i = 1, 2), there exists a deformation of Σ′
x1

. By requirements, at least one
of {Ux1,1, Ux1,2} is disjoint from Ux,1, say Ux1,2. As Σ′

x1
= Σx1 outside Ux,1, we deform parallelly

again to obtain Σ′′
x such that

M(Σ′′
x) ≤ M(Σ′

x)−
ϵ

2
≤ M(Σx) +

ϵ

4
− ϵ

2
≤W − ϵ

2
.

Hence, by a 2-step deformation process, we can deform {Σx} to {Σ′′
x} with maxx∈[0,1]M(Σ′′

x) < W ,
which gives the desired contradiction.

Remark. The key part of the proof is “parallel deformations,” which depends on the topology. If
the slices are C∞-embedded minimal hypersurfaces, then we deform in the C∞-topology. If the
distance between slices is measured by flat metric, then there are no deformations. In our case, we
deform in the M-topology.

Definition. Given ϵ, δ > 0 and an open set U ⊂Mn+1, define

A(U ; ϵ, δ) := {Ω ∈ C(M) such that if Ω = Ω0, . . . ,Ωm ∈ C(M) satisfying
1. spt(Ωi − Ω) ⊂⊂ U ;

2.F(Ωi,Ωi+1) ≤ δ;

3.M(∂Ωi) ≤ M(∂Ω) + δ,

then M(∂Ωm) ≥ M(∂Ω)− ϵ}.

Definition. Say a varifold V ∈ Vn(M) is almost minimizing in U if there exists ϵi → 0, δi → 0, and
Ωi ∈ A(U ; ϵi, δi) such that F(|∂Ωi|, V ) ≤ ϵi for every i.

Definition. A varifold V ∈ Vn(M) is almost minimizing in small annuli if ∀p ∈ M , ∃ram(p) > 0
such that V is almost minimizing in As,r(p) = Br(p) \Bs(p) for all 0 < s < r < ram(p).
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Theorem 2.16 (Existence of almost minimizing varifold). Let {φi : [0, 1] → C(M)} be a pull-tight
minimizing sequence of sweepouts for (Mn+1, g). Then there exists V ∈ C({φj}) such that

1. V is stationary;
2. V is almost minimizing in small annuli.

Proof. The fact that V is stationary follows from the pull-tight process. Suppose that V is not
almost minimizing in small annuli. Then ∀V ∈ C({φi}), ∃pV ∈ M such that ∀r̃ > 0, ∃r, s > 0
with r̃ > r + 2s > r − 2s > 0 and ϵ, δ > 0 such that ∀Ω ∈ C(M), if F(|∂Ω|, V ) < ϵ, then
Ω /∈ Ar−2s,r+2s(pV ; ϵ, δ). Note that we can find

UV,1 = Ar1−2s1,r1+2s1(pV ) and UV,2 = Ar2−2s2,r2+2s2(pV )

such that
dist(UV,1, UV,2) > 2min{diam(UV,1),diam(UV,2)}.

Since V = limi→∞ |∂φji(xi)| with M(∂φji(xi)) → W , we know that for i large enough, ∂φji(xi) /∈
Ar−2s,r+2s(pV ; ϵ, δ). Since there are deformations on UV,1 and UV,2, one may follow the heuristic
proof to patch them together and deform {φji} to {φ̃ji} such that

lim sup
i→∞

max
x∈[0,1]

M(∂φ̃ji) < W,

which gives the desired contradiction.

Now, we formulate and solve a natural constrained minimization problem which will be used in
the construction of replacements.

Lemma 2.17. Given ϵ, δ > 0, an open set U ⊂M , and Ω ∈ A(U ; ϵ, δ), we can do the following: for
each K ⊂⊂ U , let

CΩ := {Λ ∈ C(M) such that ∃Ω = Ω0, . . . ,Ωm = Λ satisfying
1. spt(Ωi − Ω) ⊂ K;

2.F(Ωi,Ωi+1) ≤ δ;

3.M(∂Ωi) ≤ M(∂Ω) + δ}.

Then there exists Ω∗ ∈ C(M) such that

(i) Ω∗ ∈ CΩ and M(∂Ω∗) = inf{M(∂Λ) : Λ ∈ CΩ};
(ii) Ω∗ is locally mass minimizing in int(K);
(iii) Ω∗ ∈ A(U ; ϵ, δ).

Proof. (i) Take a minimizing sequence {Λj} ⊂ CΩ with limj→∞M(∂Λj) = inf{M(∂Λ) : Λ ∈ CΩ}.
Since M(∂Λj) ≤ M(∂Ω) + δ for all j, by compactness theorem we may assume that Λj → Ω∗.
Moreover, we have the lower semicontinuity M(∂Ω∗) ≤ inf{M(∂Λ) : Λ ∈ CΩ}. To check Ω∗ ∈ CΩ,
consider the sequence Ω = Ω0, . . . ,Ωm = Λj ,Ωm+1 = Ω∗. Observe that spt(Λj − Ω) ⊂ K implies
spt(Ω∗ − Ω) ⊂ K, which yields 1. For j ≫ 1, we have F(Λj ,Ω

∗) < δ, which yields 2. Since

M(∂Ω∗) ≤ inf{M(∂Λ) : Λ ∈ CΩ} ≤ M(∂Ω) + δ,

we conclude that Ω∗ ∈ CΩ and its boundary is minimizing in the class.
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(ii) It is sufficient to show that ∀p ∈ spt(∂Ω∗), ∃rp > 0 such that M(∂Ω∗) ≤ M(∂Λ), ∀Λ ∈ C(M)
with Λ∆Ω∗ ⊂⊂ Brp(p). Choose rp ≪ 1 such that

M(∂Ω∗ Brp(p)) <
δ

2
.

Suppose by contradiction that there exists Ω′ ∈ C(M) with Ω′∆Ω∗ ⊂⊂ Br(p) but

M(∂Ω′ Br(p)) <M(∂Ω∗ Br(p)) < δ/2.

Consider the sequence Ω = Ω0, . . . ,Ωm = Ω∗,Ωm+1 = Ω′, which clearly satisfies 1, 2, and 3. Hence,
we have Ω′ ∈ CΩ with M(∂Ω′) <M(∂Ω∗), but this contradicts with (i).

(iii) Suppose by contradiction that there exists Ω∗ = Ω∗
0, . . . ,Ω

∗
m ∈ C(M) such that

1. spt(Ω∗
i − Ω∗) ⊂⊂ U ;

2. F(Ω∗
i ,Ω

∗
i+1) < δ;

3. M(∂Ω∗
i ) ≤ M(Ω∗) + δ

but M(∂Ω∗
m) < M(Ω∗) − ϵ. Consider the sequence Ω = Ω0, . . . ,Ωm = Ω∗ = Ω∗

0, . . . ,Ω
∗
m, which

clearly satisfies 1, 2, and 3. Hence, we have Ω∗
m ∈ CΩ with

M(∂Ω∗
m) ≥ M(∂Ω)− ϵ ≥ M(∂Ω∗)− ϵ,

which gives the desired contradiction.

2.4 Replacements
Proposition 2.18 (Existence and properties of replacements). Let V ∈ Vn(M) be almost minimiz-
ing in an open set U ⊂M and let K ⊂⊂ U be a compact subset of U . Then there exists V ∗ ∈ Vn(M)
called a replacement of V in K such that

1. V Gn(M \K) = V ∗ Gn(M \K);
2. ||V ||(M) = ||V ∗||(M);
3. V ∗ is also almost minimizing in U ;
4. V ∗ = limi→∞ |∂Ω∗

i | for some Ω∗
i ∈ A(U ; ϵi, δi) with ϵi, δi → 0 and Ω∗

i is locally mass minimizing
in intK for all i.

5. if V is stationary in M , so is V ∗.

Proof. By definition of almost minimizing, we may write V = limi→∞ |∂Ωi| for some Ωi ∈ A(U ; ϵi, δi).
By Lemma 2.17, for each i there is Ω∗

i ∈ CΩi minimizing in the class such that Ω∗
i is locally mass

minimizing in intK and Ω∗
i ∈ A(U ; ϵi, δi). Up to a subsequence, we have V ∗ = limi→∞ |∂Ω∗

i |.
Property 1 follows from the fact that spt(Ωi − Ω∗

i ) ⊂ K. To see property 2, we observe that

M(∂Ωi)− ϵi ≤ M(∂Ω∗
i ) ≤ M(∂Ωi)

for each i. Let i → ∞ give property 2. Since V ∗ = limi→∞ |∂Ω∗
i | for some Ω∗

i ∈ A(U ; ϵi, δi) with
ϵi, δi → 0, we know that V ∗ is also almost minimizing in U , which proves property 3. By the
following lemma, V ∗ is stationary in U . Since V ∗ = V in Gn(M \K), V ∗ is stationary in M \K. Let
φ ∈ C∞

c (U) be a cutoff function with 0 ≤ φ ≤ 1 and φ ≡ 1 in a small neighborhood of K. Then for
all X ∈ Xc(M), we may write X = φX +(1−φX) with spt(φX) ⊂ U and spt((1−φ)X) ⊂M \K.
It follows that

δV ∗(X) = δV ∗(φX) + δV ∗((1− φ)X) = 0

for all X ∈ Xc(M), i.e. V ∗ is stationary in M .
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Lemma 2.19. Under the hypotheses above, if V is stationary in U , so is V ∗.

Proof. Suppose by contradiction that V ∗ is not stationary in U . Then there exists ϵ0 > 0 and
X ∈ Xc(U) such that

|δV (X)| =

∣∣∣∣∣
∫
Gn(M)

divS X(p)dV (p, S)

∣∣∣∣∣ ≥ ϵ0

∫
M

|X|dµV > 0.

By changing the sign of X if necessary, we may assume that∫
Gn(M)

divS X(p)dV (p, S) ≤ −ϵ0
∫
M

|X|dµV < 0.

By continuity, there exists a constant ϵ1(ϵ0, V,X) > 0 such that for all Ω ∈ C(M) with F(|∂Ω|, V ) <
2ϵ1, we have

δ|∂Ω|(X) =

∫
∂Ω

div∂ΩXdµ∂Ω ≤ ϵ0
2

∫
M

|X|dµV < 0.

If F(|∂Ω|, V ) < ϵ1, by deforming Ω along the flow {ΦX(t) : 0 ≤ t ≤ τ} for a uniform τ > 0, we
obtain {Ωt} such that

• the map t 7→ Ωt is continuous in F-topology;
• M(∂Ωt) ≤ M(∂Ω)− ϵ2 for some constant ϵ2(ϵ0, ϵ1, V,X) > 0.

In summary, if we choose ϵ = min{ϵ1, ϵ2} and δ > 0, then given Ω ∈ C(M) with F(|∂Ω|, V ) < ϵ, we
have Ω /∈ A(U ; ϵ, δ), which gives the desired contradiction.

Proposition 2.20 (Regularity of replacements). Let V ∈ Vn(M) be almost minimizing in an open
set U ⊂M and let K ⊂⊂ U be a compact subset of U . Then V ∗ intK is an integer multiple of a
C∞-embedded minimal hypersurface away from a singular set Sing(Σ) of Hausdorff codimension 7.

Proof. By Proposition 2.18, we have V ∗ = limi→∞ |∂Ω∗
i | for some Ω∗

i ∈ A(U ; ϵi, δi) with ϵi, δi → 0
and Ω∗

i is locally mass minimizing in intK for all i. It follows from Theorem 1.21 that for each i,
∂Ω∗

i = Σi is a C∞-embedded minimal hypersurface in intK away from a singular set of Hausdorff
codimension 7. In particular, each Σi is stable. Then the Schoen-Simon-Yau curvature estimates
(see Theorem 3.1) guarantees that Σi converges to V ∗ int(K) in the C∞-topology with a possibly
increased multiplicity.

Theorem 2.21 (Lipschitz regularity of the min-max varifold). Let (Mn+1, g) be a Riemannian
manifold of dimension 3 ≤ (n+1) ≤ 7. Assume that V ∈ Vn(M) is stationary and almost minimizing
in small annuli. Then

1. V is n-rectifiable;
2. VarTan(V, p) consists of integer multiple of planes in Rn+1 and hence V is integer n-rectifiable.

Proof. We claim that Θn(V, p) > 0,∀p ∈ spt ||V ||. Then applying Theorem 1.8 gives 1. Pick ri → 0
and let V ∗

i be replacements in Ari,2ri(p). It follows from Proposition 2.20 that V ∗
i Ari,2ri(p) = Σi

is a C∞-embedded minimal hypersurface for each i. By the maximum principle, Σi∩∂B3ri/2(p) ̸= ∅,
so we may pick yi ∈ Σi ∩ ∂B3ri/2(p). Then the monotonicity formula implies that

||V ∗
i ||(Bri/2(yi)) = |Σi Bri/2(yi)| ≥ ωn

(ri
2

)n
.
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Based on the estimate above, we conclude that

Θn(V, p) ≥ lim inf
ri→0

||V ||(B2ri(p))

ωn(2ri)n
≥ 1

4n
.

To prove 2, we first apply the lemma below and obtain stable minimal hypersurfaces Σi =
V ∗
i Ari,2ri(p). Consider the rescalings τi = τp,ri defined by τi(x) = (x − p)/ri. We know that as
i→ ∞,

• τi(M) → TpM = Rn+1 smoothly;
• (τi)#V ⇀ W ∈ VarTan(V, p) up to a subsequence;
• (τi)#V

∗
i ⇀W ∗ ∈ Vn(Rn+1) up to a subsequence.

By the properties of replacements, we deduce that

• W =W ∗ in Gn(Rn+1 \ A1,2(0));
• ||W ||(BR(0)) = ||W ∗||(BR(0)), ∀R > 2;
• W ∗ A1,2(0) is the limit of stable minimal hypersurfaces Σ∗

i = τi(Σi) ⊂ τi(Ari,2ri(p)) =
A1,2(0)).

Moreover, the monotonicity formula implies the uniform area bound

|Σ∗
i | =

1

rni
|Σi| ≤

1

rni
||V ∗

i ||(B2ri(p)) =
1

rni
||V ||(B2ri(p)) ≤ C

for some constant C > 0. By the Schoen-Simon-Yau and Schoen-Simon curvature estimates (see
Theorem 3.1), a subsequence of Σ∗

i converges graphically and smoothly to a C∞-embedded minimal
hypersurface Σ∞. Since Θn(V, p) ≥ C > 0, by Corollary 1.9 we know that W is n-rectifiable in Rn+1

and is a stationary cone, i.e. τr(W ) =W . Since V ∗
i are almost minimizing in small annuli, the same

density lower bound holds and W ∗ is also n-rectifiable. Moreover, we have

Θn(W ∗, 0) =
||W ∗||(BR(0))

ωnRn
=

||W ||(BR(0))

ωnRn
= Θn(W, 0), ∀R > 2

and W ∗ is also a stationary cone, i.e. τr(W ∗) = W ∗. As W = W ∗ outside A1,2(0), we deduce that
W ≡W ∗ in Rn+1. By Simons’ Theorem [22], which says that any smooth minimizing hypercone in
Rn+1 with 3 ≤ (n+ 1) ≤ 7 is flat, we conclude that W is an integer multiple of planes.

Lemma 2.22. Let V ∈ Vn(M) be almost minimizing in U . Then V is stable in U in the following
sense: for all X ∈ Xc(U) and the associated flow ΦX(t), we have

d2

dt2

∣∣∣∣
t=0

||(ΦX(t))∗V ||(M) ≥ 0.

Proof. Recall that

||(Φt)∗V ||(M) =

∫
Gn(M)

|JΦt|(p, S)dV (p, S),

where |JΦt|(p, S) =
√
det(((dΦt)p|S)∗(dΦt)p|S). Hence, the map t 7→ ||(Φt)∗V ||(M) is a smooth

function. Now, we proceed as in the proof of Lemma 2.19 and conclude that V is stable in U .
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2.5 Smooth regularity

Theorem 2.23 (Smooth regularity). Let (Mn+1, g) be a closed Riemannian manifold of dimension
3 ≤ (n + 1) ≤ 7. Assume that V ∈ Vn(M) is stationary and almost minimizing in small annuli.
Then V = ⊔l

i=1miΣi, where mi are all positive integers and {Σ1, . . . ,Σl} is a disjoint collection of
closed, C∞-embedded minimal hypersurfaces.

Before proving the theorem, we shall recall the maximum principle for minimal surfaces. For each
x ∈ ∂Bs(p), if x = limi→∞ xi with xi ∈ spt ||V || ∩Bs(p), then x is a limit point of spt ||V || \Bs(p).
Suppose 0 < s < r < ram(p) and let T = {x ∈ spt ||V || ∩ Bs(p) : TxV ⊤∩ Tx∂Bs(p)}. By Theorem
1.14, the set T is dense in spt ||V || ∩Bs(p) and hence x ∈ T . On the other hand, we have

T ∩ ∂Bs(p) = spt ||V ∗|| ∩Bs(p) ∩ ∂Bs(p) ⊂ spt ||V ∗|| \Bs(p) ∩ ∂Bs(p).

Since spt ||V ∗|| = Σ on As,r(p), we conclude that x ∈ Σ.
As a result, if Σ can be extended to a C∞-embedded minimal hypersurface when s → 0, then

we can prove that spt ||V || ∩ A0,s(p) is C∞-embedded. However, when we decrease s and move
inward, Σ might also change. To show that Σ is invariant when s→ 0, we use a 2-step replacement
argument. By applying the argument infinitely many times, we obtain the smooth regularity in the
punctured ball.

Proof of Theorem 2.23. Step I: Constructing successive replacements V ∗ and V ∗∗ on two overlapping
concentric annuli. Pick p ∈ spt ||V || and suppose 0 < s < r < ram(p). Let V ∗ be the replacement of
V in As,r(p). Then V ∗ = Σ1 is a C∞-embdedded minimal hypersurface in As,r(p). Pick 0 < t1 <
s < t2 < r such that ∂Bt2(p) ⊤∩ Σ1. Let V ∗∗ be the replacement of V ∗ in At1,t2(p). Then V ∗∗ = Σ2

is a C∞-embdedded minimal hypersurface in At1,t2(p). Note that V ∗∗ = V ∗ outside At1,t2(p).
Step II: Gluing the replacements smoothly as immersed hypersurfaces on the overlap. Our goal

is to show that Σ1 = Σ2 in As,t2(p). Recall that to glue solutions u1, u2 of the weak formulation of
the minimal surface equation

div

(
∇u√

1 + |∇u|2

)
= 0

along a common boundary Γ, we only need{
u1 = u2 on Γ

∇u1 = ∇u2 on Γ
.

In our case, it is sufficient to check that (i) Σ2 glues to Σ1 in C0, i.e. Σ2 ∩ ∂Bt2(p) = Σ1 ∩ ∂Bt2(p);
(ii) Σ2 glues to Σ1 in C1.

Consider (i) first. By the maximum principle, we have

Σ2 ∩Bt2(p) = spt ||V ∗∗|| ∩Bt2(p) ∩ ∂Bt2(p)

⊆ (spt ||V ∗∗|| \Bt2(p)) ∩ ∂Bt2(p)

= (Σ1 \Bt2(p)) ∩ ∂Bt2(p)

= Σ1 ∩ ∂Bt2(p)

Conversely, fix x ∈ Σ1 ∩ Bt2(p). We know that ∀C ∈ VarTan(V ∗, x), C = TxΣ1 with TxΣ1 ⊤∩
TxBt2(p). Based on the Lipschitz regularity of the min-max varifold and the fact that

V ∗∗ =

{
Σ1 outside Bt2(p)

Σ2 inside Bt2(p)
,



2.5 Smooth regularity 23

we know that ∀C ′ ∈ VarTan(V ∗∗, x), C ′ = TxΣ1 with TxΣ1 ⊤∩ TxBt2(p). By the maximum principle,
we obtain x ∈ spt ||V ∗∗|| ∩ ∂Bt2(p) and Σ1 ∩Bt2(p) ⊆ Σ2 ∩Bt2(p).

For (ii), let x∗i be the projection of xi onto Γ = Σ2 ∩ ∂Bt2(p) inside Σ2. Let ri = distM (xi, x
∗
i ) =

dist(xi,Γ). Write τx∗
i ,ri

: y 7→ (y − x∗i )/ri and consider the blow-up limit W = limi→∞(τx∗
i ,ri

)#V
∗∗

up to a subsequence. We claim that

• W is stationary;
• Θn(W, ·) > 0;
• W is n-rectifiable;
• W = limi→∞ τx∗

i ,ri
(Σ1) in an half space and hence is equal to TxΣ1 in an half space.

To begin with, we check that

||W ||(Br(0))

ωnrn
= Θn(W, 0) = l = Θn(V ∗∗, x), ∀r > 0.

By the monotonicity formula, we have

||(τx∗
i ,ri

)#V
∗∗||(Br(0))

ωnrn
=

||V ∗∗||(Brir(x
∗
i ))

ωn(rir)n

≤ eCϵ ||V ∗∗||(Bϵ(x
∗
i ))

ωnϵn

≤ eCϵ
||V ∗∗||(Bϵ+d(x,x∗

i )
(x))

ωnϵn

≤ eCϵ

(
1 +

d(x, x∗i )

ϵ

)n ||V ∗∗||(Bϵ+d(x,x∗
i )
(x))

ωn(ϵ+ d(x, x∗i ))
n

≤ eCϵ

(
1 +

d(x, x∗i )

ϵ

)n

(l + δ).

Given δ > 0, there exists ϵ(δ, x) > 0 such that the last inequality holds true. As δ → 0 and i→ ∞,
we obtain the desired inequality. The reverse inequality also follows from the monotonicity formula:

||(τx∗
i ,ri

)#V
∗∗||(Br(0))

ωnrn
=

||V ∗∗||(Brir(x
∗
i ))

ωn(rir)n
≥ l.

Hence, W is n-rectifiable and is a stationary cone. Since W = l · TxΣ1 in an half space, we know
from the half space theorem for minimal surfaces that W = l · TxΣ1.
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We proceed to show that ∀xi ∈ Σ2 with xi → x ∈ Σ1 ∩ ∂Bt2(p), we have limi→∞ vΣ2(xi) →
vΣ1(x), where vΣi(·) is the unit normal vector field. Note that Σ2∩Bri(xi) is a stable, C∞-embedded
minimal hypersurface in M . By the Schoen-Simon-Yau and Schoen-Simon curvature estimates (see
Theorem 3.1), a subsequence of the blow-ups τx∗

i ,ri
(Σ2 ∩ Bri(xi)) converges smoothly to a C∞-

embedded minimal hypersurface Σ∞. Since Σ∞ = l · TxΣ1 in an half space, we know from the half
space theorem for minimal surfaces that Σ∞ = l · TxΣ1. It follows that vΣ2(xi) → vΣ1(x).

Step III: Extending the replacements down to the point p to get a C∞-embedded minimal
hypersurface Σ in the punctured ball. As t1 → 0, Σ1 ∪ Σ2 extends by unique continuation to
a C∞-embedded minimal hypersurface Σ∗ in A0,r(p). For every replacement V ∗∗ in At1,t2(p), if
x ∈ spt ||V || ∩ ∂Bt1(p) with TxV ⊤∩ Tx∂Bt1(p), then we may apply the maximum principle and
obtain x ∈ Σ∗. By Theorem 1.14, we have spt ||V || ∩ A0,s(p) ⊂ Σ∗. It follows from the constancy
theorem that spt ||V || ∩A0,s(p) is an integer multiple of Σ∗ ∩A0,s(p). Moreover, one can check that
Σ∗ ∩ A0,s(p) is stable.

Step IV: Showing that the singularity of Σ = Σ∗ ∩ A0,s(p) at p is removable. That is, we need
to verify the following proposition.

Proposition 2.24 (Removable singularity). Let (Mn+1, g) be a closed Riemannian manifold of
dimension 3 ≤ (n + 1) ≤ 7. Assume that Σ ⊂ A0,s(p) is a 2-sided, stable, C∞-embedded minimal
hypersurface with Area(Σ) ≤ C. Then Σ extends to be a C∞-embedded minimal hypersurface in
Bs(p).

Proof. To begin with, we show that ∀ri → 0, the blow-ups τri(Σ ∩ Ari,2ri(p)) converges weakly
to an integer multiple of P , where P ⊂ TpM

n+1 is a n-plane. As in the proof of Theorem 2.21,
the monotonicity formula gives a uniform area bound, which together with the 2-sided stability of
τri(Σ∩Ari,2ri(p)) implies that a subsequence of τri(Σ∩Ari,2ri(p)) converges graphically and smoothly
to a 2-sided, stable, C∞-embedded minimal hypersurface Σ∞ of multiplicity m. Since m · Σ∞ is a
smooth minimizing hypercone in Rn+1, we know from Simons’ Theorem [22] that Σ∞ is a plane.

A major concern is that the tangent cone we obtained depends on the choice of blow-up sequences.
That is, given ri → 0 and r′i → 0, we might have τri(Σ∩Ari,2ri(p)) → m ·P and τr′i(Σ∩Ar′i,2r

′
i
(p)) →

m · P ′ with P ̸= P ′. But based on the previous arguments, we have the following corollary.

Corollary 2.25. There exists r0 << 1 such that ∀r < r0, ∃Pn
r such that

Σ ∩ Ar,2r(p) = ⊔l
i=1mi ·Graphui,
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where Graphui denotes the graph of ui over Pn
r with u1 < · · · < ul and

∑l
i=1mi = m.

Note that Σ ∩ Ar,2r(p) = ⊔l
i=1mi · Σi(r), ∀0 < r < r0. Using the corollary, we may extend each

Σi(r) to a connected Σi in A0,r0/2(p). We claim that

Area(Σi ∩Br(0))

ωnrn
→ 1 as r → 0.

Once we show the claim, τp,rj (Σi) converges weakly to a plane of multiplicity 1. Since Σi converges
to a plane of multiplicity at least 1, we have

Area(Σi ∩Br(0))

ωnrn
≥ 1.

Conversely, since

l∑
i=1

mi = m = lim
r→0

Area(Σ ∩Br(0))

ωnrn
= lim

r→0

l∑
i=1

mi
Area(Σi ∩Br(0))

ωnrn
,

we have
Area(Σi ∩Br(0))

ωnrn
≤ 1,

which completes the proof of the claim.
We proceed to show that Σi extends across {p} to a C∞-embedded minimal hypersurface. A

key ingredient is the following theorem, which forms a pillar of the theory of minimal surfaces. A
proof can be found in [21] or [9].

Theorem 2.26 (Allard Regularity Theorem [1]). Let V ∈ Vn(B
n+1
r (p)) be stationary in Br(p) with

Θn(||V ||, x) ≥ 1,∀ a.e. x ∈ spt ||V ||. Moreover, assume that there exists ϵ > 0 such that

||V ||(Br(p))

ωnrn
≤ 1 + ϵ.

Then V Br/2(p) is a graph of C1,α functions over some plane P .

By Allard Regularity Theorem, Σi extends to be a C∞-embedded minimal hypersurface in Bs(p).
By the maximum principle, we have Σ1 = · · · = Σl. This completes the whole proof.

3 Weyl Law for the volume spectrum and Yau’s Conjec-
ture

3.1 Convergence of minimal hypersurfaces

Definition. Let (Mn+1, g) be a closed Riemannian manifold and let U ⊂ M be an open set. A
sequence {Σi} of C∞-embedded minimal hypersurfaces in U with ∂Σi ∩ U = ∅ is said to converge
to a C∞-embedded Σ∞ in U if

• ∀p ∈ Σ∞, ∃ a neighborhood B ⊂ U of p such that Σi ∩ B is a multi-sheeted graphs of
ui1 , . . . , uili over Σ∞ ∩B and uij → 0 smoothly as j → ∞.
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Prior to stating Sharp’s Compactness Theorem, we shall recall the definitions of second variation,
stability, and Morse index of minimal hypersurface as well as review the Schoen-Simon-Yau and
Schoen-Simon curvature estimates.

For an embedded minimal hypersurface Σ ↪→ U , the second variation is defined for all X ∈ Xc(U)
and the associated flows ΦX

t of X:

δ2Σ(X,X) =
d2

dt2

∣∣∣∣
t=0

Area(ΦX
t (Σ)).

This is a quadratic form on Γ(TM |Σ).

Definition. Say that Σ is stable if δ2Σ(X,X) ≥ 0,∀X ∈ Γc(TM |Σ).

Definition. The Morse index of Σ is the maximum number a set of linearly independent vector
fields in Γc(TM |Σ) along which δ2Σ is negatively definite.

Remark. In the case Σ is 2-side (there exists a normal vector field ν), X = φν with φ ∈ C∞
c (Σ),

the second variation formula becomes:

δ2Σ(φν, φν) =

∫
Σ

[
|∇Σφ|2 − (|AΣ|2 +RicM (ν, ν))φ2

]
dµΣ = −

∫
Σ
φLΣφdµΣ,

where LΣφ := −∆Σφ− (|AΣ|2 +RicM (ν, ν)))φ is the stability operator.

By the classical spectral theory of linear elliptic operators, there exists a discrete spectrum
λ1 < λ2 ≤ λ3 ≤ · · · with LΣφi = λiφi for each i. Note that λ1 is simple and φ1 cannot change sign.

Remark. Σ is stable iff λ1 ≥ 0. The Morse index is given by

index(Σ) = #{λi : λi < 0}

while the nullity is given by
nul(Σ) = #{λi : λi = 0}.

Theorem 3.1. (Schoen-Simon-Yau [19], Schoen-Simon [18]) Assume 3 ≤ (n+ 1) ≤ 7. Let Σn be a
C∞-embedded minimal hypersurface in an open set U ⊂Mn+1 with ∂Σ ∩ U = ∅. If

• Σ is 2-sided and stable,
• Hn(Σ) ≤ C,

then
sup

x∈Σ∩U
|AΣ|2(x) dist2(x, ∂U) ≤ C1,

where C1 = C1(C,M) is a constant.

Corollary 3.2. With all conditions above, let {Σi} be a sequence of embedded minimal hypersur-
faces satisfying

• Σi is 2-sided and stable for each i,
• Hn(Σi) ≤ C for some uniform constant C,

then a subsequence of {Σi} converges smoothly to a 2-sided stable embedded limit Σ∞ possibly with
integer multiplicity.
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Now, we are ready to state the compactness theorem for minimal hypersurfaces with bounded
index. We no longer require Σi to be stable but instead impose a uniform bound on Morse index.

Theorem 3.3 (Sharp [20]). Let Σi be closed, embedded minimal hypersurfaces in (Mn+1, g) with
3 ≤ (n+ 1) ≤ 7. Assume that

• index(Σi) ≤ k for some uniform constant k,
• Hn(Σi) ≤ C for some uniform constant C.

Then a subsequence of {Σi} converges smoothly to a closed, embedded limit Σ∞ possibly with
integer multiplicity in the following sense: there exists a set of at most k points {P1, . . . , Pl}, l ≤ k
such that ∀U ⊂⊂M \ {P1, . . . , Pl}, Σi → mΣ∞ smoothly.

• Assume Σ∞ is 2-sided:

1. When m = 1, Σi → Σ∞ smoothly globally and there exists a nontrivial φ ∈ C∞(Σ∞)
such that LΣ∞φ = 0 (a Jacobi field),

2. When m > 1, there exists φ > 0, φ ∈ C∞(Σ∞) such that LΣ∞φ = 0. This implies
λ1(LΣ∞) = 0 and Σ∞ is weakly stable.

• Assume Σ∞ is 1-sided:

1. If all Σi are 2-sided, then m > 1. The 2-sided connected double cover Σ̃∞ → Σ∞ is
weakly stable.

2. Ifm = 1, then Σi are all 1-sided for i≫ 1 and Σi → Σ∞ smoothly globally and Σ̃∞ → Σ∞
admits a Jacobi field.

The following lemma gives the lower semicontinuity of Morse index under the smooth conver-
gence, which will be used in the proof of Theorem 3.3.

Lemma 3.4. If Σi → mΣ∞ smoothly in U with ∂Σi ∩ U = ∅, then

index(Σ∞) ≤ lim inf
i→∞

index(Σi).

Proof of Theorem 3.3. We divide the proof into four steps: (i) convergence away from {P1, . . . , Pl};
(ii) removable singularity of Σ∞ across {P∞,1, . . . , P∞,l}; (iii) construction of the Jacobi field φ; (iv)
removable singularity of φ when m > 1.

For (i), we have the first fact: ∀{U1, . . . , Uk+1} disjoint open sets in M , ∃ Uj such that Σ is
stable in Uj , where index(Σ) ≤ k. To check this, we proceed by contradiction. If Σ is unstable in
all Uj , then ∃Xj ∈ Xc(Uj) such that δ2Σ(Xj , Xj) < 0. Since Xj ’s have pairwise disjoint support,
{X1, . . . , Xk+1} is a linearly independent set, which contradicts with index(Σ) ≤ k. The second fact
is a direct consequence of the first fact, which says: ∀r > 0, ∃ at most k points {PΣ

1 , . . . , P
Σ
l }, l ≤ k

such that Σ is stable in any Br(p) ⊂M \
⋃l

j=1Br(P
Σ
j ).

Now, ∀r > 0, ∀Σi, ∃{Br(Pi,j)}lij=1 such that Σi is stable in any ball Br(p) ⊂M \
⋃li

j=1Br(P
Σ
i,j).

For each j = 1, . . . , l, let {Pi,j} → {P∞,j}. Then Σi is stable in any ball Br(p) ⊂M \
⋃l

j=1B2r(P∞,j)
for i≫ 1. By Theorem 3.1, a subsequence of {Σi} converges smoothly to Σ∞ in M \

⋃
j B2r(P∞,j).

Let r → 0, and a further subsequence of {Σi} converges smoothly to Σ∞ in M \ {P∞,1, . . . , P∞,l}.
By Lemma 3.4, we conclude that there are at most k such points.

For (ii), we claim that ∀P∞,j , ∃r ≪ 1 such that Σ∞|A0,r(P∞,j) is stable. To check this, we
proceed by contradiction. If Σ∞|A0,r(P∞,j) is not stable, then we may use cutoff functions to con-
struct an infinitely number of linearly independent Xα ∈ Xc(M) supported in A0,r(P∞,j) with
δ2Σ∞(Xα, Xα) < 0. This contradicts with index(Σi) ≤ k for i≫ 1.
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When m = 1, Σi → Σ∞ smoothly in M \ {P∞,1, . . . , P∞,l}. By Allard Compactness Theorem
[1], Σ → Σ∞ as varifolds. Moreover, we have

Hn(Σi ∩Br(p))

ωnrn
→ Hn(Σ∞ ∩Br(p))

ωnrn
→ 1 as r → 0.

By Allard Regularity Theorem (see Theorem 2.26), we conclude that the convergence must be
smooth and graphical everywhere over M .

For (iii), assume that Σ is a graph over Σ∞. Then there is a function u ∈ C∞(Σ∞) such that

Σ = {expx(u(x))νΣ∞(x) : x ∈ Σ∞},

where νΣ∞ is the unit normal of Σ∞ pointing toward Σ. Let ν(x, t) = d
dt expx(tνΣ∞) and let Z(x, t) =

η(x)νΣ∞ , where η ∈ C∞
c (Σ∞) is a test function. Since Σ and Σ∞ are minimal hypersurfaces, we

have {
divΣ Z = HΣ = 0

divΣ∞ Z = HΣ∞ = 0
.

Denote the path of smooth hypersurfaces by Σt := {expx(tu(x)νΣ(x)) : x ∈ Σ∞}, t ∈ [0, 1]. From
the fundamental theorem of Calculus we deduce

0 = divΣ Z − divΣ∞ Z =

∫ 1

0

d

dt
(divΣt Z)dt.

Write X = ∂t = u(x)ν(x, t). A further computation leads to

d

dt
(divΣt Z) =

d

dt
gijt ⟨∇∂iZ, ∂j⟩

=− gikt g
jl
t

d

dt
(gt)kl⟨∇∂iZ, ∂j⟩+ gijt ⟨∇∂t∇∂iZ, ∂j⟩+ gijt ⟨∇∂iZ,∇∂t∂j⟩

=− 2⟨∇eiX, ej⟩⟨∇eiZ, ej⟩+ gijt ⟨∇∂i∇XZ −R(X, ∂i)Z, ∂j⟩
+ gijt ⟨⟨∇eiZ, ek⟩ek + ⟨∇eiZ, νΣt⟩νΣt , ⟨∇ejX, el⟩el + ⟨∇ejX, νΣt⟩νΣt⟩

=− 2⟨∇eiX, ej⟩⟨∇eiZ, ej⟩+ gijt ⟨∇∂i∇XZ, ∂j⟩ − RicM (X,Z)

+ ⟨∇eiX, ej⟩⟨∇eiZ, ej⟩+ ⟨∇eiX, νΣt⟩⟨∇eiZ, νΣt⟩

= gijt ⟨∇∂i∇XZ, ∂j⟩ − RicM (X,Z)− ⟨∇eiX, ej⟩⟨∇eiZ, ej⟩+ ⟨∇eiX, νΣt⟩⟨∇eiZ, νΣt⟩.

Note that
∇XZ = ∇u(x)νt(η(x)νt) = u(x)η(x)∇νtνt = 0.

Since we have

lim
t→0

d

dt
(divΣt Z) = −RicM (νΣ∞ , νΣ∞)u · η − |AΣ∞ |2u · η +∇Σ∞u · ∇Σ∞η,

the function u solves the following equation for all η ∈ C∞
c (Σ∞):

0 =

∫
Σ∞

∇Σ∞u · ∇Σ∞η − (RicM (νΣ∞ , νΣ∞) + |AΣ∞ |2)u · η + o(· · · ).

When m = 1, we know from Allard Regularity Theorem (see Theorem 2.26) that Σi → Σ∞
smoothly. Let ũi be the height function of Σi over Σ∞. The standard elliptic estimates give a
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smooth control over the L2-renormalized function ui := ũi/||ũi||L2(Σ∞) and convergence of ui to a
nontrivial solution φ to the Jacobi equation:

−∆Mφ− (|AΣ∞ |2 +RicM (νΣ∞ , νΣ∞)) = 0.

When m > 1, let ũi be the height function of Σi+ over Σi−, where Σi+ and Σi− denote the
outmost sheets. For Ω ⊂⊂ Σ∞ and some fixed point y ∈ Ω, we have a Harnack estimate for the
renormalized function ui := ũi/ũi(y), which gives an L∞ estimate. By standard elliptic estimates,
we conclude that ui converges locally and smoothly to a nontrivial solution φ to the Jacobi equation.
Moreover, the maximum principle gives φ > 0 outside the singular set.

Finally, we prove (iv) when m > 1. Let p ∈ Σ∞ be a singularity and let Bϵ(p) be a ball of radius
ϵ in Σ∞ around p. For ϵ > 0, consider the cylindrical neighborhoods Cϵ = Bϵ(p)× (−ϵ, ϵ) around p.
We have the following facts:

1. Σi ∩ Cϵ → Σ∞ ∩ Cϵ in Hausdorff distance,
2. if Σi± ∩ (∂Bϵ(p) × (−ϵ, ϵ)) = GraphΣ∞(ui±), then ui+ > ui− and ui± → 0 smoothly in a

neighborhood of Σ∞ ∩ ∂Bϵ(p),
3. fix ui± : ∂Bϵ(p) → (−ϵ, ϵ). By the Inverse Function Theorem, ∀|t| ≤ δ(ϵ), ∃ a foliation of

minimal hypersurfaces Σi±,t in Cϵ with ∂Σi±,t = GraphΣ∞(ui± + t).

By standard elliptic estimates, Σi±,0 → Σ∞ smoothly. Let ũi be the height function of Σi+,0

over Σi−,0. Fact 1 and the maximum principle imply that Σi ∩Cϵ should lie within Σi−,0 and Σi+,0.
Hence for some fixed point y in a smaller domain, the normalized function ui(x) := ũi/ũi(p) is
uniformly bounded. From this we deduce that φ admits a global bound, yielding full regularity over
all of M . By the maximum principle, φ must remain strictly positive on M , which completes the
whole proof.

Remark. When m > 1, we cannot expect smooth and graphical convergence over all of M . As
an example, consider a sequence of catenoids converging to a plane of multiplicity 2. The Allard
Regularity Theorem fails to apply and the convergence is not smooth across the center.
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3.2 Volume spectrum and Weyl Law
Given m ∈ N, Im denotes the m-dimensional cube Im = [0, 1]m. For each j ∈ N, I(1, j) denotes

the cube complex on I1 whose 1-cells and 0-cells are, respectively,

[0, 3−j ], [3−j , 2 · 3−j ] . . . , [1− 3−j , 1] and [0], [3−j ], . . . , [1− 3−j ], [1].

We denote by I(m, j) the cell complex on Im:

I(m, j) = I(1, j)⊗ · · · ⊗ I(1, j) (m times).

Then α = α1 ⊗ · · · ⊗ αm is a q-cell of I(m, j) if and only if αi is a cell of I(1, j) for each i and∑m
i=1 dim(αi) = q.

Definition. X ⊂ I(m, j) is a cube complex if it is a union of cells in I(m, j).

Definition ([14]). LetX be a cube complex and let p ∈ N. A continuous map Φ : X → Zn(M ;F;Z2)
is a p-sweepout if

Φ∗(λ̄p) ̸= 0 ∈ Hp(X;Z2).

This is equivalent to say that there exists λ ∈ H1(X;Z2) such that

• for any loop γ : S1 → X, we have λ(γ) ̸= 0 iff Φ ◦ γ : S1 → Zn(M ;F;Z2) is homotopically
nontrivial.

• λp = λ ⌣ · · ·⌣ λ ̸= 0 in Hp(X;Z2).

Remark. 1. If dimX < p, then there are no p-sweepouts.
2. If Φ is a p-sweepout, then Φ is a (p− 1)-sweepout.

Given A a symmetric N × N matrix with Avn = λnvn (λ1 ≤ λ2 ≤ · · · ), the Rayleigh formula
gives a min-max characterization of eigenvalues of A:

λk = inf
Rk↪→RN

max
v∈Rk\{0}

⟨Av, v⟩
⟨v, v⟩

= inf
RPk−1↪→RPN−1

max
[v]∈RPk−1

Q([v]),

where Q(v) = ⟨Av, v⟩/⟨v, v⟩ is scaling invariant.
Let (Mn+1, g) be a compact Riemannian manifold isometrically embedded in RN . Given the

Laplacian ∆ :W 1,2(M) →W 1,2(M), we also have a min-max characterization of eigenvalues of ∆:

λk = inf
Rk↪→W 1,2(M)

max
u∈Rk\{0}

∫
M |∇u|2∫
M u2

= inf
RPk−1↪→RP∞

max
[u]∈RPk−1

Q([u]),

where Q(u) = (
∫
M |∇u|2)/(

∫
M u2) is scaling invariant. In 1911, Weyl proved an asymptotic formula

for the sequence of eigenvalues {λp}p∈N that impacted mathematics profoundly. The celebrated
Weyl Law [27] states that

lim
p→∞

λp · p−
2

n+1 = a(n) vol(M)−
2

n+1 ,

where a(n) = 4π2 vol(B)−2/(n+1) and B is the unit ball in Rn+1.
In this section, we present a summary of Liokumovich-Marques-Neves’s proof on the Weyl Law

for the volume spectrum [11] that was conjectured by Gromov [6]. We shall start by introducing the
p-width.
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Definition. Let p ∈ N. The p-width (p-th volume spectrum) of (M, g) is the number

ωp(M, g) := inf
Φ∈Pp

sup
x∈dmn(Φ)

M(Φ(x)),

where
Pp = {Φ : X → Zn(M ;F;Z2) : Φ

∗(λ̄p) ̸= 0 ∈ Hp(X;Z2)}

and dmn(Φ) denotes the domain of Φ.

Remark. Since every p-sweepout is a (p − 1)-sweepout, we see that {ωp(M, g)}p∈N is a monotone
increasing sequence.

Now, the Weyl Law for the volume spectrum is formulated as below.

Theorem 3.5 (Weyl Law, Liokumovich-Marques-Neves 16 [11]). There exists a constant a(n) > 0
such that, for every compact Riemannian manifold (Mn+1, g) with (possibly empty) boundary, we
have

lim
p→∞

ωp(M)p−
1

n+1 = a(n)Vol(M)
n

n+1 .

The Weyl Law for the volume spectrum is first proven for Lipschitz domains and then modified
to prove for compact Riemannian manifolds. One of the main tools in the proofs is the Lusternik-
Schnirelmann inequality, which is stated below.

Lemma 3.6 (Lusternik-Schnirelmann Inequality [6, 7]). Let Ω ⊂ Rn+1 be a Lipschitz domain with
Vol(Ω) = 1. Let {Ω∗

i }Ni=1 be disjoint Lipschitz subsets of Ω. For every p ∈ N, we have

ωp(Ω) ≥
N∑
i=1

ωpi(Ω
∗
i ),

where pi = ⌊pVol(Ω∗
i )⌋.

Proof. Fix ϵ > 0 and pick Φ ∈ Pp(Ω). Consider

Ui := {x ∈ X : Area(Φ(x) ∩ Ω∗
i ) < ωpi(Ω

∗
i )−

ϵ

N
}.

The map Φ : Ui → Zn(Ω
∗
i ;Z2) defined by restricting currents to Ω∗

i , i.e. Φ(x) = Φ(x) ∩Ω∗
i does not

belong to Ppi(Ω
∗
i ). Once we show that X \

⋃N
i=1 Ui ̸= ∅, we may pick x0 ∈ X \

⋃N
i=1 Ui and obtain

Area(Φ(x0) ∩ Ω∗
i ) ≥ ωpi(Ω

∗
i )−

ϵ

N

for every i. It follows that

Area(Φ(x0)) ≥
N∑
i=1

Area(Φ(x0) ∩ Ω∗
i ) ≥

N∑
i=1

ωpi(Ω
∗
i )− ϵ.

Since ϵ and Φ are arbitrary, we derive the inequality.
To verify that X \

⋃N
i=1 Ui ̸= ∅, we may assume X =

⋃N
i=1 Ui and proceed by contradiction.

Let ιi : Ui ↪→ X denote the inclusion map. The LES of cohomology for the pair (X,Ui) with Z2

coefficients is given by

· · · // Hpi(X,Ui;Z2)
j∗
// Hpi(X;Z2)

ι∗i // Hpi(Ui;Z2) // · · ·



3.2 Volume spectrum and Weyl Law 32

As Φ /∈ Ppi(Ω
∗
i ), we have ι∗i (λ

pi) = 0, where λ is the generator of H1(X;Z2). By exacteness,
λpi = j∗λi for some λi ∈ Hpi(X,Ui;Z2). By considering the relative cup product

Hp1(X,U1;Z2)× · · · ×HpN (X,UN ;Z2)
⌣−−→ H p̄(X,

N⋃
i=1

Ui;Z2) = 0

with p̄ ≤ p, we obtain λ1 ⌣ · · ·⌣ λN = 0. This contradicts with

j∗(λ1 ⌣ · · ·⌣ λN ) = j∗λ1 ⌣ · · ·⌣ j∗λN = λp̄ ̸= 0

since every p-sweepout is a p̄-sweepout for p̄ ≤ p.

Corollary 3.7. Let ω̃p(Ω) := ωp(Ω)p
− 1

n+1 be the renormalized volume spectrum and let Ωi :=
Vol(Ω∗

i )
−1/(n+1)Ω∗

i be a domain similar to Ω∗
i . Then

ω̃p(Ω) ≥
N∑
i=1

Vol(Ω∗
i )ω̃pi(Ωi)−

C(n,Ω)

pV
,

where C(n,Ω) is a positive constant and V = min{|Ω∗
1|, . . . , |Ω∗

N |}.

Proof. A direct calculation using the Lusternik-Schnirelmann inequality leads to

ω̃p(Ω) = p−
1

n+1ωp(Ω)

≥ p−
1

n+1

N∑
i=1

ωpi(Ω
∗
i )

= p−
1

n+1

N∑
i=1

Vol(Ω∗
i )

n
n+1ωpi(Ωi)

=

N∑
i=1

Vol(Ω∗
i )

n
n+1

(
pi
p

) 1
n+1

ω̃pi(Ωi)

≥
N∑
i=1

Vol(Ω∗
i )

n
n+1

(
Vol(Ω∗

i )−
1

p

) 1
n+1

ω̃pi(Ωi)

=
N∑
i=1

Vol(Ω∗
i )

(
1− 1

pVol(Ω∗
i )

) 1
n+1

ω̃pi(Ωi)

≥
N∑
i=1

Vol(Ω∗
i )ω̃pi(Ωi)−

C(n,Ω)

pV

for some positive constant C(n,Ω) > 0.

Theorem 3.8 (Weyl Law for Cubes). Let C = [0, 1]n+1. There exists a constant a(n) > 0 such
that

lim
p→∞

ω̃p(C) = a(n).
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Proof. Our goal is to check that

lim sup
p→∞

ω̃p(C) = lim inf
p→∞

ω̃p(C).

Pick {pl}, {qj} ⊂ N such that

lim sup
p→∞

ω̃p(C) = lim
l→∞

ω̃pl(C) and lim inf
p→∞

ω̃p(C) = lim
j→∞

ω̃qj (C).

Fix pl and consider qj ≫ pl with Nj ∼ qj/pl ∈ N. By dividing C into a disjoint collection of subcubes
{C∗

i }
Nj

i=1 of the same volume and applying the Lusternik-Schnirelmann inequality, we obtain that

ω̃qj (C) ≥
Nj∑
i=1

Vol(C∗
i )ω̃pl(C)−

C(n)

qj Vol(C∗
i )
.

Since qj Vol(C∗
i ) ∼ qj/Nj ∼ pl and limj→∞Nj Vol(C

∗
i ) = 1, we have

lim inf
p→∞

ω̃p(C) ≥ lim
j→∞

Nj Vol(C
∗
i )ω̃pl(C)−

C(n)

pl
= ω̃pl(C)−

C(n)

pl
.

As pl → ∞, we obtain the desired equality.

Theorem 3.9 (Weyl Law for Domains). For every compact Lipschitz domain Ω ⊂ Rn+1 with
Vol(Ω) = 1, we have

lim
p→∞

ω̃p(Ω) = a(n).

Proof. It is sufficient to check that

lim inf
p→∞

ω̃p(Ω) ≥ a(n) and lim sup
p→∞

ω̃p(Ω) ≤ a(n).

For the lower bound, we prove by chopping the domain into cubes and then applying the Lusternik
Schnirelmann inequality. For every ϵ > 0, there exists a collection of cubes {C∗

i }Ni=1 with pairwise
disjoint interiors contained in Ω such that

∑N
j=1Vol(C

∗
i ) ≥ 1− ϵ. For every p≫ 1,

ω̃p(Ω) ≥
N∑
i=1

Vol(C∗
i )ω̃⌊pVol(C∗

i )⌋(C)−
C(n,Ω)

pmin{Vol(C∗
i )}

.

As p→ ∞, we have

lim inf
p→∞

ω̃p(Ω) ≥

(
N∑
i=1

Vol(C∗
i )

)
a(n) = (1− ϵ)a(n),

which gives the desired lower bound as ϵ→ 0.
For the upper bound, we prove by rescaling domains to fill in the cube and then applying the

Lusternik Schnirelmann inequality. For every ϵ > 0, there are pairwise disjoint regions {Ω∗
i }Ni=1

contained in C such that
∑N

i=1Vol(Ω
∗
i ) ≥ 1− ϵ. Observe that

a(n) = lim
p→∞

ω̃p(C) ≥ Vol(Ω∗
1) lim sup

p→∞
ω̃p1(Ω) +

N∑
i=2

Vol(Ω∗
i ) lim inf

p→∞
ω̃pi(Ω).

Since lim infp→∞ ω̃p(Ω) ≥ a(n) and 1−
∑N

i=2Vol(Ω
∗
i ) ≤ Vol(Ω∗

1) + ϵ, we deduce that

a(n)(Vol(Ω∗
1) + ϵ) ≥ a(n)

(
1−

N∑
i=2

Vol(Ω∗
i )

)
≥ Vol(Ω∗

1) lim sup
p→∞

ω̃p(Ω),

which gives the desired upper bound as ϵ→ 0.
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Theorem 3.10 (Weyl Law for Compact Manifolds). For every compact Riemannian manifold
(Mn+1, g) with Vol(M) = 1, we have

lim
p→∞

ω̃p(M, g) = a(n).

Proof. It is sufficient to check that

lim inf
p→∞

ω̃p(M, g) ≥ a(n) and lim sup
p→∞

ω̃p(M, g) ≤ a(n).

For the lower bound, note that for every ϵ > 0, there exists r̄ > 0 such that for all r ≤ r̄, we have

Br(p)
bilip
≃ Br(0), where Br(p) is a ball in (M, g) \ ∂M around p and Br(0) is a ball in (Rn+1, g0)

around the origin. In particular, if (1 + ϵ)−2g ≤ g0 ≤ (1 + ϵ)2g, then

(1 + ϵ)−(n+1)Vol(Br(p)) ≤ |Br(0)| ≤ (1 + ϵ)n+1Vol(Br(p))

and
ωp(Br(p)) ≥ (1 + ϵ)−nωp(Br(0)), ∀p ∈ N.

Choose a collection of pairwise disjoint geodesic balls Bi ⊂ M \ ∂M with ri ≤ r̄ such that∑N
i=1Vol(Bi) ≥ 1/(1 + ϵ). Let B denote a ball in Rn+1 of unit volume and let Bi denote an

Euclidean ball with the same radius as Bi, i = 1, . . . , N . By the Lusternik-Schnirelmann inequality,
we obtain that

ω̃p(M) = p−
1

n+1ωp(M)

≥ p−
1

n+1

N∑
i=1

ω⌊pVol(Bi)⌋(Bi)

≥ p−
1

n+1

N∑
i=1

(1 + ϵ)−n|Bi|
n

n+1ωpi(B)

= (1 + ϵ)−n
N∑
i=1

(
pi

p|Bi|

) 1
n+1

|Bi|ω̃pi(B)

= (1 + ϵ)−n
N∑
i=1

|Bi|
(
|Vol(Bi)|

|Bi|
− 1

p|Bi|

) 1
n+1

ω̃pi(B)

≥ (1 + ϵ)−2n−1
N∑
i=1

Vol(Bi)

(
|Vol(Bi)|

|Bi|
− 1

p|Bi|

) 1
n+1

ω̃pi(B).

As p→ ∞, we have

lim inf
p→∞

ω̃p(M) ≥ (1 + ϵ)−2n−2
N∑
i=1

Vol(Bi)a(n)

≥ (1 + ϵ)−2n−3a(n),

which gives the desired lower bound as ϵ→ 0.
For the upper bound, the strategy is to first construct a connected region Ω ⊂ Rn+1 by decom-

posing M into almost Euclidean regions and adding tiny tubes to connect their bilipschitz images
in Rn+1. Then given a p-sweepout Φ of Ω, we cook up a p-sweepout Ψ of M whose elements have
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masses comparable with those of Φ. As p → ∞, the increased mass is negligible compared to
p1/(n+1), which gives the desired upper bound.

Let C = {Ci}Ni=1 be a collection of domains such that (i) for all i = 1, . . . , N , Ci
bilip
≃ Ci ⊂ Rn+1

with bilipschitz constant (1+ϵ/2); (ii) C is a covering of M ; (iii) Ci’s have mutually disjoint interiors.
By connecting the N disjoint regions Ci ⊂ Rn+1 consecutively by tiny tubes, we obtain a conncted
Lipschitz domain Ω ⊂ Rn+1 that satisfies

|Ω| ≤ (1 + ϵ)n+1Vol(M) = (1 + ϵ)n+1.

Consider Φ ∈ Pp(Ω) with X = dmn(Φ). By restricting the cycles to Ci, we obtain Φi ∈ Pp(Ci)
with domain X satisfying Φ∗

i λ̄ = λ = Φ∗λ̄ and

M(Φi(x)) ≤ (1 + ϵ)nM(Φ(x) Ci), ∀x ∈ X.

We shall use the maps {Φi}Ni=1 to cook up a p-sweepout of M . Since Φi(x) has boundary in ∂Ci, one
may choose Zi(x) ∈ In+1(Ci;Z2) such that the cycle ∂Zi(x) coincides with Φi(x) on the interior of
Ci. Note that the choice is not unique and Ci+Zi(x) is an alternative. Let Z̃i denote the bilipschitz
image of Zi in Ci. Given x, we argue that a choice of Z1 induces choices of Z2, . . . , Zn such that
(∂Z̃1 + · · ·+ ∂Z̃N )(x) is a relative cycle of M independent of the choices of Z1. Then we show that
the map Ψ defined by Ψ(x) = (∂Z̃1 + · · ·+ ∂Z̃N )(x) is the desired p-sweepout of M .

For each i = 1, . . . , N , set

SXi := {(x, Z) : x ∈ X,Φi(x)− ∂Z ∈ In(∂Ci;Z2)} ⊂ X × In+1(Ci;Z2).

Let τi : SXi → X be the projection map and we claim that τi is a double covering space for all
i (τ−1

i (x) = {(x, Zx), (x,Ci + Zx)}). The proof is analogous to the verification of C(M) as the
double covering space of Zn(M ;Z2), which is a direct corollary of the constancy theorem. Under
the bijective correspondence

{double covering spaces of X}/ ∼= ⇐⇒ Hom(π1(X),Z2) ∼= H1(X;Z2),

one can check that the element σi ∈ H1(X;Z2) that classifies SXi is identical to λ for all i. As a
result, SX1 is isomorphic to SXi for all i and let Fi : SX1 → SXi be the corresponding isomorphism.

For each i = 1, . . . , N , by composing the projection map SXi → In+1(Ci;Z2) with the bilipschitz
diffeomorphism from Ci to Ci, we form the map Ei : SXi → In+1(Ci;Z2). Define Ψ̂ : SX1 →
Zn,rel (M,∂M ;Z2) by

Ψ̂(y) =
N∑
i=1

∂(Ei ◦ Fi(y)).

The map is continuous in the flat topology with Ψ̂(x,C1 + Z) = Ψ̂(x, Z). Hence, Ψ̂ descends to
a map Φ : X → Zn,rel (M,∂M ;Z2) continuous in the flat topology. By lifting a homotopically
nontrivial loop γ : S1 → X upstairs and comparing Ψ∗λ̄(γ) with λ(γ), we deduce that Ψ∗λ̄ = λ. As
λp ̸= 0, this shows that Ψ is a p-sweepout of M .

For all x ∈ X, we claim that

M(Ψ(x)) ≤ (1 + ϵ)2nΦ(x) + (1 + ϵ)n
N∑
i=1

|∂Ci|.

To see this, we choose (x, Z) ∈ SX1. Since ∂Zi − Φi(x) ∈ In(∂Ci;Z2), we have

M(∂Zi) ≤ M(Φ(x)) + |∂Ci| ≤ (1 + ϵ)nM(Φ(x) Ci) + |∂Ci|.
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It follows that

M(Ψ(x)) ≤ (1 + ϵ)n
N∑
i=1

M(∂Z) ≤ (1 + ϵ)2nM(Φ(x)) + (1 + ϵ)n
N∑
i=1

|∂Ci|.

Given δ > 0, pick Φ ∈ Pp(Ω) such that supx∈X M(Φ(x)) ≤ ωp(Ω) + δ. We have the following
estimate

ωp(M) ≤ sup
x∈X

M(Ψ(x)) ≤ (1 + ϵ)2n sup
x∈X

M(Φ(x)) + (1 + ϵ)n
N∑
i=1

|∂Ci|

≤ (1 + ϵ)2n(ωp(Ω) + δ) + (1 + ϵ)n
N∑
i=1

|∂Ci|

= (1 + ϵ)2nωp(Ω) + (1 + ϵ)n
N∑
i=1

|∂Ci|, as δ → 0.

Dividing the estimate above by p1/(n+1) and letting p→ ∞, we obtain that

lim sup
p→∞

ω̃p(M) ≤ a(n)(1 + ϵ)2n|Ω|
n

n+1 ≤ a(n)(1 + ϵ)3n,

which gives the desired upper bound as ϵ→ 0.

3.3 Positive Ricci curvature case
In the early 80’s, Yau formulated a conjecture [31, Problem 88] on the existence of infinitely

many closed minimal surfaces in an arbitrary closed 3-manifold. This conjecture has been confirmed
by combining works of Marques-Neves [14] and Song [25] as follows.

Theorem 3.11 (Marques-Neves [14], A. Song [25]). In any closed Riemannian manifold of dimen-
sion at least 3 and at most 7, there exist infinitely many distinct closed, C∞-embedded minimal
hypersurfaces.

In the following sections, we shall present the proofs of Yau’s Conjecture in positive Ricci curva-
ture case, generic metric case, and general case. To begin with, consider the positive Ricci curvature
case.

Theorem 3.12 (Marques-Neves 13 [14]). Let (Mn+1, g) be a compact Riemannian manifold of
dimension 3 ≤ (n + 1) ≤ 7. If the Ricci curvature of g is positive, then M contains an infinite
number of distinct closed, C∞-embedded minimal hypersurfaces.

The following theorem is essential in the sense that it links the Almgren-Pitts min-max theory
and the definition of the volume spectrum.

Theorem 3.13 (Min-max Theorem associated with p-width). Let (Mn+1, g) be a compact Rie-
mannian manifold of dimension 3 ≤ (n+ 1) ≤ 7 and let p ∈ N. There exists a disjoint collection of
closed, C∞-embedded minimal hypersurfaces {Σn

p,k} such that

ωp(M, g) =

lp∑
k=1

mp
k Area(Σp,k).
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Proof. By definition, there exists ϕi : Xi → Zn(M ;F;Z2) such that

max
x∈Xi

M(Φi(x)) → ωp(M, g).

Let X(p)
i denote the p-th skeleton of Xi. We have Φi ◦ i : Xp

i ↪→ Xi → Zn(M ;F;Z2). We claim
that Φi|X(p)

i

is a p-sweepout. By cellular homology, we have Hp(Xi, X
(p)
i ) = 0. Then the universal

coefficient theorem implies that

Hp(Xi, X
(p)
i ;Z2) ∼= Hom(Hp(Xi, X

(p)
i ),Z2) = 0.

The LES of cohomology for the pair (Xi, X
(p)
i ) with Z2 coefficients is given by

· · · // Hp(Xi, X
(p)
i ;Z2) = 0

j∗
// Hp(Xi;Z2)

i∗ // Hp(X
(p)
i ;Z2) // · · ·

By exactness, i∗ is injective. It follows that(
Φi|X(p)

i

)∗
(λ̄p) = i∗ ◦

(
Φi|X(p)

i

)∗
(λ̄p) ̸= 0.

Hence, Φi : X
(p)
i → Zn(M ;F;Z2) is a p-sweepout.

For each Φi, consider

Πi = {Ψ : X
(p)
i → Zn(M ;F;Z2) : Ψ is homotopic to Φi}

with the fixed parameter space X(p)
i and define the min-max value as

L(Πi) = inf
Ψ∈Πi

max
x∈X(p)

i

M(Ψ(x)).

Since L(Πi) > 0 and 3 ≤ (n + 1) ≤ 7, the Almgren-Pitts Min-max Theorem guarantees that there
exists a disjoint collection of closed C∞-embedded hypersurfaces Σn

i,k such that

L(Πi) =

li∑
k=1

mi,k Area(Σi,k).

Based on the fact that

ωp(M, g) ≤ L(Πi) ≤ max
x∈Xi

M(Φi(x)) → ωp(M, g) as i→ ∞,

we deduce that L(Πi) → ωp as i → ∞. By a result of Marques-Neves, we have the upper Morse
index bound

li∑
k=1

index(Σi,k) ≤ dimX
(p)
i = p.

By Sharp’s Compactness Theorem, we conclude that

li⋃
k=1

mi,kΣi,k →
lp⋃

k=1

mp
kΣp,k as i→ ∞

and

ωp(M, g) =

lp∑
k=1

mp
k Area(Σp,k).
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Theorem 3.14 (Gromov 88 [5], Guth 09 [7], Marques-Neves 13 [14]). There exists a positive
constant C = C(M) such that

ωp(M, g) ≤ Cp
1

n+1 .

Proof. It is sufficient to show this for M = In+1 = [0, 1]n+1/ ∼, where opposite faces of In+1 are
identified. We denote by I(n+1, k) the cell complex on In+1. To start with, let v ∈ Rn+1 and define
a Morse function fv : In+1 → R by fv(x) = ⟨x, v⟩. Let C(k) consist of all centers of (n+ 1)-cells in
I(n+ 1, k). We claim that for almost all v ∈ Sn, the level set f−1

v (t) contains at most one point in
C(k). To see this, one first observe that the set {x− y : x, y ∈ C(k)} is finite. Then

B = {v ∈ Sn : ⟨v, x− y⟩ ≠ 0, ∀x, y ∈ C(k)}

is open with full measure in Sn, which proves the claim.
Now, our propose is to apply Guth’s bend-and-cancel argument. Note that if a hyperplane P

passes through the center, then we cannot radially project it to cells in the n-skeleton I(n + 1, k)n
and cancel the mass. Hence, we need to consider two separate cases: (i) P ∩ Bϵ3−k(C(k)); (ii)
P \Bϵ3−k(C(k)).

For case (i), the claim above implies that

f(Bϵ3−k(x)) ∩ f(Bϵ3−k(y)) = ∅, ∀x ̸= y ∈ C(k).

It follows that
Area(f−1(t) ∩Bϵ3−k(C(k))) ≤ ωnϵ

n3−nk, ∀t ∈ R.

When it comes to case (ii), the following lemma is important.

Lemma 3.15. There exists positive constants C = C(I(n+1, k)) and ϵ0 = ϵ0(I(n+1, k)) such that
for all k ∈ N and 0 < ϵ ≤ ϵ0 we can find a Lipschitz map F : I(n+ 1, k) → I(n+ 1, k) satisfying

• F is homotopic to the identity map.
• F (In+1 \Bϵ3−k(C(k))) ⊂ I(n+ 1, k)n.
• |DF | ≤ C

ϵ .

Define Φ0 : RP p → Zn(I(n+ 1, k);Z2) by

Φ0([a0, a1, . . . , ap]) = ∂{x : a0 + a1f(x) + · · ·+ apf(x)
p ≤ 0}.

We claim that Φ0 ∈ Pp. Since π1(RP p, 0) ∼= Z2, every homotopically nontrivial loop in RP p is
homotopic to γ : S1 → RP p defined by

γ(eiθ) = [cos(πθ), sin(πθ), 0, . . . , 0].

Then Φ0 ◦ γ : S1 → Zn(I(n+ 1, k);Z2) defined by

Φ([cos(πθ), sin(πθ), 0, 0, . . .]) = ∂{cos(πθ) + sin(πθ)f < 0} = ∂{f < − cot(πθ)}

is homotopically nontrivial. Since the generator λ ∈ H1(RP p;Z2) satisfies λ(γ) = 1, we have for
any loop γ in RP p, λ(γ) ̸= 0 iff Φ0 ◦ γ is homotopically nontrivial. This, together with λp ̸= 0,
gives Φ0 ∈ Pp. If we let θ = [a0, . . . , ap], then Φ0(θ) consists of at most p hyperplanes. Define
Φ = F# ◦ Φ0 : RP p → Zn(I(n + 1, k);Z2). Since F is homotopic to the identity map, we have
Φ ∈ Pp.
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Our goal is to bound Area(Φ(θ)) by Cp1/(n+1). Then for each p ∈ N there exists a map Φ ∈ Pp

and a positive constant C = C(M) such that

ωp(M, g) ≤ sup
θ∈RP p

Area(Φ(θ)) ≤ Cp
1

n+1 .

As F is a Lipschitz map, we obtain that

Area(Φ|I(n+1,k)\I(n+1,k)n) = Area(F# ◦ (Φ0(θ) ∩Bϵ3−k(C(k))))

≤
(
C

ϵ

)n

Area(Φ0(θ) ∩Bϵ3−k(C(k))

≤
(
C

ϵ

)n

p · ωn(ϵ3
−k)n

= Cp · 3−kn.

Since we are using Z2 coefficients, the multiplicity is at most one and hence Φ|I(n+1,k)n contains at
most n-dimensional faces in I(n+ 1, k)n. This leads to the estimate

Area(Φ(θ)) ≤ (3k)n+1 · (3−k)n + Cp · 3−kn ≤ p
1

n+1 + Cp · p−
n

n+1 ≤ Cp
1

n+1

if we choose k such that 3k ≤ p1/(n+1) ≤ 3k+1.

Next, we prove the following theorem by employing a Lusternik-Schnirelmann type argument.

Theorem 3.16. If ωp(M, g) = ωp+1(M, g), then there exists infinitely number of distinct closed,
C∞-embedded, minimal hypersurfaces.

Proof. Suppose that there are only finitely many closed, C∞ embedded, minimal hypersurfaces
Σ1, . . . ,Σl. Assume that there exists a (p + 1)-dimensional cube complex X and Π = {Ψ : X →
Zn(M ;Z2)} a homotopy class of (p+ 1)-sweepouts such that

ωp+1(M, g) = inf
Φ∈Π

sup
x∈X

M(Φ(x)).

Denote

S = {V ∈ Vn(M) : sptV =

l∑
i=1

miΣi with ||V ||(M) ≤ ωp+1 + 1}

and

T = {T ∈ Zn(M ;Z2) : T = 0 or sptT =

l∑
i=1

mi[Σi] and M(T ) ≤ ωp+1 + 1}.

By the compactness theorem, one can check that ∀ϵ > 0, ∃η > 0 such that

F(|T |,S) < η =⇒ F(T, T ) < ϵ.

In other words, if T ∈ Zn(M ;Z2) is close to S in F metric, then T is close to T in the flat topology.

Lemma 3.17. There exists ϵ > 0 such that

BF
ϵ (T ) = {T ∈ Zn(M ;Z2) : F(T, T ) < ϵ}

has trivial fundamental group, i.e. any Φ : S1 → BF
ϵ (T ) is homotopically trivial.
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Pick Φ : X → Zn(M ;Z2) such that

max
x∈X

M(Φ(x)) = ωp+1(M, g).

Write λ = Φ∗(λ̄) ∈ H1(X;Z2) with λp+1 ̸= 0 in Hp+1(X;Z2). Let Z ⊂ X be a subspace defined as

Z := {x ∈ X : F(Φ(x),S) < η}

and let Y := X \ Z. We claim that Φ|Y is a p-sweepout. Let i1 : Z ↪→ X and i2 : Y ↪→ X denote
the inclusion maps. By definition, we have Φ(Z) ⊂ BF

ϵ (T ). Then Lemma 3.17 implies that for
all µ : S1 → Z, Φ ◦ µ(S1) is homotopically trivial. Hence, i∗1λ = 0 in H1(Z;Z2). The LES of
cohomology for the pair (X,Z) with Z2 coefficients is given by

· · · // H1(X,Z;Z2)
j∗
// H1(X;Z2)

i∗ // H1(Z;Z2) // · · ·

By exactness, λ = j∗λ1 for some λ1 ∈ H1(X,Z;Z2). If i∗2(λp) = 0, then the LES of cohomology for
the pair (X,Y ) with Z2 coefficients is given by

· · · // Hp(X,Y ;Z2)
j∗
// Hp(X;Z2)

i∗ // Hp(Y ;Z2) // · · ·

By exactness, λp = j∗λ2 for some λ2 ∈ Hp(X,Y ;Z2). By considering the relative cup product

H1(X,Z;Z2)×Hp(X,Y ;Z2)
⌣−−→ Hp+1(X,Y ∪ Z;Z2) = 0,

we obtain λ1 ⌣ λ2 = 0, which contradicts with

j∗(λ1 ⌣ λ2) = j∗λ1 ⌣ j∗λ2 = λp+1 ̸= 0.

Hence, i∗2(λp) ̸= 0 and Φ|Y is a p-sweepout.
As Φ|Y ∈ Pp, we know that

ωp(M, g) ≤ max
x∈Y

M(Φ(x)) ≤ ωp+1(M, g) = ωp(M, g) =⇒ max
x∈Y

M(Φ(x)) = ωp(M, g).

Assume that all varifolds in the critical set C(Φ : X → Zn(M ;Z2)) are stationary. Then all varifolds
in the critical set C(Φ : Y → Zn(M ;Z2)) are stationary. At least one such varifold V ∈ C(Φ :
Y → Zn(M ;Z2)) is almost minimizing in small annuli. Hence, V ∈ S, which contradicts with the
definition of Y .

Now, we are ready to prove Yau’s Conjecture in positive Ricci curvature case.

Theorem 3.18 (Marques-Neves 13 [14]). Let (Mn+1, g) be a compact Riemannian manifold of
dimension 3 ≤ (n + 1) ≤ 7. If the Ricci curvature of g is positive, then M contains an infinite
number of distinct closed, C∞-embedded minimal hypersurfaces.

Proof. By contradiction, suppose that the set L of all connected, closed, C∞-embedded minimal
hypersurfaces of M is finite. For every p ≥ 1, we have

ωp(M) = ||Vp||(M),

for some Vp on M , where Vp is the varifold of a closed, C∞-embedded minimal hypersurface, with
possible multiplicities. We may write

Vp = n
(p)
1 Σ

(p)
1 + · · ·+ n

(p)
lp

Σ
(p)
lp
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with Σ
(p)
1 , . . . ,Σ

(p)
lp

all disjoint. As the Ricci curvature of g is positive, (M, g) satisfies the embedded
Frankel property, i.e. any two closed, C∞-embedded minimal hypersurfaces of M intersect each
other. It follows that lp = 1 for every p ≥ 1.

Since L is finite, the previous theorem implies that {ωp} is a strictly increasing sequence. Hence,
we have

#{ωk(M) : k = 1, . . . , p} = p.

Let δ := min{Area(Σ) : Σ ∈ L} > 0. The upper bound for the volume spectrum gives ωp(M) ≤
Cp1/(n+1), which implies that n(p) ∈ {1, . . . , ⌊Cp1/(n+1)/δ⌋} and

#{ωk(M) : k = 1, . . . , p} ≤ C ′p
1

n+1

for a constant C ′ > 0 independent of p. As p grows, we obtain a contradiction.

3.4 Generic metrics case
In this section, we present a sketch of Irie-Marques-Neves’s proof on Yau’s Conjecture in generic

case.

Theorem 3.19 (Irie-Marques-Neves 17 [8]). Let Mn+1 be a closed manifold of dimension 3 ≤
(n + 1) ≤ 7. Then for a C∞-generic Riemannian metric g on M , the union of all closed, C∞-
embedded minimal hypersurfaces is dense.

The main ingredients in the proof are the Weyl Law for volume spectrum (see Theorem 3.5) and
the min-max theorem associated with p-width (see Theorem 3.13). The structure theory of White is
also essential, which says a generic metric is bumpy, meaning that every closed minimal hypersurface
is nondegenerate. To prepare for the proof, we shall first introduce the Manifold Structure Theorem
of White [28, 29].

Definition. Let Σ,Σ1 be minimal surfaces in Mm of dimension k. We denote by Nδ(Σ) the δ-
neighborhood of Σ and N(Σ) the normal bundle of Σ. Say Σ1 is C l close to Σ if Σ1 ⊂ Nδ(Σ) and
Σ1 is the graph of a section u : Σ1 → Rm−k ∈ Γ(N(Σ)) with ||u||Cl ≪ 1.

Theorem 3.20 (Manifold Structure Theorem [29]). Let Mm be a smooth manifold and let Γ(l+2)

be an open set of C l+2 Riemannian metrics on M . Consider the map

{All C l immersions Σk ↪→M} × Γ(l+2) H−−→ C l+2(M).

The set of pairs M = H−1(0) = {(Σk, g) : ∃i : Σk ↪→ (M, g) an C l minimal immersion} is a C2

separable Banach manifold. The projection map

Π : M −→ Γ(l+2)

(Σ, g) 7−→ g

is a C2 Fredhom map with Fredholm index 0. Moreover, the kernel of DΠ|(Σ,g) has dimension equal
to the kernel of DH|(Σ,g), where

DΠ|(Σ,g) : T(Σ,g)M −→ C l+2(Σ)

is the linear projection and

DH|(Σ,g) : TΣ{All C l immersions} × TgΓ
(l+2) −→ C l+2(Σ)

is the Jacobi operator LΣ = −∆Σ − RicM (ν, ν)− |A|2.
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Theorem 3.21 (Sard-Smale [23]). The regular values of Π are generic in Γ(l+2) in the sense of
Baire.

A direct corollary of this is the Bumpy Metrics Theorem of White [29, 30].

Theorem 3.22 (Bumpy Metrics Theorem [29]). A generic metric in the sense of Baire is bumpy.

Proof. Since M is separable and Π is proper, the regular values of Π are generic in Γ(l+2) by Theorem
3.21. This proves the theorem for any fixed Σ. Since there are only countably many diffeomorphism
types of Σ, we are done.

Recall the definition of p-width. The following lemma will be used in the proof of Theorem 3.19
to derive a contradiction.

Lemma 3.23. The p-width ωp(M, g) depends continuously on the metric g in the C0-topology.

Proof. Suppose gi → g in the C0-topology. Given ϵ > 0, pick Φ ∈ Pp(M) such that

sup
x∈X

{Mg(Φ(x))} ≤ ωp(M, g) + ϵ,

where Mg(T ) is the mass of T w.r.t. g. Since

ωp(M, gi) ≤ sup
x∈X

{Mgi(Φ(x))}

≤

(
sup
v ̸=0

gi(v, v)

g(v, v)

)n
2

sup
x∈X

{Mg(Φ(x))}

≤

(
sup
v ̸=0

gi(v, v)

g(v, v)

)n
2

(ωp(M, g) + ϵ),

we have lim supi→∞ ωp(M, gi) ≤ ωp(M, g) as ϵ→ 0.
Conversely, let ϵi > 0 satisfying limi→∞ ϵi → 0. Pick Φi ∈ Pp(M) such that

ωp(M, gi) ≥ sup
x∈Xi

{Mgi(Φ(x))} − ϵi.

Since

ωp(M, gi) ≥ sup
x∈Xi

{Mgi(Φ(x))} − ϵi

≥

(
sup
v ̸=0

g(v, v)

gi(v, v)

)n
2

sup
x∈Xi

{Mg(Φ(x))} − ϵi

≤

(
sup
v ̸=0

g(v, v)

gi(v, v)

)n
2

ωp(M, g)− ϵi,

we have lim infi→∞ ωp(M, gi) ≥ ωp(M, g), which completes the proof.

Lemma 3.24. Let Σ be a closed, C∞-embedded minimal hypersurface in (Mn+1, g). Then there
exists a sequence of metrics gi on M , i ∈ N, converging to g in the C∞-topology such that Σ is a
nondegenerate minimal hypersurface in (Mn+1, gi) for every i.



3.5 General case 43

Proof of Theorem 3.19. Let U ⊂M be a nonempty open set. Define

MU = {g : g is a smooth Riemannian metric such that there exists
a nondegenerate, closed, C∞-embedded minimal
hypersurface Σ ⊂ (M, g) satisfying Σ ∩ U ̸= ∅}.

It is sufficient to prove that MU is open and dense in the C∞-topology.
Let g ∈ MU with some Σg ⊂ (M, g) satisfying Σg ∩ U ̸= ∅. Since Σg is nondegenerate, the

Inverse Function Theorem implies that for every g′ close to g in the C∞-topology, there exists
a unique nondegenerate, closed, C∞-embedded minimal hypersurface Σg′ close to Σg satisfying
Σg′ ∩ U ̸= ∅. This shows that MU is open.

To see that MU is dense, consider an arbitrary smooth Riemannian metric g and an arbitrary
neighborhood V of g in the C∞-topology. By Theorem 3.22, there exists g′ ∈ V such that all closed,
C∞-immersed minimal hypersurfaces in (M, g′) are nondegenerate. If g′ ∈ MU , then we are done.
Otherwise, suppose that all closed, C∞-embedded minimal hypersurfaces in (M, g′) are contained
in M \ U . By Sharp’s Compactness Theorem, we deduce that the set

C = {
N∑
j=1

mj Volg′(Σj) : N ∈ N, {mj}Nj=1 ⊂ N, {Σj}Nj=1 are disjoint, closed,

C∞-embedded minimal hypersurfaces in (M, g′)}.

is countable.
Now, choose h : M → R≥0 a smooth function such that supph ⊂ U and h(x) > 0 for some

x ∈ U . If we perturb the metric slightly by letting g′(t) = (1 + th)g′ for t ≥ 0, then there exists
t0 > 0 such that g′(t) ∈ V for t ∈ [0, t0] and Vol(M, g′(t0)) > Vol(M, g′). Because of the Weyl Law
for volume spectrum, it follows that ωp(M, g′(t0)) > ωp(M, g′) for some p ∈ N. This, together with
the fact that C is countable and the p-width ωp(M, g′(t)) is continuous in t, guarantees that there
exists a closed, C∞-embedded minimal hypersurface Σg′(s) ⊂ (M, g′(s)) satisfying Σg′(s) ∩ U ̸= ∅,
where s ∈ [0, t0]. By Lemma 3.24, we may perturb g′(s) slightly to g′′ such that g′′ ∈ V ∩MU , which
shows that MU is dense.

3.5 General case
In this section, we present a sketch of Song’s proof on Yau’s Conjecture in general case where

the metric may not be generic.

Theorem 3.25 (A. Song 18 [25]). In any closed Riemannian manifold of dimension at least 3 and
at most 7, there exist infinitely many distinct closed, C∞-embedded minimal hypersurfaces.

The proof builds on the following result obtained by Marques and Neves.

Theorem 3.26 (Marques-Neves 13 [14]). Let (Mn+1, g) be a compact Riemannian manifold of
dimension 3 ≤ (n + 1) ≤ 7. Suppose that M satisfies the embedded Frankel property (any two
closed, C∞-embedded minimal hypersurfaces of M intersect each other). Then M contains an
infinite number of distinct closed, C∞-embedded minimal hypersurfaces.

In the proof, Song introduced a Weyl Law type formula called the cylindrical Weyl Law and
developed the min-max theory on a non-compact manifold with cylindrical ends. This builds on
Liokumovich-Marques-Neves’s proof on the Weyl Law for volume spectrum and Li-Zhou’s work on
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the free bounary min-max theory. The cylindrical Weyl Law and the min-max theory on a non-
compact manifold with cylindrical ends turn out to be crucial for proving other interesting results,
such as the generic scarring phenomenon of minimal hypersurfaces along a stable hypersurface (see
Song-Zhou’s work [26]) or a generalization of the Yau’s Conjecture to some classes of complete
non-compact manifolds (see Song’s work [24]).

In addition, a geometric topology approach was employed in the proof to form a non-compact
manifold with cylindrical ends. To this end, one need to first cut M along minimal hypersurfaces
which are area minimizing at least on one side to obtain a new manifold U whose boundary, if
not empty, has a contracting neighborhood. Then by attaching the cylinders to U along ∂U , one
obtains the non-compact manifold with cylindrical ends C(U) and settles the stage for applying the
cylindrical Weyl Law.

To prepare for the proof, we shall first introduce the p-width of a non-compact manifold and the
cylindrical Weyl Law.

Definition. Let (Nn+1, g) be a complete non-compact manifold. Let K1 ⊂ K2 ⊂ · · ·Ki ⊂ · · · be
an exhaustion of N by compact (n+1)-submanifolds with smooth boundary. The p-width of (N, g)
is the number

ωp(N, g) = lim
i→∞

ωp(Ki, g) ∈ [0,∞].

Remark. Since ωp(Ki, g) is a nondecreasing sequence of nonnegative numbers, ωp(N, g) is well-
defined. Moreover, it is independent of the choices of the compact exhaustion {Ki}.

Let (C, h) be a complete (n+1)-dimensional manifold with cylindrical ends, i.e. outside a compact
subset, the manifold is isometric to Σ× [0,∞) endowed with a product metric h1 ⊕ dt2 (here Σ is a
smooth n-dimensional manifold).

Theorem 3.27 (Cylindrical Weyl Law, A. Song 18 [25]). Let (C, h) be an (n + 1)-dimensional
connected non-compact manifold with cylindrical ends as above. Let Σ1, . . . ,Σl be the connected
components of Σ and suppose that Σ1 has the largest n-volume among these components:

|Σ1| ≥ max{|Σ2|, . . . , |Σl|}.

Then ωp(C) = ωp(C, h) is finite for all p and the following holds:

1. ω1(C) ≥ |Σ1| and for all p ∈ {1, 2, . . .},

ωp+1(C)− ωp(C) ≥ |Σ1|;

2. there exists a constant C > 0 depending on h such that for all p ∈ {1, 2, . . .},

ωp(C) ≤ p|Σ1|+ Cp
1

n+1 .

Proof. To begin with, we check that for all i ∈ {1, . . . , l}, ω1(Σi × [0, L]) = |Σi| for L large enough.
Since the hypersurfaces {Σi × {r}}r∈[0,L] give an explicit sweepout in P1, we have the upper bound

ω1(Σi × [0, L]) ≤ |Σi|.

For the lower bound, by applying the free boundary min-max theory we obtain a varifold V with
sptV a smooth, almost properly embedded free boundary minimal hypersurface. By the maximum
principle and the monotonicity formula, for L large enough we have the lower bound

ω1(Σi × [0, L]) ≥ |Σi|.
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Next, consider the 1-width of BL = (Σ1 ⊔ · · · ⊔ Σl) × [0, L]. Applying the argument above to
each component yields that

ω1(BL) = max{|Σ1|, . . . , |Σl|} = |Σ1|.

It follows immediately that ω1(C) ≥ |Σ1|. We show the rest of property 1 by using a Lusternik-
Schnirelmann type argument. Given ϵ > 0, fix x0 ∈ C and choose Rp large enough such that

ωp(BRp(x0)) ≥ ωp(C)− ϵ.

Based on the fact that BRp(x0)⊔B′
L ⊂ C where B′

L is isometric to BL, the Lusternik-Schnirelmann
inequality (see Lemma 3.6) gives

ωp+1(C) ≥ ωp(BRp(x0)) + ω1(BL) ≥ ωp(C) + |Σ1| − ϵ.

Since ϵ is arbitrary, we show property 1.
Finally, we show property 2 by using the gluing technique of Liokumovich-Marques-Neves, which

enables us to combine the p-sweepouts over the same domain X of compact regions with disjoint
interiors into one p-sweepout overX of their union. By assumption, we may write C = U⊔(Σ×[0,∞))
where U is a compact submanifold with boundary. Fix p ∈ N, and we know from Theorem 3.14 that
there exists a p-sweepout Φ1 : RP p → Zn(U ; ∂U ;Z2) satisfying

max
x∈RP p

M(Φ1(x)) ≤ Cp
1

n+1 .

Recall that BL = (Σ1 ⊔ · · · ⊔ Σl) × [0, L]. Let f : BL → R be the Morse function defined by
f(x, t) := (j − 1)L+ t if (x, t) ∈ Σj × [0, L]. Consider Φ2 : RP p → Zn(BL; ∂BL;Z2) defined by

Φ2([a0, a1, . . . , ap]) = ∂{x : a0 + a1f(x) + · · ·+ apf(x)
p < 0}.

Then Φ2 is a p-sweepout satisfying

max
x∈RP p

M(Φ2(x)) ≤ p|Σ1|.

By adding tiny tubes to connect the regions and gluing the p-sweepouts Φ1 and Φ2 together, we
obtain a p-sweepout Φ : RP p → Zn(U ⊔BL; ∂(U ⊔BL);Z2) satisfying

max
x∈RP p

M(Φ(x)) ≤ max
x∈RP p

M(Φ1(x)) + max
x∈RP p

M(Φ2(x)) + C

≤ Cp
1

n+1 + p|Σ1|+ C

≤ Cp
1

n+1 + p|Σ1|.

This completes the whole proof.

Let (U, g) be a connected compact Riemannian manifold with boundary endowed with a smooth
metric g. Suppose that ∂U is a minimal surface which admits a strictly mean convex foliation. In
other words, we assume that there is a diffeomorphism

Φ : ∂U × [0, t̂] → U

where Φ(∂U×{0}) = ∂U is a minimal surface, and for all t ∈ (0, t̂], the leaf Φ(∂U×{t}) has non-zero
mean curvature vector pointing towards ∂U .

By attaching the cylinders ∂U × [0,∞) to U via the identifying map φ : ∂U × {0} → ∂U , we
obtain the following non-compact manifold with cylindrical ends:

C(U) := U ∪φ (∂U × [0,∞)).

The metric h satisfies h = g on U and h = (g ∂U)⊕ ds2.
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Theorem 3.28 (A. Song 18 [25]). Let (C(U), h) be constructed as above. For all p ∈ {1, 2, . . .},
there exist disjoint, connected, closed, C∞-embedded minimal hypersurfaces Σ1, . . . ,ΣN contained
in U \ ∂U and positive integers m1, . . . ,mN such that

ωp(C(U)) =
N∑
i=1

mi|Σi|.

Besides, if Σj is one-sided, then the corresponding multiplicity mj is even.

Proof. By varying the metric and resolving singularities around ∂U , we form the compact smooth
approximations (Uϵ, hϵ) of (C(U), h). Fix p ∈ N. Applying the free boundary min-max theory
developed by Li-Zhou gives a varifold Vϵ with sptVϵ = Sϵ = ⊔Nϵ

i=1mi,ϵΣi,ϵ a smooth, compact, almost
properly embedded free boundary minimal hypersurface such that

ωp(Uϵ, hϵ) = M(Vϵ) =

Nϵ∑
i=1

mi,ϵ|Σi,ϵ|.

Since the boundary Φ(∂U × {ϵ}) is strictly mean-concave, the monotonicity formula together with
the maximum principle implies that Sϵ must be compact in Uϵ \ Φ(∂U × {ϵ}).

As ϵ → 0, we have ωp(Uϵ, hϵ) → ωp(C(U), h). Then for a sequence ϵk → 0, the varifold Vϵk
converges in the varifold sense to a varifold V∞ in C(U) of total mass M(V∞) = ωp(C(U), h). By the
index bound of Marques-Neves and Sharp’s Compactness Theorem, the restriction of sptV∞ = S∞
to C(U) \ ∂U is a C∞-embedded minimal hypersurface. The maximum principle by White implies
that if S∞ ∩ (C(U) \ U) ̸= ∅, S∞ would be a connected component of some slice ∂U × {δ}, which
contradicts with the strictly mean-concaveness of the foliation. As a consequence, S∞ is contained
in the compact set (U, g). Since S∞ is a g-stationary integral varifold, the maximum principle by
White implies that S∞ is confined in U . This completes the proof that S∞ is a C∞-embedded
minimal hypersurface in U .

Proof of Theorem 3.25. Let (Mn+1, g) be any closed Riemannian manifold of dimension 3 ≤ (n +
1) ≤ 7. Suppose by contradiction that (M, g) contains finitely many closed, C∞-embedded minimal
hypersurfaces. Each one of them has either a contracting, expanding, or mixed neighborhood. Cut
M along minimal hypersurfaces in a maximal way such that we obtain a new manifold “core” U
whose boundary, if not empty, has a contracting neighborhood. By construction, the core satisfies
the embedded Frankel property, i.e. all minimal hypersurfaces embedded in intU must intersect.
By Theorem 3.26, (M, g) contains at least two disjoint minimal hypersurfaces. Hence, there is at
least one nontrivial cut of M and the boundary ∂U is not empty.

By attaching the cylinders to U along ∂U , we form the non-compact manifold with cylindrical
ends C(U). Let Σ1 be a component of ∂U with largest n-volume and WLOG assume that |Σ1| =
1. By Theorem 3.28, each ωp(C(U)) is realized as an integer multiple of closed, connected, C∞-
embedded minimal hypersurface in intU . Since all the closed, C∞-embedded minimal hypersurfaces
in intU have their volume larger than that of Σ1, the p-widths ωp(C(U)) satisfies

• ωp(C(U)) > mp|Σ1|;
• ωp+1(C(U)) ≥ ωp(C(U)) + |Σ1| = ωp(C(U)) + 1.

By an arithmetic result, we obtain for a ϵ0 > 0 and all p large enough,

ωp > (1 + ϵ0)p,

which contradicts with the upper bound in Theorem 3.27. This completes the whole proof.
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4 Multiplicity One Conjecture

4.1 CMC/PMC min-max theorem
In [33, 34], Zhou-Zhu developed a min-max theory for CMC/PMC surfaces in any closed manifold

M . In this section, we will state their main theorem and give an overview of the proof.

Definition. Let (Mn+1, g) be a closed Riemannian manifold of dimension 3 ≤ (n+ 1) ≤ 7. Given
c ∈ R or a smooth function h :M → R, we define the weighted area functionals for all Ω ∈ C(M):

Ac(Ω) = M(∂Ω)− cHn+1(Ω);

Ah(Ω) = M(∂Ω)−
∫
Ω
hdvolg .

We have the following characterization of the perscribed mean curvature (PMC) hypersurfaces.

Lemma 4.1 (PMC). If Σn = ∂Ω is a C∞-embedded hypersurface, then Σn is stationary w.r.t. the
functional Ah iff HΣ = h|Σ.

Proof. By a similar computation as in Section 1.1, we have the first variation formula for Ah along
X ∈ X(M):

δAh|Ω(X) =

∫
∂Ω

div∂ΩXdµ∂Ω −
∫
∂Ω
h⟨X, ν⟩dµ∂Ω,

where ν is the outward unit normal on ∂Ω. When the boundary ∂Ω = Σ is a C∞-embedded
hypersurface, the first variation becomes

δAh|Ω(X) =

∫
Σ
(HΣ − h|Σ})⟨X, ν⟩dµΣ.

From this we conclude that Σ is stationary iff HΣ = h|Σ.

Lemma 4.2. Under the assumption above, the second variation formula for Ah along normal vector
fields X ∈ X(M), X = φν with φ ∈ C∞(Σ) is given by

δ2Ah|Ω(X,X) =

∫
Σ

[
|∇φ|2 − (|AΣ|2 +RicM (ν, ν)− ∂νh)φ

2
]
dµΣ.

Definition. Let U ⊂M be an open set. Say that Σ is a stable h-hypersurface in U if



4.1 CMC/PMC min-max theorem 48

• HΣ = h|Σ,
• δ2Ah|Ω(φν, φν) ≥ 0, ∀φ ∈ C∞(Σ) with sptφ ⊂ Σ ∩ U .

For stable h-hypersurfaces, we have the following variant of the famous Schoen-Simon-Yau and
Schoen-Simon curvature estimates (see Theorem 3.1). The compactness statement follows in the
standard way from the curvature estimates.

Corollary 4.3. Let U ⊂M be an open set. Given Λ > 0 and h ∈ C∞(M), there exists a constant
C = C(U, g,Λ, h) such that if Σn ↪→ (U, g) is a smooth, 2-sided, stable h-hypersurface in U with
∂Σ ∩ U = ∅ and Area(Σ) ≤ Λ, then

|AΣ|2(p) ≤ C

dist2M (p, ∂U)
, ∀p ∈ U.

Let {Σi} be a sequence of smooth, 2-sided, stable h-hypersurfaces in U with ∂Σi ∩ U = ∅ and
supiArea(Σi) < ∞. Then up to a subsequence, Σi converges locally smoothly to a stable h-
hypersurface Σ∞ in U possibly with integer multiplicity.

Proposition 4.4 (1-sided Maximum Principle). Let HΣ = c for a constant c > 0. If Σ1 and Σ2 are
graphs over Rn with opposite orientations, then either Σ1 ∩Σ2 is contained in a (n− 1)-dimensional
submanifold or Σ1 ∩ Σ2 = ∅.

In the following paragraph we shall introduce the theory of relative sweepouts, which sets the
basis for stating the CMC/PMC min-max theorem. Let (Mn+1, g) be a closed Riemannian manifold
of dimension 3 ≤ (n+ 1) ≤ 7. Let X be a k-dimensional cube complex with Z ⊂ X a subcomplex.
For each Φ0 : (X,Z) → (C(M),F) continuous under the F-metric, consider the relative homotopy
class

Π(Φ0) = {Φ : (X,Z) → (C(M),F) continuous under the F-metric such that
Φ|Z = Φ0|Z and Φ is homotopic to Φ0 rel Z.}

with the fixed parameter space (X,Z) and define the Ah-min-max value as

Lh(Π) = inf
Φ∈Π

max
x∈X

Ah(Φ(x)).

Now, we are ready to state the CMC/PMC min-max theorem confirmed by Zhou-Zhu [33, 34, 32].

Theorem 4.5 (CMC/PMC Min-max Theorem [33, 34]). Under the hypotheses above, if the non-
triviality condition is satisfied, i.e.

Lh(Π) > max
x∈Z

Ah(Φ0(x)),

then there always exists a smooth, almost embedded (embedded outside the touching set) hypersur-
face Σn = ∂Ω for some Ω ∈ C(M) such that

• HΣ = h|Σ;
• Ah(Σ) = Lh(Σ);
• index(Σ) ≤ k.

Corollary 4.6. For every positive c ∈ R, there always exists a smooth, closed, almost embedded
(embedded outside the touching set) hypersurface Σn of HΣ ≡ c.
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Example 4.7. Consider the special case when X = [0, 1] and Z = {0, 1}. Given a Morse function
f : M → R, define Φ0 by Φ0(x) = f−1([0, x]). Note that Φ0(0) = ∅, Φ0(1) = M , and Φ0 is
continuous under the F-metric. Under the assumptions that supM |h| = c <∞ and

∫
M hdvolg ≥ 0,

the Lh-min-max value satisfies Lh(Π) > 0. We shall present a heuristic proof here using the lower
bound for the isoperimetric profiles for small volumes (see Lemma 2.4).

Proof. Let C0 > 0 and V0 > 0 be the constants in Lemma 2.4, and fix 0 < V ≤ V0 such that
V

−1
n+1 > 2c/C0. Consider any smooth 1-parameter family {Ωx : x ∈ [0, 1]} satisfying Ω0 = ∅ and

Ω1 =M . By the Intermediate Value Theorem, there exists x0 ∈ (0, 1) such that Vol(Ωx0) = V . By
the isoperimetric profiles for small volumes, we have

max
x∈[0,1]

Ah(Ωx) ≥ Ah(Ωx0) ≥ C0V
n

n+1 − cV ≥ cV > 0.

Since this holds for any sweepout, we conclude that Lh(Π) > 0.

Definition. The critical set of {Φj} is given by

C({Φj}) := {(Ω∞, V∞) ∈ C(M)× Vn(M) : Ω∞ = lim
i→∞

Φji(xi), V∞ = lim
i→∞

|∂Φji(xi)|,

and Ah(Φji(xi)) → Lh(Π)}.

Similarly as in Section 2.2, we shall construct the tightening map adapted to the Ah functional
and prove that after applying the tightening map to a critical sequence, every element in the critical
set has c-bounded first variation, where c = supM |h|. This variational property is a generalization
of bounded mean curvature, and is loose enough to be satisfied by the min–max limit V (after
tightening) while providing enough control to develop the regularity theory. In particular, varifolds
with c-bounded first variation satisfy a uniform monotonicity formula, and any blowup is stationary.

Proposition 4.8 (Tightening). Assume Lh(Π) > 0. For any critical sequence {Φ∗
j} for Π, there

exists another critical sequence {Φj} for Π such that C({Φj}) ⊂ C({Φ∗
j}) and each pair (Ω, V ) ∈

C({Φj}) is Ah-stationary, i.e. ∀X ∈ X(M),

0 =
d

dt

∣∣∣∣
t=0

Ah(Φx
t (Ω),Φ

x
t (V ))

=

∫
Gn(M)

divS dV (x, S)−
∫
∂Ω
h⟨X, ν⟩dµ∂Ω.

Corollary 4.9. Under the hypotheses above, V has c-bounded first variation.

Proof. This comes from the following estimate:

|δV (X)| ≤ |
∫
∂Ω
h⟨X, ν⟩dµ∂Ω| ≤ c

∫
M

|X|dµV ,

where c = supM |h|.

We proceed to introduce the notion of h-almost minimizing varifolds, and construct h-replacements
for any h-almost minimizing varifold after solving a natural constrained minimization problem.
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Definition. Given ϵ, δ > 0 and an open set U ⊂Mn+1, define

Ah(U ; ϵ, δ) := {Ω ∈ C(M) such that if Ω = Ω0, . . . ,Ωm ∈ C(M) satisfying
1. spt(Ωi − Ω) ⊂⊂ U ;

2.F(Ωi,Ωi+1) ≤ δ;

3.Ah(Ωi) ≤ Ah(Ω) + δ,

then Ah(Ωm) ≥ Ah(Ω)− ϵ}.

Definition. Say a varifold V ∈ Vn(M) is h-almost minimizing in U if there exists ϵi → 0, δi → 0,
and Ωi ∈ Ah(U ; ϵi, δi) such that F(|∂Ωi|, V ) ≤ ϵi for every i.

Definition. A varifold V ∈ Vn(M) is h-almost minimizing in small annuli if ∀p ∈ M , ∃ram(p) > 0
such that V is h-almost minimizing in As,r(p) = Br(p) \Bs(p) for all 0 < s < r < ram(p).

Theorem 4.10 (Existence of h-almost minimizing varifold). Assume Lh(Π) > 0 and let {Φj} be
a pull-tight minimizing sequence of sweepouts for Π. Then there exists a nontrivial pair (Ω, V ) ∈
C({Φj}) such that

1. V has c-bounded first variation;
2. V is h-almost minimizing in small annuli.

Proposition 4.11 (Existence and properties of h-replacements). Let V ∈ Vn(M) be h-almost
minimizing in an open set U ⊂ M and let K ⊂⊂ U be a compact subset of U . Then there exists
V ∗ ∈ Vn(M) called an h-replacement of V in K such that, with c = supM |h|,

1. V (M \K) = V ∗ (M \K);
2. −cVol(K) ≤ ||V ||(M)− ||V ∗||(M) ≤ cVol(K);
3. V ∗ is also h-almost minimizing in U ;
4. V ∗ = limi→∞ |∂Ω∗

i | for some Ω∗
i ∈ Ah(U ; ϵi, δi) with ϵi, δi → 0 and Ω∗

i locally minimizes Ah in
intK for all i.

5. if V has c-bounded first variation in M , so does V ∗.

Proposition 4.12 (Regularity of h-replacement). Let 3 ≤ (n+1) ≤ 7. Under the same hypotheses
as Proposition , if Σ = spt ||V ∗||∩intK, then Σ is a smooth, almost embedded, stable h-hypersurface.

Theorem 4.13 (Main regularity). Let (Mn+1, g) be a closed Riemannian manifold of dimension
3 ≤ (n+ 1) ≤ 7. Given a smooth function h : M → R, set c = supM |h|. Assume that V ∈ Vn(M)
has c-bounded first variation in M and is h-almost minimizing in small annuli. Then V is induced
by Σ, where Σ is a closed, almost embedded h-hypersurface.

4.2 Free boundary min-max theorem
In [10], Li-Zhou developed the min-max theory for free boundary minimal hypersurfaces in the

general Almgren-Pitts setting. In this section, we will state their main theorem without giving a
proof.

Definition. Let (Mn+1, ∂M, g) be a Riemannian manifold with boundary. A hypersurface Σ ↪→
(Mn+1, ∂M) is called properly embedded if

• intΣ ⊂ intM ;
• ∂Σ ⊂ ∂M .
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Define the collection of tangential vector fields as

Xt(M) := {X ∈ X(M) : X(p) ∈ Tp(∂M),∀p ∈ ∂M}.

Any compactly supported X ∈ Xt(M) generates a smooth one parameter family of diffeomorphisms
ΦX
t such that ΦX

t (Σ) is a family of properly embedded hypersurfaces in M . By the first variation
formula, we have ∀X ∈ Xt(M),

δΣ(X) :=
d

dt

∣∣∣∣
t=0

Area(ΦX
t (Σ))

=

∫
Σ
divΣXdHn

=−
∫
Σ
⟨X,H⟩dHn +

∫
∂Σ

⟨X,µ⟩dσn−1,

where H is the mean curvature vector of Σ and µ is the outward unit co-normal of ∂Σ.

Definition. A properly embedded minimal hypersurface Σn ↪→ (Mn+1, ∂M) is called a free bound-
ary minimal hypersurface (FBMH) if the mean curvature of Σ vanishes and Σ meets ∂M orthogonally
along ∂Σ.

Proposition 4.14. A FBMH Σn ↪→ (M,∂M) is a stationary point of the area functional.

Recall that in Section 1.3, we have introduced the space of mod-2 flat chains Zk(M ;Z2). To set
up the free boundary min-max theory, we restrict our attention to the space of mod-2 flat chains
relative to boundary Zk(M ; ∂M ;Z2). An analogous result for Almgren’s Isomorphism Theorem is
stated below:

Theorem 4.15. Zn(M ; ∂M ;Z2) is weakly homotopic to RP∞.

Let (Mn+1, ∂M, g) be a compact Riemannian manifold with boundary of dimension 3 ≤ (n+1) ≤
7. Let X be a k-dimensional cube complex. For each Φ0 : X → Zn(M ;Z2) continuous under the
F-metric, consider the homotopy class

Π(Φ0) = {Φ : X → Zn(M ; ∂M ;Z2) continuous under the F-metric
such that Φ is homotopic to Φ0}

with the fixed parameter space X and define the free boundary min-max value as

L(Π) = inf
Φ∈Π

max
x∈X

M(Φ(x)).

Now, we are ready to state the free boundary min-max theorem confirmed by Li-Zhou [10].

Theorem 4.16. Under the hypotheses above, if L(Π) > 0, then there exists a disjoint collection of
smooth, almost properly embedded FBMHs {Σi} such that

L(Π) =

l∑
i=1

miArea(Σi).

Remark. Here, the almost properly embedded FBMHs are those FBMHs that may have non-empty
touching sets, i.e. int(Σ) ∩ ∂M ̸= ∅.
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4.3 Multiplicity One Conjecture
Note that the Almgren-Pitts min-max theory works for families of cycles within a homotopy class,

while the definition of the volume spectrum concerns all families via the cohomological condition. To
link them together, Marques-Neves systematically studied the Morse index for minimal hypersurfaces
produced by the Almgren-Pitts theory [13]. In particular, they proved the following version of the
min-max theorem.

Theorem 4.17. Let (Mn+1, g) be a closed Riemannian manifold of dimension 3 ≤ (n + 1) ≤ 7.
For each k ∈ N, there exists a disjoint collection of connected, closed, C∞-embedded minimal
hypersurfaces {Σk

i : i = 1, · · · , lk} with integer multiplicities {mk
i : i = 1, · · · , lk} ⊂ N, such that

ωk(M, g) =

lk∑
i=1

mk
i ·Area(Σk

i ) and
lk∑
i=1

index(Σk
i ) ≤ k.

The possible existence of multiplicities greater than 1 formed a major obstacle in applications of
the Almgren-Pitts theory since the 1980s. In addition to the possible repeated occurrence of minimal
hypersurfaces when applying Theorem 4.17 to {ωk}k∈N, min-max varifolds with higher multiplicities
cannot fit into the program of Marques-Neves [15] to obtain Morse index lower bounds (see also
[12]). The following famous conjecture was formulated by Marques [4] and Neves [16]; see also [15].

Conjecture (Multiplicity One Conjecture). For a bumpy metric on Mn+1, 3 ≤ (n + 1) ≤ 7,
there exists a collection {Σk

i } as in Theorem 4.17, such that every component Σk
i is 2-sided and of

multiplicity one.

This conjecture was confirmed by Zhou in [32].

Theorem 4.18. Multiplicity One Conjecture is true.

Theorem 4.18 together with the program on Morse index lower bounds developed by Marques-
Neves [15] imply that for bumpy metrics, there exists a closed minimal hypersurface of Morse index
k and area ωk(M, g) for each k ∈ N. The above works together established a satisfactory global
Morse theory for the area functional. Later, Marques-Montezuma-Neves proved Morse inequalities
for the area functional [12], and hence established a local Morse theory as well.

By Sharp’s Compactness Theorem, the same conclusions in Theorem 4.18 hold true for metrics
with positive Ricci curvature.

Sketch of proof of Theorem 4.18. The key idea of the proof is to approximate the area functional
by the weighted Ah-functional used in the PMC min-max theory (see Section 4.1). There are
two crucial parts in the proof. First, we show that given a bumpy metric the volume spectrum
ωk(M) can be realized by the area of some minimal hypersurfaces coming from relative min-max
constructions using sweepouts of boundaries. Next, we observe that, still assuming bumpiness, if
one approximates Area by a sequence {Aϵkh}k∈N where ϵk → 0, and if h : M → R is carefully
chosen, then the limit min-max minimal hypersurfaces (of min-max PMC hypersurfaces associated
with Aϵkh) are all 2-sided and have multiplicity one.

Part 1: Given a bumpy metric, for each k ∈ N by [13], there exists a free homotopy class Π of maps
Φ : X → Zn(M ;Z2), where X is a fixed k-dimensional parameter space, such that

L = inf
Φ∈Π

max
x∈X

Area(Φ(x)) = ωk(M).
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Choose Φ0 ∈ Π so that maxx∈X Area(Φ0(x)) is very close to L. Since C(M) forms a double cover
of Zn(M,Z2) via the boundary map (see Lemma 1.23), we can lift Φ0 to Φ̃0 : X̃ → C(M), where
π : X̃ → X is also a double cover. Together they satisfy the following diagram:

X̃
Φ̃ //

π

��

C(M)

∂
��

X
Φ // Zn(M ;Z2)

Next, denote

S = {Σ ⊂M : Σ is a closed, C∞-embedded minimal hypersurface with
Area(Σ) ≤ L+ 1 and index(Σ) ≤ k}.

and
Y = {x ∈ X : F(Φ0(x),S) < ϵ}.

Set Z = X \ Y . As S is a finite set by [20], Y is topologically trivial, and hence Ỹ = π−1(Y ) is a
disjoint union of two homeomorphic copies of Y , that is, Ỹ = Y + ⊔ Y − with Y ≃ Y + ≃ Y −. On
the other hand, since no element in Φ0(Z) is close to being regular, we can deform Φ0|Z based on
Pitts’s combinatorial argument [17], so that

max
x∈Z

Area(Φ0(x)) < L.

Now consider the (X̃, Z̃)-relative homotopy class of maps generated by Φ̃0: Π̃ = {Ψ : X̃ → C(M) :
Ψ|

Z̃
= Φ̃0|Z̃}.

Lemma 4.19. The min-max value L̃ of Π̃ satisfies

L̃ := inf
Ψ∈Π̃

max
x∈X̃

Area(∂Ψ(x)) ≥ L = ωk(M).

Hence we have the nontriviality condition L̃ > maxx∈Z Area(Φ0(x)).

Proof. If the conclusion were false, then since

max
x∈Z̃

Area(∂Φ̃0(x)) = max
x∈Z

Area(Φ0(x)) < L,

one can deform Φ̃0 on Ỹ so that the maximum area is less than L. However, as Y + and Y − are
disjoint, the deformations on Y + (or on Y −) can be passed to the quotient to give deformations of
Φ0|Y in Zn(M,Z2). As all the maps are fixed on Z, we then obtain deformations of Φ0 after which
the maximum area is less than L, which is a contradiction.

Part 2: The main conclusion follows from the result below.

Theorem 4.20 (X. Zhou 19 [32]). In the above notation, if g is bumpy, L̃ can be realized as the
area of a multiplicity one, closed, C∞-embedded, 2-sided, minimal hypersurface.

To derive Theorem 4.18, first note that by the choice of Φ0, we know L̃ is very close to L. By
the bumpiness of g, the values of L̃ should stabilize to L when they are close enough.
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Proof of Theorem 4.20. To simplify notions, we will drop all the tilde’s in this part. Given a smooth
function h :M → R, and ϵ > 0, we can approximate L by the min-max values for the Aϵh-functional:

Lϵh = inf
Ψ∈Π

max
x∈X

Aϵh(Ψ(x)),

that is, Lϵh → L as ϵ → 0. Note that we require Ψ|Z = Φ0|Z for all Ψ ∈ Π. By the fact
L > maxx∈Z Area(∂Φ0(x)), and that the term ϵ

∫
Ω hdM in Aϵh(Ω) is uniformly small, we have, for

ϵ small enough,
Lϵh > max

x∈Z
Aϵh(Ψ(x)). (4.21)

For a generic choice of h, applying the multi-parameter PMC min-max theory [32] (based on the one
parameter version in Section 4.1), we obtain a smooth, almost embedded hypersurface Σϵ = ∂Ωϵ for
some Ωϵ ∈ C(M) such that

• HΣϵ = ϵh|Σϵ ;
• Aϵh(Ωϵ) = Lϵh;
• the Morse index (w.r.t. Aϵh) index(Σϵ) ≤ k.

Letting ϵ→ 0, by the above and compactness theorem for PMCs with bounded index [32], up to
taking a subsequence, Σϵ converge locally smoothly away from a finite set W to a closed embedded
minimal hypersurface Σ0 with an integer multiplicity m ∈ N. Therefore L = mArea(Σ0), and it
remains to prove that Σ0 is 2-sided (which is skipped here) and m = 1.

The convergence implies that Σϵ locally decomposes as an m-sheeted graph over Σ0 \ W, with
graphing functions: u1ϵ ≤ u2ϵ ≤ · · · ≤ umϵ . And by Proposition 4.4, the outward unit normal of Ωϵ

will alternate orientations along these sheets. The proof proceeds depending on whether m is odd
or even.

Claim 1. If m ≥ 3 is odd, then Σ0 is degenerate, hence a contradiction.

Proof. Since m is odd, the top and the bottom sheets have the same orientation, so by subtracting
the PMC equations of the two sheets, we have

L(umϵ − u1ϵ ) + o(umϵ − u1ϵ ) = 0,

where L is the Jacobi operator associated with δ2Σ0. After renormalizations, the height differences
umϵ − u1ϵ will converge subsequentially to a positive Jacobi field of Σ0 \ W, which extends to Σ0 by
standard trick.

Claim 2. If m is even, there exists a solution of Lφ = 2h|Σ0 which doesn’t change sign.
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Proof. Now the top and the bottom sheets have opposite orientations. Thus

L(umϵ − u1ϵ ) + o(umϵ − u1ϵ ) = ±ϵ(h(x, u1ϵ ) + h(x, umϵ )).

Using the renormalization procedure again and noting that umϵ − u1ϵ > 0, we get either a positive
Jacobi field (which cannot happen) or a positive function φ satisfying Lφ = 2h|Σ0 or Lφ = −2h|Σ0 .

The following key lemma says that Claim 2 cannot hold for a suitably chosen h. Hence the proof
of Theorem 4.20 is complete.

Lemma 4.22. For a suitably chosen h, the solutions of Lφ = 2h|Σ on a closed, C∞-embedded
minimal hypersurface Σ with Area(Σ) ≤ C and index(Σ) ≤ k must change sign.

Proof. By Sharp’s Compactness Theorem, the set of minimal hypersurfaces with Area ≤ C and
index ≤ k is finite, which we denote by {Σ1,Σ2, · · · ,ΣN}. Take pairwise disjoint neighborhoods
U±
j ⊂ Σj and a smooth function f defined on

⋃
U±
j with compact support such that

1. f |U+
j

is non-negative and is positive at some point;
2. f |U−

j
is non-positive and is negative at some point.

Next extend Lf to some h0 ∈ C∞(M) and take a generic h as close to h0 as we want. Then any
solution φ of Lφ = 2h|Σj would be close to 2f for each Σj , and hence must change sign.
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