Introduction to Complex Geometry

Selected Topics 3: Constant scalar curvature Kähler metrics and Bergman kernel

SHI, Yalong

(Nanjing University)
BICMR Summer School 2022

Outline

1 Constant scalar curvature Kähler metrics

2 Bergman kernel and its asymptotic expansion

3 cscK metrics and Chow stability

§1 Constant scalar curvature Kähler metrics

cscK metrics

Definition

The scalar curvature of a Kähler metric ω_{g} is defined to be

$$
s_{g}:=s\left(\omega_{g}\right):=g^{\bar{j} i} R_{\overline{i j}} .
$$

It is easy to see that s_{g} is one-half of the Riemannian scalar curvature. If s_{g} is a constant, we say ω_{g} is a "constant scalar curvature Kähler metric" ("cscK metric" for short.)

The existence problem

- Following Calabi, we ask whether there is a cscK metric in a given Kähler class.

The existence problem

- Following Calabi, we ask whether there is a cscK metric in a given Kähler class.
- When $s_{g} \equiv c$, then c is uniquely determined by $c_{1}(X)$ and $\left[\omega_{g}\right]$:

$$
c=\frac{1}{V} \int_{X} s_{g} d V=\frac{1}{\int_{X} \omega_{g}^{n}} \int_{X} n \operatorname{Ric}\left(\omega_{g}\right) \wedge \omega_{g}^{n-1}=\frac{2 n \pi c_{1}(X) \cdot\left[\omega_{g}\right]^{n-1}}{\left[\omega_{g}\right]^{n}}=: \underline{s} .
$$

The existence problem

- Following Calabi, we ask whether there is a cscK metric in a given Kähler class.
- When $s_{g} \equiv c$, then c is uniquely determined by $c_{1}(X)$ and $\left[\omega_{g}\right]$:

$$
c=\frac{1}{V} \int_{X} s_{g} d V=\frac{1}{\int_{X} \omega_{g}^{n}} \int_{X} n \operatorname{Ric}\left(\omega_{g}\right) \wedge \omega_{g}^{n-1}=\frac{2 n \pi c_{1}(X) \cdot\left[\omega_{g}\right]^{n-1}}{\left[\omega_{g}\right]^{n}}=: \underline{s} .
$$

- As a PDE, we need to find $\varphi \in C^{\infty}(X ; \mathbb{R})$ such that $\omega_{\varphi}>0$ and $s\left(\omega_{\varphi}\right)=c$. In local coordinates, this means

$$
-g_{\varphi}^{j i} \frac{\partial^{2}}{\partial z_{i} \partial \bar{z}_{j}} \log \operatorname{det}\left(g_{p \bar{q}}+\varphi_{p \bar{q}}\right)=c,
$$

which is a fourth-order nonlinear PDE.

Special cases

- A Kähler-Einstein metric is a cscK metric.

Special cases

- A Kähler-Einstein metric is a $\csc \mathrm{K}$ metric.
- When $[\omega]=\lambda c_{1}(X)$, where X is a compact Kähler manifold, then a cscK metric in $[\omega]$ is necessarily a Kähler-Einstein metric: then $\omega_{g}-\frac{\lambda}{2 \pi} \operatorname{Ric}\left(\omega_{g}\right)=\sqrt{-1} \partial \bar{\partial} h$, and taking trace gives us

$$
\Delta h=n-\frac{\lambda}{2 \pi} s_{g}=n-\frac{\lambda}{2 \pi} \frac{2 n \pi \lambda^{n-1} c_{1}(X)^{n}}{\lambda^{n} c_{1}(X)^{n}}=0 .
$$

Special cases

- A Kähler-Einstein metric is a cscK metric.
- When $[\omega]=\lambda c_{1}(X)$, where X is a compact Kähler manifold, then a cscK metric in $[\omega]$ is necessarily a Kähler-Einstein metric: then $\omega_{g}-\frac{\lambda}{2 \pi} \operatorname{Ric}\left(\omega_{g}\right)=\sqrt{-1} \partial \bar{\partial} h$, and taking trace gives us

$$
\Delta h=n-\frac{\lambda}{2 \pi} s_{g}=n-\frac{\lambda}{2 \pi} \frac{2 n \pi \lambda^{n-1} c_{1}(X)^{n}}{\lambda^{n} c_{1}(X)^{n}}=0 .
$$

- h is harmonic and hence a constant, so $\operatorname{Ric}\left(\omega_{g}\right)=\frac{2 \pi}{\lambda} \omega_{g}$.

Non-existence results

- There are obstructions to the existence of cscK metrics on a compact Kähler manifold.

Non-existence results

- There are obstructions to the existence of cscK metrics on a compact Kähler manifold.
- For example, the automorphism group of X should be reductive.

Non-existence results

- There are obstructions to the existence of cscK metrics on a compact Kähler manifold.
- For example, the automorphism group of X should be reductive.
- Another easy to check obstruction is the vanishing of Calabi-Futaki invariants: Let $\omega_{g} \in[\omega]$, then $\int_{X}\left(s_{g}-\underline{s}\right) d V_{g}=0$, then we can find $h \in C^{\infty}(X ; \mathbb{R})$ such that $s_{g}-\underline{s}=\Delta h$. The Calabi-Futaki invariant is defined to be the map $v \mapsto \int_{X} v(h) d V_{g}$, which is a character on the space of holomorphic vector fields.

Non-existence results

- There are obstructions to the existence of cscK metrics on a compact Kähler manifold.
- For example, the automorphism group of X should be reductive.
- Another easy to check obstruction is the vanishing of Calabi-Futaki invariants: Let $\omega_{g} \in[\omega]$, then $\int_{X}\left(s_{g}-\underline{s}\right) d V_{g}=0$, then we can find $h \in C^{\infty}(X ; \mathbb{R})$ such that $s_{g}-\underline{s}=\Delta h$. The Calabi-Futaki invariant is defined to be the map
$v \mapsto \int_{X} v(h) d V_{g}$, which is a character on the space of holomorphic vector fields.
- In general, when $\left[\omega_{g}\right]=\sqrt{-1} \Theta(h)$ for some holomorphic line bundle (L, h) (we say " $\left(X, \omega_{g}\right)$ is a polarized manifold"), then it is conjectured that the existence of cscK metric in $\left[\omega_{g}\right]$ is equivalent to the K-stability of the polarized pair (X, L) (Yau-Tian-Donaldson conjecture). This is still open.

Variational approach

- The cscK metric is the critical point of a functional K on the space of Kähler potentials $\mathcal{H}(\omega):=\left\{\varphi \in C^{\infty}(X ; \mathbb{R}) \mid \omega+\sqrt{-1} \partial \bar{\partial} \varphi>0\right\}$ called "K-energy" (introduced by Mabuchi).

Variational approach

- The cscK metric is the critical point of a functional K on the space of Kähler potentials $\mathcal{H}(\omega):=\left\{\varphi \in C^{\infty}(X ; \mathbb{R}) \mid \omega+\sqrt{-1} \partial \bar{\partial} \varphi>0\right\}$ called "K-energy" (introduced by Mabuchi).
- The first variation formula for K_{ω} is:

$$
\delta K_{\omega}(\varphi)(\psi)=-\int_{X} \psi\left(s\left(\omega_{\varphi}\right)-\underline{s}\right) \frac{\omega_{\varphi}^{n}}{n!} .
$$

Variational approach

- The cscK metric is the critical point of a functional K on the space of Kähler potentials $\mathcal{H}(\omega):=\left\{\varphi \in C^{\infty}(X ; \mathbb{R}) \mid \omega+\sqrt{-1} \partial \bar{\partial} \varphi>0\right\}$ called "K-energy" (introduced by Mabuchi).
- The first variation formula for K_{ω} is:

$$
\delta K_{\omega}(\varphi)(\psi)=-\int_{X} \psi\left(s\left(\omega_{\varphi}\right)-\underline{s}\right) \frac{\omega_{\varphi}^{n}}{n!} .
$$

- We also introduce the following functionals on $\mathcal{H}(\omega)$:

$$
I_{\omega}(\varphi):=\int_{X} \varphi\left(\frac{\omega^{n}}{n!}-\frac{\omega_{\varphi}^{n}}{n!}\right), \quad J_{\omega}(\varphi):=\int_{0}^{1} \frac{I_{\omega}(t \varphi)}{t} d t=\int_{0}^{1}\left(\int_{X} \varphi\left(\frac{\omega^{n}}{n!}-\frac{\omega_{t \varphi}^{n}}{n!}\right)\right) d t .
$$

Then it is easy to see that $I_{\omega}, J_{\omega}, l_{\omega}-J_{\omega}$ are all non-negative and equivalent to each other.

Tian's "properness condition"

- Motivated by "direct methods" in the calculus of variations, Tian introduced a condition similar to the "coercive condition": a functional h on $\mathcal{H}(\omega)$ is called proper, if $h \geq \epsilon\left(I_{\omega}-J_{\omega}\right)-C$ where $\epsilon>0$ and C are constants.

Tian's "properness condition"

- Motivated by "direct methods" in the calculus of variations, Tian introduced a condition similar to the "coercive condition": a functional h on $\mathcal{H}(\omega)$ is called proper, if $h \geq \epsilon\left(I_{\omega}-J_{\omega}\right)-C$ where $\epsilon>0$ and C are constants.
- Motivated by his joint work with Ding on Kähler-Einstein metrics, Tian conjectured that properness of K_{ω} should imply the existence of cscK metric in [ω], and in "nice" cases, they should be equivalent.

Tian's "properness condition"

- Motivated by "direct methods" in the calculus of variations, Tian introduced a condition similar to the "coercive condition": a functional h on $\mathcal{H}(\omega)$ is called proper, if $h \geq \epsilon\left(I_{\omega}-J_{\omega}\right)-C$ where $\epsilon>0$ and C are constants.
- Motivated by his joint work with Ding on Kähler-Einstein metrics, Tian conjectured that properness of K_{ω} should imply the existence of cscK metric in [ω], and in "nice" cases, they should be equivalent.
- This conjecture is confirmed by Chen-Cheng in 2018 (published in JAMS, 2021).

When can we get the properness?

- To prove properness of K_{ω}, a useful tool is the following formula due to Chen and Tian:

$$
K_{\omega}(\varphi)=\int_{X} \log \frac{\omega_{\varphi}^{n}}{\omega^{n}} \frac{\omega_{\varphi}^{n}}{n!}+J_{\omega,-\operatorname{Ric}(\omega)}(\varphi),
$$

where $J_{\omega, \chi}(\varphi)$ is a functional where χ is an auxiliary closed $(1,1)$-form, defined by

$$
J_{\omega, \chi}(\varphi)=\int_{0}^{1} \int_{X} \varphi\left(\chi \wedge \frac{\omega_{t \varphi}^{n-1}}{(n-1)!}-c \frac{\omega_{t \varphi}^{n}}{n!}\right) d t
$$

where $c=\frac{n[\chi]\left[\omega \omega^{n-1}\right.}{[\omega]^{n}}$

When can we get the properness?

- To prove properness of K_{ω}, a useful tool is the following formula due to Chen and Tian:

$$
K_{\omega}(\varphi)=\int_{X} \log \frac{\omega_{\varphi}^{n}}{\omega^{n}} \frac{\omega_{\varphi}^{n}}{n!}+J_{\omega,-\operatorname{Ric}(\omega)}(\varphi),
$$

where $J_{\omega_{, \chi}}(\varphi)$ is a functional where χ is an auxiliary closed $(1,1)$-form, defined by

$$
J_{\omega, \chi}(\varphi)=\int_{0}^{1} \int_{X} \varphi\left(\chi \wedge \frac{\omega_{t \varphi}^{n-1}}{(n-1)!}-c \frac{\omega_{t \varphi}^{n}}{n!}\right) d t
$$

where $c=\frac{n[x][\omega]^{n-1}}{[\omega]^{n}}$

- The critical point of $J_{\omega_{\chi} \chi}$ (if exist) satisfies $\operatorname{tr}_{\omega_{\chi} \chi}=c$.

When can we get the properness?

- The first term of Chen-Tian formula is always proper: by Tian's result, we can find $\alpha>0$ such that $\int_{X} e^{-\alpha(\varphi-\sup \varphi)} \frac{\omega^{n}}{n!} \leq C$. From this we get

$$
\begin{aligned}
C & \geq \frac{1}{V} \int_{X} e^{-\alpha(\varphi-\sup \varphi)} \frac{\omega^{n}}{n!}=\frac{1}{V} \int_{X} e^{-\alpha(\varphi-\sup \varphi)-\log \frac{\omega_{\varphi}^{n}}{\omega^{n}}} \frac{\omega_{\varphi}^{n}}{n!} \\
& \geq \exp \left(-\frac{\alpha}{V} \int_{X}(\varphi-\sup \varphi) \frac{\omega_{\varphi}^{n}}{n!}-\frac{1}{V} \int_{X} \log \frac{\omega_{\varphi}^{n}}{\omega^{n}} \frac{\omega_{\varphi}^{n}}{n!}\right)
\end{aligned}
$$

When can we get the properness?

- The first term of Chen-Tian formula is always proper: by Tian's result, we can find $\alpha>0$ such that $\int_{X} e^{-\alpha(\varphi-\sup \varphi)} \frac{\omega^{n}}{n!} \leq C$. From this we get

$$
\begin{aligned}
C & \geq \frac{1}{V} \int_{X} e^{-\alpha(\varphi-\sup \varphi)} \frac{\omega^{n}}{n!}=\frac{1}{V} \int_{X} e^{-\alpha(\varphi-\sup \varphi)-\log \frac{\omega_{\varphi}^{n}}{\omega^{n}}} \frac{\omega_{\varphi}^{n}}{n!} \\
& \geq \exp \left(-\frac{\alpha}{V} \int_{X}(\varphi-\sup \varphi) \frac{\omega_{\varphi}^{n}}{n!}-\frac{1}{V} \int_{X} \log \frac{\omega_{\varphi}^{n}}{\omega^{n}} \frac{\omega_{\varphi}^{n}}{n!}\right)
\end{aligned}
$$

- Hence

$$
\begin{aligned}
\int_{X} \log \frac{\omega_{\varphi}^{n}}{\omega^{n}} \frac{\omega_{\varphi}^{n}}{n!} & \geq \alpha \int_{X}(\sup \varphi-\varphi) \frac{\omega_{\varphi}^{n}}{n!}-C=\alpha \int_{X}\left(\sup \varphi \frac{\omega^{n}}{n!}-\varphi \frac{\omega_{\varphi}^{n}}{n!}\right)-C \\
& \geq \alpha \int_{X} \varphi\left(\frac{\omega^{n}}{n!}-\frac{\omega_{\varphi}^{n}}{n!}\right)-C=\alpha l_{\omega}(\varphi)-C
\end{aligned}
$$

When can we get the properness?

- In case $J_{\omega,-\operatorname{Ric}(\omega)}$ is not "too negative", we will get properness.

When can we get the properness?

- In case $J_{\omega,-\operatorname{Ric}(\omega)}$ is not "too negative", we will get properness.
- For example, when $-\operatorname{Ric}(\omega)>0$ and $J_{\omega,-\operatorname{Ric}(\omega)}$ has critical point, then we can prove that $J_{\omega,-\operatorname{Ric}(\omega)}$ is bounded from below and we have properness of K_{ω}.

When can we get the properness?

- In case $J_{\omega,-R i c(\omega)}$ is not "too negative", we will get properness.
- For example, when $-\operatorname{Ric}(\omega)>0$ and $J_{\omega,-\operatorname{Ric}(\omega)}$ has critical point, then we can prove that $J_{\omega,-\operatorname{Ric}(\omega)}$ is bounded from below and we have properness of K_{ω}.
- If $-\operatorname{Ric}(\omega)$ is not positive, we can use the fact that $J_{\omega, \chi}+c\left(I_{\omega}-J_{\omega}\right)=J_{\omega, \chi+c \omega}$. If c is large, $\chi+c \omega$ will be positive.

When can we get the properness?

- In case $J_{\omega,-R i c(\omega)}$ is not "too negative", we will get properness.
- For example, when $-\operatorname{Ric}(\omega)>0$ and $J_{\omega,-\operatorname{Ric}(\omega)}$ has critical point, then we can prove that $J_{\omega,-\operatorname{Ric}(\omega)}$ is bounded from below and we have properness of K_{ω}.
- If $-\operatorname{Ric}(\omega)$ is not positive, we can use the fact that $J_{\omega, \chi}+c\left(I_{\omega}-J_{\omega}\right)=J_{\omega, \chi+c \omega}$. If c is large, $\chi+c \omega$ will be positive.
- When $\chi>0$, the problem of whether or not $\operatorname{tr}_{\omega_{\varphi} \chi}=c$ is solvable is a pure PDE problem, and it is now completely understood, by Weinkove, Song-Weinkove, Lejmi-Szekelyhidi, Chen and Song.

When can we get the properness?

- In case $J_{\omega,-\operatorname{Ric}(\omega)}$ is not "too negative", we will get properness.
- For example, when $-\operatorname{Ric}(\omega)>0$ and $J_{\omega,-\operatorname{Ric}(\omega)}$ has critical point, then we can prove that $J_{\omega,-\operatorname{Ric}(\omega)}$ is bounded from below and we have properness of K_{ω}.
- If $-\operatorname{Ric}(\omega)$ is not positive, we can use the fact that $J_{\omega, \chi}+c\left(I_{\omega}-J_{\omega}\right)=J_{\omega, \chi+c \omega}$. If c is large, $\chi+c \omega$ will be positive.
- When $\chi>0$, the problem of whether or not $\operatorname{tr}_{\omega_{\varphi} \chi}=c$ is solvable is a pure PDE problem, and it is now completely understood, by Weinkove, Song-Weinkove, Lejmi-Szekelyhidi, Chen and Song.
- In summary, if α is not too small, $c \omega-\operatorname{Ric}(\omega)>0$ for a not too big c and $J_{\omega, \omega \omega-\operatorname{Ric}(\omega)}$ has a critical point, then K_{ω} is proper.

Calabi's extremal metric

- In 1970's, Calabi proposed a variational problem, motivated by Yang-Mills theory: consider the functional on $\mathcal{H}(\omega)$:

$$
\operatorname{Ca}(\varphi):=\int_{X} s\left(\omega_{\varphi}\right)^{2} \frac{\omega_{\varphi}^{n}}{n!} .
$$

Calabi's extremal metric

- In 1970's, Calabi proposed a variational problem, motivated by Yang-Mills theory: consider the functional on $\mathcal{H}(\omega)$:

$$
\operatorname{Ca}(\varphi):=\int_{X} s\left(\omega_{\varphi}\right)^{2} \frac{\omega_{\varphi}^{n}}{n!} .
$$

- Ca's critical points are called "extremal Kähler metrics".

Calabi's extremal metric

- In 1970's, Calabi proposed a variational problem, motivated by Yang-Mills theory: consider the functional on $\mathcal{H}(\omega)$:

$$
C a(\varphi):=\int_{X} s\left(\omega_{\varphi}\right)^{2} \frac{\omega_{\varphi}^{n}}{n!} .
$$

- Ca's critical points are called "extremal Kähler metrics".
- CscK metrics are minimizers of Ca:

$$
\operatorname{Ca}(\varphi)=\int_{X}\left(s\left(\omega_{\varphi}\right)-\underline{s}+\underline{s}\right)^{2} \frac{\omega_{\varphi}^{n}}{n!}=\int_{X}\left(s\left(\omega_{\varphi}\right)-\underline{s}\right)^{2} \frac{\omega_{\varphi}^{n}}{n!}+C .
$$

Existence of extremal Kähler metrics

- There are extremal metrics whose scalar curvature is not constant. In fact being extremal is equivalent to ∇s_{g} being a holomorphic vector field.

Existence of extremal Kähler metrics

- There are extremal metrics whose scalar curvature is not constant. In fact being extremal is equivalent to ∇s_{g} being a holomorphic vector field.
- There are also manifolds without any extremal metric in any Kähler class.

Existence of extremal Kähler metrics

- There are extremal metrics whose scalar curvature is not constant. In fact being extremal is equivalent to ∇s_{g} being a holomorphic vector field.
- There are also manifolds without any extremal metric in any Kähler class.
- There is a generalized version of Yau-Tian-Donaldson conjecture, which is also open at present.

§2 Bergman kernel and its asymptotic expansion

Setting

- Let (X, L) be a polarized pair, with $\omega_{g}=\frac{\sqrt{-1}}{2 \pi} \Theta_{L, h}$, we can define a global inner product on $H^{0}\left(X, \mathscr{O}\left(L^{\otimes m}\right)\right)$:

$$
(s, t):=\int_{X}\langle s, t\rangle_{h^{m}} \frac{\omega^{n}}{n!}
$$

Setting

- Let (X, L) be a polarized pair, with $\omega_{g}=\frac{\sqrt{-1}}{2 \pi} \Theta_{L, h}$, we can define a global inner product on $H^{0}\left(X, \mathscr{O}\left(L^{\otimes m}\right)\right)$:

$$
(s, t):=\int_{X}\langle s, t\rangle_{h^{m}} \frac{\omega^{n}}{n!}
$$

- Let $s_{0}, \ldots, s_{N_{m}}$ be an orthonormal basis of $H^{0}\left(X, \mathscr{O}\left(L^{\otimes m}\right)\right)$. We define a smooth function

$$
\rho_{m}(z):=\sum_{j=0}^{N_{m}}\left|s_{i}(z)\right|_{h^{m}}^{2},
$$

then it is smooth and in fact independent of the choice of the orthonormal basis.

Bergman kernel

Definition

The above defined function ρ_{m} is called the m-th Bergman kernel of (L, h).

Remark

Why the name "kernel"? If we write s_{i}^{*} the metric dual of s_{i}, which is a smooth section of $\left(L^{\otimes m}\right)^{*}$, the "2-variable function" $K(z, w):=\sum_{j} s_{j}(z) \otimes s_{j}^{*}(w)$ is a "reproducing kernel" in the sense that for any section $s \in H^{0}\left(L^{\otimes m}\right)$, we have

$$
s(z)=\int_{X}\langle K(z, w), s(w)\rangle \frac{\omega^{n}}{n!}(w) .
$$

And $K(z, z)=\rho_{m}(z)$. So strictly speaking, ρ_{m} is "Bergman kernel restricted to the diagonal".

Basic properties of Bergman kernel

Lemma

For any $z \in X$, we have

$$
\rho_{m}(z)=\sup \left\{|s(z)|_{h^{m}}^{2} \mid\|s\|_{L^{2}}=1\right\} .
$$

Proof

Consider the evaluation map evz $: H^{0}\left(L^{\otimes m}\right) \rightarrow L_{z}^{\otimes m}$ given by $s \mapsto s(z)$. Then the right hand side is precisely $\left\|e v_{z}\right\|_{o p}^{2}$. On the other hand, we can find a $h_{z} \in H^{0}\left(L^{\otimes m}\right)$ such that $e V_{z}(s)=\left(s, h_{z}\right)$ for any s, and $\left\|e v_{z}\right\|_{o p}=\left\|h_{z}\right\|_{L^{2}}$. On the other hand, for the given orthonormal basis $\left\{s_{j}\right\}$, we have

$$
\left\|h_{z}\right\|_{L^{2}}^{2}=\sum_{j}\left|\left(s_{j}, h_{z}\right)\right|^{2}=\sum_{j}\left|s_{j}(z)\right|_{h^{m}}^{2}=\rho_{m}(z) .
$$

Basic properties of Bergman kernel

Assume $L^{\otimes m}$ is very ample. Consider the Kodaira map $\iota_{m}: X \rightarrow \mathbb{C} P^{N_{m}}$

$$
z \mapsto\left[s_{0}(z), \ldots, s_{N_{m}}(z)\right] .
$$

Lemma

For the Fubini-Study metric $\omega_{F S}=\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \left(\left|Z_{0}\right|^{2}+\cdots+\left|Z_{N_{m}}\right|^{2}\right)$ on $\mathbb{C} P^{N_{m}}$, we have

$$
\iota_{m}^{*} \omega_{F S}=m \omega+\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \rho_{m} .
$$

Proof

We have $\iota_{m}^{*} \omega_{F S}=\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \left(\left|S_{0}(z)\right|^{2}+\cdots+\left|s_{N_{m}}(z)\right|^{2}\right)$ using local trivialization. But this is $\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \left(\left|S_{0}(z)\right|_{h^{m}}^{2}+\cdots+\left|s_{N_{m}}(z)\right|_{h^{m}}^{2}\right)-m \frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log h$ which is precisely

Tian's convergence theorem

Theorem (Tian, 1990)

We have

$$
\left\|\frac{1}{m} l_{m}^{*} \omega_{F S}-\omega\right\|_{C^{2}}=O\left(\frac{1}{\sqrt{m}}\right) .
$$

In particular, $\frac{1}{m} \iota_{m}^{*} \omega_{F S} \rightarrow \omega$ in C^{2}-topology.

Remark

- Later, Wei-Dong Ruan (1998) proved that we in fact have C^{∞} convergence.

Tian's convergence theorem

Theorem (Tian, 1990)

We have

$$
\left\|\frac{1}{m} l_{m}^{*} \omega_{F S}-\omega\right\|_{C^{2}}=O\left(\frac{1}{\sqrt{m}}\right) .
$$

In particular, $\frac{1}{m} \iota_{m}^{*} \omega_{F S} \rightarrow \omega$ in C^{2}-topology.

Remark

- Later, Wei-Dong Ruan (1998) proved that we in fact have C^{∞} convergence.
- Tian's main tool is still Hörmander's L^{2}-theory of $\bar{\partial}$-equation.

Tian's convergence theorem

Theorem (Tian, 1990)

We have

$$
\left\|\frac{1}{m} l_{m}^{*} \omega_{F S}-\omega\right\|_{C^{2}}=O\left(\frac{1}{\sqrt{m}}\right) .
$$

In particular, $\frac{1}{m} \iota_{m}^{*} \omega_{F S} \rightarrow \omega$ in C^{2}-topology.

Remark

- Later, Wei-Dong Ruan (1998) proved that we in fact have C^{∞} convergence.
- Tian's main tool is still Hörmander's L^{2}-theory of $\bar{\partial}$-equation.
- The idea is that around any given point p, one can construct a family of global "peak sections", essentially concentrated in coordinate balls of radius $\frac{\log m}{\sqrt{m}}$. We use these peak sections to compute ρ_{m} and its derivatives.

Refinement: asymptotic expansion

Theorem (Catlin 1997, Zelditch 1998)

We have an asymptotic expansion $\rho_{m}(z) \sim \sum_{j=0}^{\infty} a_{j}(z) m^{n-j}$ with $a_{0}=1$, in the sense that for any k and $R>0$, we have

$$
\left\|\rho_{m}-\sum_{j<R} a_{j} m^{n-j}\right\|_{C^{k}} \leq C_{k, R} m^{n-R}
$$

Remark

- There is a later proof via heat kernel by Dai-Liu-Ma (2004).

Refinement: asymptotic expansion

Theorem (Catlin 1997, Zelditch 1998)

We have an asymptotic expansion $\rho_{m}(z) \sim \sum_{j=0}^{\infty} a_{j}(z) m^{n-j}$ with $a_{0}=1$, in the sense that for any k and $R>0$, we have

$$
\left\|\rho_{m}-\sum_{j<R} a_{j} m^{n-j}\right\|_{C^{k}} \leq C_{k, R} m^{n-R}
$$

Remark

- There is a later proof via heat kernel by Dai-Liu-Ma (2004).
- The first several coefficients are computed by Zhiqin Lu (2000). The first two are:

Some corollaries

Corollary (Asymptotic Riemann-Roch)

As $m \rightarrow \infty$, we have

$$
\operatorname{dim} H^{0}\left(X, L^{\otimes m}\right)=m^{n} \int_{X} \frac{\omega^{n}}{n!}+\frac{m^{n-1}}{2} \int_{X} s_{g} \frac{\omega^{n}}{n!}+O\left(m^{n-2}\right)
$$

Proof

We have

$$
\operatorname{dim} H^{0}\left(X, L^{\otimes m}\right)=\int_{X} \rho_{m} \frac{\omega^{n}}{n!}=\int_{X}\left(m^{n}+\frac{s_{g}}{2} m^{n-1}+O\left(m^{n-2}\right)\right) \frac{\omega^{n}}{n!}
$$

Some corollaries

Corollary (C^{∞} convergence)

We have

$$
\frac{1}{m} \iota_{m}^{*} \omega_{F S}-\omega=O\left(m^{-2}\right)
$$

in C^{∞} topology.

Proof

$$
\text { Left }=\frac{\sqrt{-1}}{2 m \pi} \partial \bar{\partial}\left(\log \rho_{m}\right)=\frac{\sqrt{-1}}{2 m \pi} \partial \bar{\partial}\left(\log m^{n}+\log \left(1+O\left(\frac{1}{m}\right)\right)\right)=O\left(\frac{1}{m^{2}}\right) .
$$

Partial C^{0}-estimate

- A uniform lower bound of Bergman kernel is usually called "partial C^{0}-estimate" after Tian.

Partial C^{0}-estimate

- A uniform lower bound of Bergman kernel is usually called "partial C^{0}-estimate" after Tian.
- The reason for the name is that in the problem of existence of Kähler-Einstein metrics on Fano manifolds, Tian observed that if we have uniform lower bound of Bergman kernel of K_{X}^{-1} for certain m along Aubin's continuity path, then we will get C^{0} estimate of φ outside the zero locus of certain holomorphic section of K_{X}^{-m}.

Partial C^{0}-estimate

- A uniform lower bound of Bergman kernel is usually called "partial C^{0}-estimate" after Tian.
- The reason for the name is that in the problem of existence of Kähler-Einstein metrics on Fano manifolds, Tian observed that if we have uniform lower bound of Bergman kernel of K_{X}^{-1} for certain m along Aubin's continuity path, then we will get C^{0} estimate of φ outside the zero locus of certain holomorphic section of K_{χ}^{-m}.
- In good cases, if we have partial C^{0}-estimates, we can usually prove that the Gromov-Hausdorff limit is in fact projective algebraic.

Various results on partial C^{0}-estimates

- Tian proved partial C^{0} for Del Pezzo surfaces with KE metrics. This is used in his solution of 2-dim Fano KE problem.

Various results on partial C^{0}-estimates

- Tian proved partial C^{0} for Del Pezzo surfaces with KE metrics. This is used in his solution of 2-dim Fano KE problem.
- In higher dimensions, Tian proved the KE case, and Donaldson-Sun proved the bounded Ricci case.

Various results on partial C^{0}-estimates

- Tian proved partial C^{0} for Del Pezzo surfaces with KE metrics. This is used in his solution of 2-dim Fano KE problem.
- In higher dimensions, Tian proved the KE case, and Donaldson-Sun proved the bounded Ricci case.
- Tian's partial C^{0}-conjecture is also confirmed by Chen-Wang using their solution of Hamilton-Tian conjecture for Kähler-Ricci flow. (Previously W. Jiang proved it for $n \leq 3$, using Tian-Zhang's proof of Hamilton-Tian conjecture in dim ≤ 3).

Various results on partial C^{0}-estimates

- Tian proved partial C^{0} for Del Pezzo surfaces with KE metrics. This is used in his solution of 2-dim Fano KE problem.
- In higher dimensions, Tian proved the KE case, and Donaldson-Sun proved the bounded Ricci case.
- Tian's partial C^{0}-conjecture is also confirmed by Chen-Wang using their solution of Hamilton-Tian conjecture for Kähler-Ricci flow. (Previously W. Jiang proved it for $n \leq 3$, using Tian-Zhang's proof of Hamilton-Tian conjecture in dim ≤ 3).
- There is a recent work of G. Liu-Szekelyhidi, removed the Ricci upper bound in Donaldson-Sun's result.

§3 cscK metrics and Chow stability

Looking back at the asymptotic expansion

- Start with

$$
\rho_{m}(z) \sim m^{n}+\frac{s_{g}}{2} m^{n-1}+\ldots
$$

Looking back at the asymptotic expansion

- Start with

$$
\rho_{m}(z) \sim m^{n}+\frac{S_{g}}{2} m^{n-1}+\ldots
$$

- If $s_{g} \equiv \underline{\boldsymbol{s}}$, then $\rho_{m}(z)$ will be "close" to a constant.

Looking back at the asymptotic expansion

- Start with

$$
\rho_{m}(z) \sim m^{n}+\frac{s_{g}}{2} m^{n-1}+\ldots
$$

- If $s_{g} \equiv \underline{s}$, then $\rho_{m}(z)$ will be "close" to a constant.
- Can we really make it a constant by changing the bundle metric?

Looking back at the asymptotic expansion

- Start with

$$
\rho_{m}(z) \sim m^{n}+\frac{s_{g}}{2} m^{n-1}+\ldots
$$

- If $s_{g} \equiv \underline{\boldsymbol{s}}$, then $\rho_{m}(z)$ will be "close" to a constant.
- Can we really make it a constant by changing the bundle metric?
- What is the geometric implication for $\rho_{m} \equiv$ const?

The condition $\rho_{m} \equiv$ const

- $\rho_{m} \equiv$ const implies that $\frac{1}{m} \iota_{m}^{*} \omega_{F S}=\omega$.

The condition $\rho_{m} \equiv$ const

- $\rho_{m} \equiv$ const implies that $\frac{1}{m} \iota_{m}^{*} \omega_{F S}=\omega$.
- Meanwhile, since $\left\{\boldsymbol{s}_{i}\right\}$ is orthonormal, we have

$$
\delta_{i j}=\int_{X}\left\langle s_{i}, s_{j}\right\rangle \frac{\omega^{n}}{n!}=\rho_{m} \int_{X} \frac{\left\langle s_{i}, s_{j}\right\rangle}{\sum_{j}\left|s_{j}\right|_{h^{m}}^{2}} \frac{i^{*} \omega_{F S}^{n}}{m^{n} n!}=c \int_{\iota_{m}(X)} \frac{Z_{i} \bar{Z}_{j}}{\sum_{k}\left|Z_{k}\right|^{2}} \frac{\left(\left.\omega_{F S}\right|_{m_{m}(X)}\right)^{n}}{n!} .
$$

The condition $\rho_{m} \equiv$ const

- $\rho_{m} \equiv$ const implies that $\frac{1}{m} \iota_{m}^{*} \omega_{F S}=\omega$.
- Meanwhile, since $\left\{s_{i}\right\}$ is orthonormal, we have

$$
\delta_{i j}=\int_{X}\left\langle s_{i}, s_{j}\right\rangle \frac{\omega^{n}}{n!}=\rho_{m} \int_{X} \frac{\left\langle s_{i}, s_{j}\right\rangle}{\sum_{j}\left|s_{j}\right|_{h^{m}}^{2}} \frac{i^{*} \omega_{F S}^{n}}{m^{n} n!}=c \int_{\iota_{m}(X)} \frac{Z_{i} \bar{Z}_{j}}{\sum_{k}\left|Z_{k}\right|^{2}} \frac{\left(\omega_{F S} l_{m}(X)\right)^{n}}{n!} .
$$

- We call the matrix

$$
\left(\int_{\iota_{m}(X)} \frac{Z_{i} \bar{Z}_{j}}{\sum_{k}\left|Z_{k}\right|^{2}} \omega_{F S}^{n}\right)
$$

the center of mass of $\iota_{m}(X)$. If it is a multiple of I, we say ι_{m} is a "balanced embedding".

Balance condition and algebraic geometry

- The balance condition was first introduced by Bourguignon-Li-Yau (1994) as an auxiliary condition.

Balance condition and algebraic geometry

- The balance condition was first introduced by Bourguignon-Li-Yau (1994) as an auxiliary condition.
- One can easily prove that being balance is equivalent to $\rho_{m} \equiv$ const.

Balance condition and algebraic geometry

- The balance condition was first introduced by Bourguignon-Li-Yau (1994) as an auxiliary condition.
- One can easily prove that being balance is equivalent to $\rho_{m} \equiv$ const.
- The polarized pair $\left(X, L^{\otimes m}\right)$ can be balanced iff $\left(X, L^{\otimes m}\right)$ is "Chow stable" in the sense of geometric invariant theory. This is first observed by S.W. Zhang (1996) and later reproved by H.Z. Luo, Phong-Sturm and S. Paul.

Donaldson's theorems

Theorem (Donaldson, 2001)

Suppose that Aut (X, L) is discrete and $\left(X, L^{k}\right)$ is balanced for all sufficiently large k. Suppose that the metrics ω_{k} converge in C^{∞} to some limit ω_{∞} as $k \rightarrow \infty$. Then ω_{∞} has constant scalar curvature.

Question: can we always find a converging subsequence of $\left\{\omega_{k}\right\}$? This is still open to my knowledge.

Proof

This is just an application of the asymptotic expansion formula:

$$
\left\|\rho_{k}\left(\omega_{k}\right)-k^{n}-\frac{s\left(\omega_{k}\right)}{2} k^{n-1}\right\|_{c^{0}} \leq c k^{n-2}
$$

Now $\rho_{k}\left(\omega_{k}\right)=\frac{\operatorname{dim} H^{0}\left(L^{k}\right)}{V}=k^{n}+\frac{k^{n-1}}{2} \underline{s}+O\left(k^{n-2}\right)$. Together with the previous inequality, we get

$$
\left\|s\left(\omega_{k}\right)-\underline{s}\right\|_{C^{0}}=O\left(\frac{1}{k}\right)
$$

Let $k \rightarrow \infty$, we get at once $s\left(\omega_{\infty}\right) \equiv \underline{s}$.

Donaldson's theorems

Theorem (Donaldson 2001)

Suppose that $\operatorname{Aut}(X, L)$ is discrete and ω_{∞} is a Kähler metric in the class $2 \pi c_{1}(L)$ with constant scalar curvature. Then $\left(X, L^{k}\right)$ is balanced for large enough k and the sequence of metrics ω_{k} converge in C^{∞} to ω_{∞} as $k \rightarrow \infty$.

- Roughly speaking, this means "no holomorphic vector fields"+"cscK" implies "asymptotically Chow stable".

Donaldson's theorems

Theorem (Donaldson 2001)

Suppose that $\operatorname{Aut}(X, L)$ is discrete and ω_{∞} is a Kähler metric in the class $2 \pi c_{1}(L)$ with constant scalar curvature. Then $\left(X, L^{k}\right)$ is balanced for large enough k and the sequence of metrics ω_{k} converge in C^{∞} to ω_{∞} as $k \rightarrow \infty$.

- Roughly speaking, this means "no holomorphic vector fields"+"cscK" implies "asymptotically Chow stable".
- When there are non-trivial holomorphic vector fields, there are counterexamples (7-dim toric variety, due to Ono-Sano-Yotsutani, 2012).

Donaldson's theorems

Theorem (Donaldson 2001)

Suppose that $\operatorname{Aut}(X, L)$ is discrete and ω_{∞} is a Kähler metric in the class $2 \pi c_{1}(L)$ with constant scalar curvature. Then $\left(X, L^{k}\right)$ is balanced for large enough k and the sequence of metrics ω_{k} converge in C^{∞} to ω_{∞} as $k \rightarrow \infty$.

- Roughly speaking, this means "no holomorphic vector fields"+"cscK" implies "asymptotically Chow stable".
- When there are non-trivial holomorphic vector fields, there are counterexamples (7-dim toric variety, due to Ono-Sano-Yotsutani, 2012).
- In the general case, Mabuchi (2005) proved that when there are non-trivial holomorphic vector fields, one need extra conditions to get asymptotically Chow stability.

About the proof

- Donaldson's original proof is quite complicated.

About the proof

- Donaldson's original proof is quite complicated.
- Later Phong-Sturm has a simplified proof.

About the proof

- Donaldson's original proof is quite complicated.
- Later Phong-Sturm has a simplified proof.
- The rough outline of the proof is as follows: first using the asymptotic expansion to get a family of "nearly balanced embedding", this is done by Donaldson.

About the proof

- Donaldson's original proof is quite complicated.
- Later Phong-Sturm has a simplified proof.
- The rough outline of the proof is as follows: first using the asymptotic expansion to get a family of "nearly balanced embedding", this is done by Donaldson.
- Restricted to the finite dimensional spaces of pulling back metrics, balnaced embeddings are critical points of a functional I.

About the proof

- Donaldson's original proof is quite complicated.
- Later Phong-Sturm has a simplified proof.
- The rough outline of the proof is as follows: first using the asymptotic expansion to get a family of "nearly balanced embedding", this is done by Donaldson.
- Restricted to the finite dimensional spaces of pulling back metrics, balnaced embeddings are critical points of a functional I.
- Donaldson's estimates essentially tell us that at nearly balanced point, the first order derivative of I is very small and the second order derivative of I is quite large. Then elementary arguments show that there is a critical point not far away from the nearly balanced point.

Reference

- About cscK and extremal metrics, one can learn the basics from Tian and Szekelyhidi's books.
- About Bergman kernel, a good book is Ma-Marinescu "Holomorphic Morse Inequalities and Bergman kernels". Their tool of study is mainly the heat kernel. For the "peak section" method, one can start with Zhiqin Lu's Amer. J. Math. paper.
- For applications of Bergman kernels in cscK problems, besides Szekelyhidi's book, one can also start with Chi Li's master thesis at PKU.
- For K-stability, there is a quite detailed survey paper by Chenyang Xu, with title "K-stability of Fano varieties: an algebro-geometric approach".

