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§1 Constant scalar curvature Kähler metrics
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cscK metrics

Definition
The scalar curvature of a Kähler metric ωg is defined to be

sg := s(ωg) := g j̄ iRi j̄ .

It is easy to see that sg is one-half of the Riemannian scalar curvature. If sg is a
constant, we say ωg is a “constant scalar curvature Kähler metric” (“cscK metric”
for short.)
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The existence problem
• Following Calabi, we ask whether there is a cscK metric in a given Kähler class.

• When sg ≡ c, then c is uniquely determined by c1(X ) and [ωg]:

c =
1
V

∫
X

sgdV =
1∫

X ω
n
g

∫
X

n Ric(ωg) ∧ ωn−1
g =

2nπc1(X ) · [ωg]n−1

[ωg]n
=: s.

• As a PDE, we need to find ϕ ∈ C∞(X ;R) such that ωϕ > 0 and s(ωϕ) = c. In
local coordinates, this means

−g j̄ i
ϕ

∂2

∂zi∂z̄j
log det(gpq̄ + ϕpq̄) = c,

which is a fourth-order nonlinear PDE.
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Special cases

• A Kähler-Einstein metric is a cscK metric.

• When [ω] = λc1(X ), where X is a compact Kähler manifold, then a cscK metric
in [ω] is necessarily a Kähler-Einstein metric: then ωg −

λ
2πRic(ωg) =

√
−1∂∂̄h,

and taking trace gives us

∆h = n −
λ

2π
sg = n −

λ

2π
2nπλn−1c1(X )n

λnc1(X )n = 0.

• h is harmonic and hence a constant, so Ric(ωg) = 2π
λ
ωg.
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Non-existence results
• There are obstructions to the existence of cscK metrics on a compact Kähler
manifold.

• For example, the automorphism group of X should be reductive.
• Another easy to check obstruction is the vanishing of Calabi-Futaki invariants:
Let ωg ∈ [ω], then

∫
X (sg − s)dVg = 0, then we can find h ∈ C∞(X ;R) such that

sg − s = ∆h. The Calabi-Futaki invariant is defined to be the map
v 7→

∫
X v(h)dVg, which is a character on the space of holomorphic vector

fields.
• In general, when [ωg] =

√
−1Θ(h) for some holomorphic line bundle (L,h) (we

say “(X , ωg) is a polarized manifold”), then it is conjectured that the existence
of cscK metric in [ωg] is equivalent to the K-stability of the polarized pair
(X ,L) (Yau-Tian-Donaldson conjecture). This is still open.
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Variational approach
• The cscK metric is the critical point of a functional K on the space of Kähler
potentials H(ω) := {ϕ ∈ C∞(X ;R) | ω +

√
−1∂∂̄ϕ > 0} called “K-energy”

(introduced by Mabuchi).

• The first variation formula for Kω is:

δKω(ϕ)(ψ) = −

∫
X
ψ(s(ωϕ) − s)

ωn
ϕ

n!
.

• We also introduce the following functionals on H(ω):

Iω(ϕ) :=

∫
X
ϕ(
ωn

n!
−
ωn
ϕ

n!
), Jω(ϕ) :=

∫ 1

0

Iω(tϕ)

t
dt =

∫ 1

0

( ∫
X
ϕ(
ωn

n!
−
ωn

tϕ

n!
)
)
dt .

Then it is easy to see that Iω, Jω, Iω − Jω are all non-negative and equivalent to
each other.
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Tian’s “properness condition”

• Motivated by “direct methods” in the calculus of variations, Tian introduced a
condition similar to the “coercive condition”: a functional h on H(ω) is called
proper, if h ≥ ε(Iω − Jω) − C where ε > 0 and C are constants.

• Motivated by his joint work with Ding on Kähler-Einstein metrics, Tian
conjectured that properness of Kω should imply the existence of cscK metric in
[ω], and in “nice” cases, they should be equivalent.

• This conjecture is confirmed by Chen-Cheng in 2018 (published in JAMS,
2021).

SHI, Yalong (Nanjing University) BICMR Complex Geometry 9 / 34



Tian’s “properness condition”

• Motivated by “direct methods” in the calculus of variations, Tian introduced a
condition similar to the “coercive condition”: a functional h on H(ω) is called
proper, if h ≥ ε(Iω − Jω) − C where ε > 0 and C are constants.

• Motivated by his joint work with Ding on Kähler-Einstein metrics, Tian
conjectured that properness of Kω should imply the existence of cscK metric in
[ω], and in “nice” cases, they should be equivalent.

• This conjecture is confirmed by Chen-Cheng in 2018 (published in JAMS,
2021).

SHI, Yalong (Nanjing University) BICMR Complex Geometry 9 / 34



Tian’s “properness condition”

• Motivated by “direct methods” in the calculus of variations, Tian introduced a
condition similar to the “coercive condition”: a functional h on H(ω) is called
proper, if h ≥ ε(Iω − Jω) − C where ε > 0 and C are constants.

• Motivated by his joint work with Ding on Kähler-Einstein metrics, Tian
conjectured that properness of Kω should imply the existence of cscK metric in
[ω], and in “nice” cases, they should be equivalent.

• This conjecture is confirmed by Chen-Cheng in 2018 (published in JAMS,
2021).

SHI, Yalong (Nanjing University) BICMR Complex Geometry 9 / 34



When can we get the properness?

• To prove properness of Kω, a useful tool is the following formula due to Chen
and Tian:

Kω(ϕ) =

∫
X

log
ωn
ϕ

ωn

ωn
ϕ

n!
+ Jω,−Ric(ω)(ϕ),

where Jω,χ(ϕ) is a functional where χ is an auxiliary closed (1,1)-form, defined
by

Jω,χ(ϕ) =

∫ 1

0

∫
X
ϕ
(
χ ∧

ωn−1
tϕ

(n − 1)!
− c

ωn
tϕ

n!

)
dt ,

where c =
n[χ][ω]n−1

[ω]n

• The critical point of Jω,χ (if exist) satisfies trωϕχ = c.
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When can we get the properness?
• The first term of Chen-Tian formula is always proper: by Tian’s result, we can
find α > 0 such that

∫
X e−α(ϕ−supϕ) ωn

n!
≤ C. From this we get

C ≥
1
V

∫
X

e−α(ϕ−supϕ)ω
n

n!
=

1
V

∫
X

e−α(ϕ−supϕ)−log
ωn
ϕ

ωn
ωn
ϕ

n!

≥ exp
(
−
α

V

∫
X

(ϕ − supϕ)
ωn
ϕ

n!
−

1
V

∫
X

log
ωn
ϕ

ωn

ωn
ϕ

n!

)
.

• Hence∫
X

log
ωn
ϕ

ωn

ωn
ϕ

n!
≥ α

∫
X

(supϕ − ϕ)
ωn
ϕ

n!
− C = α

∫
X

(
supϕ

ωn

n!
− ϕ

ωn
ϕ

n!

)
− C

≥ α

∫
X
ϕ
(
ωn

n!
−
ωn
ϕ

n!

)
− C = αIω(ϕ) − C.
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When can we get the properness?

• In case Jω,−Ric(ω) is not “too negative”, we will get properness.

• For example, when −Ric(ω) > 0 and Jω,−Ric(ω) has critical point, then we can
prove that Jω,−Ric(ω) is bounded from below and we have properness of Kω.

• If −Ric(ω) is not positive, we can use the fact that Jω,χ + c(Iω − Jω) = Jω,χ+cω. If
c is large, χ + cω will be positive.

• When χ > 0, the problem of whether or not trωϕχ = c is solvable is a pure PDE
problem, and it is now completely understood, by Weinkove, Song-Weinkove,
Lejmi-Szekelyhidi, Chen and Song.

• In summary, if α is not too small, cω − Ric(ω) > 0 for a not too big c and
Jω,cω−Ric(ω) has a critical point, then Kω is proper.
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Calabi’s extremal metric

• In 1970’s, Calabi proposed a variational problem, motivated by Yang-Mills
theory: consider the functional on H(ω):

Ca(ϕ) :=

∫
X

s(ωϕ)2
ωn
ϕ

n!
.

• Ca’s critical points are called “extremal Kähler metrics”.
• CscK metrics are minimizers of Ca:

Ca(ϕ) =

∫
X

(s(ωϕ) − s + s)2
ωn
ϕ

n!
=

∫
X

(s(ωϕ) − s)2
ωn
ϕ

n!
+ C.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 13 / 34



Calabi’s extremal metric

• In 1970’s, Calabi proposed a variational problem, motivated by Yang-Mills
theory: consider the functional on H(ω):

Ca(ϕ) :=

∫
X

s(ωϕ)2
ωn
ϕ

n!
.

• Ca’s critical points are called “extremal Kähler metrics”.

• CscK metrics are minimizers of Ca:

Ca(ϕ) =

∫
X

(s(ωϕ) − s + s)2
ωn
ϕ

n!
=

∫
X

(s(ωϕ) − s)2
ωn
ϕ

n!
+ C.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 13 / 34



Calabi’s extremal metric

• In 1970’s, Calabi proposed a variational problem, motivated by Yang-Mills
theory: consider the functional on H(ω):

Ca(ϕ) :=

∫
X

s(ωϕ)2
ωn
ϕ

n!
.

• Ca’s critical points are called “extremal Kähler metrics”.
• CscK metrics are minimizers of Ca:

Ca(ϕ) =

∫
X

(s(ωϕ) − s + s)2
ωn
ϕ

n!
=

∫
X

(s(ωϕ) − s)2
ωn
ϕ

n!
+ C.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 13 / 34



Existence of extremal Kähler metrics

• There are extremal metrics whose scalar curvature is not constant. In fact
being extremal is equivalent to ∇sg being a holomorphic vector field.

• There are also manifolds without any extremal metric in any Kähler class.
• There is a generalized version of Yau-Tian-Donaldson conjecture, which is also
open at present.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 14 / 34



Existence of extremal Kähler metrics

• There are extremal metrics whose scalar curvature is not constant. In fact
being extremal is equivalent to ∇sg being a holomorphic vector field.

• There are also manifolds without any extremal metric in any Kähler class.

• There is a generalized version of Yau-Tian-Donaldson conjecture, which is also
open at present.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 14 / 34



Existence of extremal Kähler metrics

• There are extremal metrics whose scalar curvature is not constant. In fact
being extremal is equivalent to ∇sg being a holomorphic vector field.

• There are also manifolds without any extremal metric in any Kähler class.
• There is a generalized version of Yau-Tian-Donaldson conjecture, which is also
open at present.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 14 / 34



§2 Bergman kernel and its asymptotic expansion
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Setting

• Let (X ,L) be a polarized pair, with ωg =
√
−1

2π ΘL,h, we can define a global inner
product on H0(X ,O(L⊗m)):

(s, t) :=

∫
X
〈s, t〉hm

ωn

n!

• Let s0, . . . , sNm be an orthonormal basis of H0(X ,O(L⊗m)). We define a smooth
function

ρm(z) :=
Nm∑
j=0

|si(z)|2hm ,

then it is smooth and in fact independent of the choice of the orthonormal
basis.
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Bergman kernel
Definition
The above defined function ρm is called the m-th Bergman kernel of (L,h).

Remark
Why the name “kernel”? If we write s∗i the metric dual of si , which is a smooth section
of (L⊗m)∗, the “2-variable function” K (z,w) :=

∑
j sj(z) ⊗ s∗j (w) is a “reproducing

kernel” in the sense that for any section s ∈ H0(L⊗m), we have

s(z) =

∫
X
〈K (z,w), s(w)〉

ωn

n!
(w).

And K (z, z) = ρm(z). So strictly speaking, ρm is “Bergman kernel restricted to the
diagonal”.
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Basic properties of Bergman kernel
Lemma
For any z ∈ X , we have

ρm(z) = sup
{
|s(z)|2hm

∣∣∣ ‖s‖L2 = 1
}
.

Proof
Consider the evaluation map evz : H0(L⊗m)→ L⊗m

z given by s 7→ s(z). Then the right
hand side is precisely ‖evz‖

2
op. On the other hand, we can find a hz ∈ H0(L⊗m) such

that evz(s) = (s,hz) for any s, and ‖evz‖op = ‖hz‖L2. On the other hand, for the
given orthonormal basis {sj }, we have

‖hz‖
2
L2 =

∑
j

|(sj ,hz)|2 =
∑

j

|sj(z)|2hm = ρm(z).
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Basic properties of Bergman kernel
Assume L⊗m is very ample. Consider the Kodaira map ιm : X → CPNm

z 7→ [s0(z), . . . , sNm (z)].

Lemma
For the Fubini-Study metric ωFS =

√
−1

2π ∂∂̄ log(|Z0|
2 + · · ·+ |ZNm |

2) on CPNm , we have

ι∗mωFS = mω +

√
−1

2π
∂∂̄ log ρm.

Proof
We have ι∗mωFS =

√
−1

2π ∂∂̄ log(|s0(z)|2 + · · ·+ |sNm (z)|2) using local trivialization. But
this is

√
−1

2π ∂∂̄ log(|s0(z)|2hm + · · ·+ |sNm (z)|2hm ) −m
√
−1

2π ∂∂̄ log h which is precisely
√
−1

2π ∂∂̄ log ρm + mω.
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Tian’s convergence theorem
Theorem (Tian, 1990)
We have

‖
1
m
ι∗mωFS − ω‖C2 = O(

1
√

m
).

In particular, 1
m ι
∗
mωFS → ω in C2-topology.

Remark
• Later, Wei-Dong Ruan (1998) proved that we in fact have C∞ convergence.

• Tian’s main tool is still Hörmander’s L2-theory of ∂̄-equation.
• The idea is that around any given point p, one can construct a family of global
“peak sections”, essentially concentrated in coordinate balls of radius log m

√
m
. We use

these peak sections to compute ρm and its derivatives.
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Refinement: asymptotic expansion
Theorem (Catlin 1997, Zelditch 1998)
We have an asymptotic expansion ρm(z) ∼

∑∞
j=0 aj(z)mn−j with a0 = 1, in the sense

that for any k and R > 0, we have

‖ρm −
∑
j<R

ajmn−j‖Ck ≤ Ck ,Rmn−R .

Remark
• There is a later proof via heat kernel by Dai-Liu-Ma (2004).

• The first several coefficients are computed by Zhiqin Lu (2000). The first two are:

a1 =
1
2

sg , ,a2 =
1
3

∆sg +
1
24

(|R|2 − 4|Ric|2 + 3s2
g).
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Some corollaries
Corollary (Asymptotic Riemann-Roch)
As m → ∞, we have

dim H0(X ,L⊗m) = mn
∫

X

ωn

n!
+

mn−1

2

∫
X

sg
ωn

n!
+ O(mn−2)

Proof
We have

dim H0(X ,L⊗m) =

∫
X
ρm
ωn

n!
=

∫
X

(
mn +

sg

2
mn−1 + O(mn−2)

)
ωn

n!
.
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Some corollaries

Corollary (C∞ convergence)
We have

1
m
ι∗mωFS − ω = O(m−2)

in C∞ topology.

Proof

Left =

√
−1

2mπ
∂∂̄

(
log ρm

)
=

√
−1

2mπ
∂∂̄

(
log mn + log(1 + O(

1
m

))
)

= O(
1

m2
).
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Partial C0-estimate

• A uniform lower bound of Bergman kernel is usually called “partial
C0-estimate” after Tian.

• The reason for the name is that in the problem of existence of Kähler-Einstein
metrics on Fano manifolds, Tian observed that if we have uniform lower bound
of Bergman kernel of K −1

X for certain m along Aubin’s continuity path, then we
will get C0 estimate of ϕ outside the zero locus of certain holomorphic section
of K −m

X .
• In good cases, if we have partial C0-estimates, we can usually prove that the
Gromov-Hausdorff limit is in fact projective algebraic.
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Various results on partial C0-estimates

• Tian proved partial C0 for Del Pezzo surfaces with KE metrics. This is used in
his solution of 2-dim Fano KE problem.

• In higher dimensions, Tian proved the KE case, and Donaldson-Sun proved the
bounded Ricci case.

• Tian’s partial C0-conjecture is also confirmed by Chen-Wang using their
solution of Hamilton-Tian conjecture for Kähler-Ricci flow. (Previously W.
Jiang proved it for n ≤ 3, using Tian-Zhang’s proof of Hamilton-Tian
conjecture in dim≤ 3).

• There is a recent work of G. Liu-Szekelyhidi, removed the Ricci upper bound
in Donaldson-Sun’s result.
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§3 cscK metrics and Chow stability
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Looking back at the asymptotic expansion

• Start with
ρm(z) ∼ mn +

sg

2
mn−1 + ...

• If sg ≡ s, then ρm(z) will be “close” to a constant.
• Can we really make it a constant by changing the bundle metric?
• What is the geometric implication for ρm ≡ const?
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The condition ρm ≡ const

• ρm ≡ const implies that 1
m ι
∗
mωFS = ω.

• Meanwhile, since {si } is orthonormal, we have

δij =

∫
X
〈si , sj〉

ωn

n!
= ρm

∫
X

〈si , sj〉∑
j |sj |

2
hm

ι∗ωn
FS

mnn!
= c

∫
ιm(X)

Zi Z̄j∑
k |Zk |

2

(ωFS |ιm(X))
n

n!
.

• We call the matrix

(

∫
ιm(X)

Zi Z̄j∑
k |Zk |

2
ωn

FS)

the center of mass of ιm(X ). If it is a multiple of I, we say ιm is a “balanced
embedding”.
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Balance condition and algebraic geometry

• The balance condition was first introduced by Bourguignon-Li-Yau (1994) as
an auxiliary condition.

• One can easily prove that being balance is equivalent to ρm ≡ const .
• The polarized pair (X ,L⊗m) can be balanced iff (X ,L⊗m) is “Chow stable” in the
sense of geometric invariant theory. This is first observed by S.W. Zhang
(1996) and later reproved by H.Z. Luo, Phong-Sturm and S. Paul.
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Donaldson’s theorems

Theorem (Donaldson, 2001)
Suppose that Aut(X ,L) is discrete and (X ,Lk ) is balanced for all sufficiently large k .
Suppose that the metrics ωk converge in C∞ to some limit ω∞ as k → ∞. Then ω∞ has
constant scalar curvature.

Question: can we always find a converging subsequence of {ωk }? This is still open
to my knowledge.
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Proof
This is just an application of the asymptotic expansion formula:

‖ρk (ωk ) − kn −
s(ωk )

2
kn−1‖C0 ≤ ckn−2.

Now ρk (ωk ) =
dim H0(Lk )

V = kn + kn−1

2 s + O(kn−2). Together with the previous
inequality, we get

‖s(ωk ) − s‖C0 = O(
1
k

).

Let k → ∞, we get at once s(ω∞) ≡ s.
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Donaldson’s theorems

Theorem (Donaldson 2001)
Suppose that Aut(X ,L) is discrete and ω∞ is a Kähler metric in the class 2πc1(L) with
constant scalar curvature. Then (X ,Lk ) is balanced for large enough k and the
sequence of metrics ωk converge in C∞ to ω∞ as k → ∞.

• Roughly speaking, this means “no holomorphic vector fields”+“cscK” implies
“asymptotically Chow stable”.

• When there are non-trivial holomorphic vector fields, there are
counterexamples (7-dim toric variety, due to Ono-Sano-Yotsutani, 2012).

• In the general case, Mabuchi (2005) proved that when there are non-trivial
holomorphic vector fields, one need extra conditions to get asymptotically
Chow stability.
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About the proof

• Donaldson’s original proof is quite complicated.

• Later Phong-Sturm has a simplified proof.
• The rough outline of the proof is as follows: first using the asymptotic
expansion to get a family of “nearly balanced embedding”, this is done by
Donaldson.

• Restricted to the finite dimensional spaces of pulling back metrics, balnaced
embeddings are critical points of a functional I.

• Donaldson’s estimates essentially tell us that at nearly balanced point, the first
order derivative of I is very small and the second order derivative of I is quite
large. Then elementary arguments show that there is a critical point not far
away from the nearly balanced point.
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Reference

• About cscK and extremal metrics, one can learn the basics from Tian and
Szekelyhidi’s books.

• About Bergman kernel, a good book is Ma-Marinescu “Holomorphic Morse
Inequalities and Bergman kernels”. Their tool of study is mainly the heat
kernel. For the “peak section” method, one can start with Zhiqin Lu’s Amer. J.
Math. paper.

• For applications of Bergman kernels in cscK problems, besides Szekelyhidi’s
book, one can also start with Chi Li’s master thesis at PKU.

• For K-stability, there is a quite detailed survey paper by Chenyang Xu, with
title “K-stability of Fano varieties: an algebro-geometric approach”.
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