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§1 L2-theory of ∂̄ in a pseudoconvex domain
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Domain of holomorphy

Definition
Let Ω be a domain in Cn. We say Ω is a “domain of holomorphy” if for any strictly
larger domain Ω′ % Ω, the restriction map O(Ω′)→ O(Ω) is not surjective.

By a classical theorem of Cartan-Thullen, being a domain of holomorphy is
equivalent to certain “holomorphic convexity”. One equivalent version of the
holomorphic convexity says that for any sequence {zν} ⊂ Ω such that zν → ∂Ω, we
can find f ∈ O(Ω) such that {|f (zν)|} is unbounded.
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Pseudoconvexity
Motivated by Euclidean convexity, Levi introduced the following:

Definition
Let Ω be a bounded domain in Cn with C2-boundary, i.e. ∀z0 ∈ ∂Ω, we can find an
open neighborhood U 3 z0 and ϕ ∈ C2(U;R) such that Ω ∩ U = {z ∈ U

∣∣∣ ϕ(z) < 0}
and dϕ|∂Ω∩U , 0. We say ∂Ω is pseudoconvex at z0, if for all ξ = (ξ1, . . . , ξn) ∈ Cn

satisfying
∑

i
∂ϕ

∂zi
(z0)ξi = 0 we have (called the “Levi form”)

Lϕ(z0, ξ) :=
n∑

i ,j=1

∂2ϕ

∂zi∂z̄j
(z0)ξi ξ̄j ≥ 0.

If Lϕ(z0, ξ) > 0 when ξ , 0, we say ∂Ω is strongly pseudoconvex at z0. If all the
boundary points of ∂Ω are pseudoconvex (resp. strongly pseudoconvex), we say Ω
is a pseudoconvex (resp. strongly pseudoconvex) domain.
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Levi problem
• It is quite easy to see that a domain of holomorphy with C2-boundary is
necessarily pseudoconvex. Then it is natural to ask: are pseudoconvex
domains holomorphically convex?

• This is the famous “Levi’s problem”, first solved affirmatively by K. Oka in the
1940’s.

• There are later proofs by H. Grauert in 1958 using sheaf theory, by J. Kohn in
1963 using ∂̄-Neumann problem and by Hörmander in 1965 using L2-theory
in PDE.

• The main advantage of Hörmander’s approach over Kohn’s is his introduction
of weight functions, bypassing the difficult problem of boundary regularity in
Kohn’s approach. Similar trick was introduced about at the same time by
Andreotti-Vesentini in the vector bundle setting (Both works are motivated by
Carleman type estimates in PDE). It relates geometry more closely and is very
flexible to use.
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• The main advantage of Hörmander’s approach over Kohn’s is his introduction
of weight functions, bypassing the difficult problem of boundary regularity in
Kohn’s approach. Similar trick was introduced about at the same time by
Andreotti-Vesentini in the vector bundle setting (Both works are motivated by
Carleman type estimates in PDE). It relates geometry more closely and is very
flexible to use.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 6 / 43



Levi problem
• It is quite easy to see that a domain of holomorphy with C2-boundary is
necessarily pseudoconvex. Then it is natural to ask: are pseudoconvex
domains holomorphically convex?

• This is the famous “Levi’s problem”, first solved affirmatively by K. Oka in the
1940’s.

• There are later proofs by H. Grauert in 1958 using sheaf theory, by J. Kohn in
1963 using ∂̄-Neumann problem and by Hörmander in 1965 using L2-theory
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The ∂̄-equation

The ∂̄-equation.
Let Ω ⊂ Cn be a domain, f =

∑
j f̄jdz̄j be a smooth (0,1)-form, satisfying ∂̄f = 0.

The question is: can we find u ∈ C∞(Ω,C) such that ∂̄u = f , i.e. ∂u
∂z̄j

= f̄j ∀j? �

This is a linear system of 1st order PDEs.

The modern PDE theory separates the problem into two parts:
• Existence of weak solutions;

• Regularity of weak solutions.
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Introducing the weight function
The regularity problem here is not difficult, so we concentrate on the existence of
weak solutions.

Let ϕ ∈ C∞(Ω) be a smooth R-valued function to be determined later, we introduce:

L2(Ω, ϕ) :=
{
f : Ω→ C

∣∣∣∣ ‖f ‖2ϕ :=

∫
Ω

|f |2e−ϕ < ∞
}

L2
(0,1)(Ω, ϕ) :=

{
f =

∑
j

f̄jdz̄j

∣∣∣∣ ‖f ‖2ϕ :=

∫
Ω

∑
j

|f̄j |
2e−ϕ < ∞

}
L2

(0,2)(Ω, ϕ) :=
{
f =

∑
i<j

f̄i j̄dz̄i ∧ dz̄j

∣∣∣∣ ‖f ‖2ϕ :=

∫
Ω

∑
i<j

|f̄i j̄ |
2e−ϕ < ∞

}
∂̄ can be viewed as a densely defined closed operator between these Hilbert spaces.
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The abstract setting

Given three (complex) Hilbert spaces H1,H2,H3 and two densely defined closed
operators T : H1 → H2 and S : H2 → H3 satisfying ST = 0. Our question is that
given f ∈ Ker S, can we find u ∈ Dom(T ) such that Tu = f?

Theorem (Hörmander)
If

‖g‖2H2
≤ C(‖T ∗g‖2H1

+ ‖Sg‖2H3
), ∀g ∈ Dom(T ∗) ∩ Dom(S),

then ∀f ∈ Ker S, ∃u ∈ H1 such that Tu = f , u ∈ (Ker T )⊥ and

‖u‖H1 ≤
√

C‖f ‖H2 .
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Translate into our language

• Let Ω be a pseudoconvex domain and ϕ1, ϕ2, ϕ3 smooth functions to be
determined later. Let

H1 := L2(Ω, ϕ1), H2 := L2
(0,1)(Ω, ϕ2), H3 := L2

(0,2)(Ω, ϕ3).

S and T are both the (closed extension of the usual)∂̄-operators.

• We need to verify that

‖f ‖2ϕ2
≤ C2

(
‖T ∗f ‖2ϕ1

+ ‖Sf ‖2ϕ3

)
, ∀f ∈ Dom(T ∗) ∩ Dom(S).

• It suffices to check this for f ∈ D(0,1)(Ω), smooth (0,1)-forms with compact
supports.
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Formula for T ∗

For f ∈ D(0,1)(Ω) and u ∈ D(Ω), we have

(Tu, f )ϕ2 = (u,T ∗f )ϕ1 =

∫
Ω

uT ∗f e−ϕ1

=

∫
Ω

∑
j

∂u
∂z̄j

f̄je
−ϕ2 = −

∫
Ω

u
∑

j

∂

∂z̄j

(
f̄je
−ϕ2

)
=

∫
Ω

u
(
− eϕ1

∑
j

∂

∂zj
(f̄je−ϕ2)

)
e−ϕ1 ,

So we get

T ∗f = −eϕ1
∑

j

∂

∂zj
(f̄je

−ϕ2)
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Special choice of weights
• We set ϕ3 = ϕ, ϕ2 := ϕ − ψ and ϕ1 := ϕ − 2ψ, with ϕ, ψ to be determined. Then
we have

T ∗f = −eϕ−2ψ
∑

j

∂

∂zj
(f̄je

−ϕ+ψ)

= −eϕ−2ψ
∑

j

[ ∂
∂zj

(f̄je
−ϕ)eψ + f̄je

−ϕ+ψ∂jψ
]

• Write δj := eϕ ∂
∂zj

(·e−ϕ) (this is the formal adjoint of − ∂
∂z̄j

with respect to
e−ϕdV ), then T ∗f = −e−ψ

∑
j δj f̄j − e−ψ

∑
j ∂jψ · f̄j .

• From which we get∫
Ω

|
∑

j

δj f̄j |
2e−ϕ ≤ 2‖T ∗f ‖2ϕ1

+ 2
∫

Ω

|f |2|∂ψ|2e−ϕ
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Using commutator to help
• It is easy to check that [δi ,

∂
∂z̄j

] = ∂2ϕ

∂zi∂z̄j
. Also, direct computation gives us

|Sf |2 = 1
2

∑
i ,j |

∂f̄j
∂z̄i
−

∂f̄i
∂z̄j
|2 =

∑
i ,j |

∂f̄j
∂z̄i
|2 −

∑
i ,j

∂f̄j
∂z̄i

(
∂f̄i
∂z̄j

)
.

• So we get

‖Sf ‖2ϕ =

∫
Ω

∑
i ,j

|
∂f̄j
∂z̄i
|2e−ϕ +

∫
Ω

∑
i ,j

δi(∂j̄ f̄i)f̄je
−ϕ

=

∫
Ω

∑
i ,j

|
∂f̄j
∂z̄i
|2e−ϕ −

∫
Ω

|
∑

j

δj f̄j |
2e−ϕ +

∫
Ω

∑
i ,j

∂2ϕ

∂zi∂z̄j
f̄i f̄je

−ϕ.

• We get∫
Ω

∑
i ,j

|
∂f̄j
∂z̄i
|2e−ϕ +

∫
Ω

∑
i ,j

∂2ϕ

∂zi∂z̄j
f̄i f̄je

−ϕ ≤ ‖Sf ‖2ϕ + 2‖T ∗f ‖2ϕ1
+ 2

∫
Ω

|f |2|∂ψ|2e−ϕ.
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Condition for ϕ and ψ
• If we have

∑
i ,j

∂2ϕ

∂zi∂z̄j
ξi ξ̄j ≥ 2(|∂ψ|2 + eψ)|ξ|2 on Ω for any ξ ∈ Cn, then we will get

‖f ‖2ϕ2
≤ ‖T ∗f ‖2ϕ1

+ ‖Sf ‖2ϕ3
, ∀f ∈ Dom(T ∗) ∩ Dom(S).

• A C2-function u with (ui j̄) := ( ∂2u
∂zi∂z̄j

) ≥ 0 everywhere is called a
plurisubharmonic function (“PSH”-for short). If (ui j̄) is positive definite
everywhere, we say u is strictly plurisubharmonic. Generally, a PSH function is
defined to be an upper semicontinuous function with values in [−∞,∞), such
that its restriction to any complex line is subharmonic.

• When can we find such ϕ and ψ? It is known that a pseudoconvex domain
always admits a strictly PSH function p ∈ C∞(Ω) with {z ∈ Ω | p(z) ≤ c} is
compact for any c ∈ R. Then one can prove that for a suitable choice of convex
increasing function χ ∈ C∞(R) (depending on ψ), ϕ := χ ◦ p.
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Hörmander’s L2-existence theorem

Theorem
Let Ω ⊂ Cn be a pseudoconvex domain and ϕ ∈ C2(Ω) satisfies∑

i ,j

∂2ϕ

∂zi∂z̄j
(z)ξi ξ̄j ≥ c(z)|ξ|2,∀z ∈ Ω,∀ξ ∈ Cn,

where c(z) is a positive continuous function on Ω. If f ∈ L2
(0,1)

(Ω, ϕ) s.t. ∂̄f = 0, then
there exists u ∈ L2(Ω, ϕ) such that ∂̄u = f , (when f is smooth, so is u) and∫

Ω

|u|2e−ϕ ≤ 2
∫

Ω

|f |2

c
e−ϕ.
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A cleaner form
Theorem (Hörmander)
Let Ω ⊂ Cn be a pseudoconvex domain and ϕ ∈ PSH(Ω). If f ∈ L2

(0,1)
(Ω, ϕ) s.t. ∂̄f = 0,

then there exists u ∈ L2(Ω, ϕ) such that ∂̄u = f , and∫
Ω

|u|2e−ϕ(1 + |z |2)−2 ≤

∫
Ω

|f |2e−ϕ.

Idea of proof:
• May first assume ϕ is C2, and apply the previous theorem to
ϕ̃ := ϕ + 2 log(1 + |z |2), where we take c(z) := 2

(1+|z |2)2 .

• For general ϕ ∈ PSH(Ω), we use smooth PSH functions ϕε (defined on larger
and larger subdomains) decreasing to ϕ. Solving the equation on smaller
domains with respect to ϕε and take limit ε → 0.
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(Ω, ϕ) s.t. ∂̄f = 0,

then there exists u ∈ L2(Ω, ϕ) such that ∂̄u = f , and∫
Ω

|u|2e−ϕ(1 + |z |2)−2 ≤

∫
Ω

|f |2e−ϕ.

Idea of proof:
• May first assume ϕ is C2, and apply the previous theorem to
ϕ̃ := ϕ + 2 log(1 + |z |2), where we take c(z) := 2

(1+|z |2)2 .
• For general ϕ ∈ PSH(Ω), we use smooth PSH functions ϕε (defined on larger
and larger subdomains) decreasing to ϕ. Solving the equation on smaller
domains with respect to ϕε and take limit ε → 0.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 16 / 43



Application: The Levi Problem

Let Ω ⊂ Cn be a pseudoconvex domain and {zν} ⊂ Ω satisfies zν → ∂Ω. Also given an
arbitrary family of cν ∈ C, we need to construct f ∈ O(Ω) such that f (zν) = cν.
• Around each zν, choose cut-off functions ρν such that their supports do not
intersect each other. Then construct h(z) such that near zν, h(z) = cνρν.

• Need to solve the equation ∂̄u = ∂̄h with u(zν) = 0, then f := h − u is what we
need.

• The vanishing of u at zν is guaranteed by using weight of the form φ + ψ
where φ(z) = n

∑
ν ρν(z) log |z − zν|2 and ψ ∈ C∞(Ω) ∩ PSH(Ω) such that

φ + ψ ∈ PSH(Ω). Note that |∂̄h|2e−φ−ψ ∈ L1
loc, so |u|

2e−φ−ψ ∈ L1
loc will imply

u(zν) = 0 for all zν.
• Using special property of pseudoconvex domains, we can find such a ψ.
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Application: Bombieri’s theorem
Theorem (Bombieri)
Let ϕ ∈ PSH(Ω), then the set E := {z ∈ Ω | e−ϕ < L1(B(z, r)),∀r > 0} is an analytic
subset of Ω.

Proof
• Consider the space A2(Ω, ϕ) consists of holomorphic functions on Ω with∫

Ω
|f |2e−ϕ < ∞, we claim that E = ∩f∈A2(Ω,ϕ)f −1(0). This immediately implies that

E is analytic.

• On one hand, if
∫

Ω
|f |2e−ϕ < +∞, we necessarily have f (z) = 0 for any z ∈ E . This

implies E ⊂ ∩f∈A2(Ω,ϕ)f −1(0).

• On the other hand, if z0 ∈ Ω \ E , then we can find a neighborhood of z0 on which
e−ϕ is integrable. We start with a cut-off function ρ and solve the equation
∂̄u = ∂̄ρ using weight ϕ − n log |z − z0|

2 to get f = ρ − u ∈ A2 with f (z0) = 1.
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§2 Global version

SHI, Yalong (Nanjing University) BICMR Complex Geometry 19 / 43



Global version

Theorem
Let (X , ω) be a compact Kähler manifold. (F ,h) be a holomorphic line bundle with
Hermitian metric h. Assume ϕ ∈ L1(X ) satisfies that there is a continuous function
c > 0 on X such that √

−1Θ(h) +
√
−1∂∂̄ϕ ≥ cω.

Then for any g ∈ L2(X ,Λn,1T ∗X ⊗ F ) such that D′′g = 0, there exists
f ∈ L2(X ,Λn,0T ∗X ⊗ F ) such that D′′f = g, (when g is smooth, so is f ) and∫

X
|f |2h,ge−ϕdVg ≤

∫
X

|g|2h,g
c

e−ϕdVg .
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A convenient version
Usually we want to construct holomorphic section of a holomorphic line bundle L
with bundle metric h, then we can take F := K −1

X ⊗ L with bundle metric det(g) ⊗ h,
then the curvature condition is

√
−1Θ(h) + Ric(ωg) +

√
−1∂∂̄ϕ ≥ cωg.

Theorem
Let (X , ω) be a compact Kähler manifold. (L,h) be a holomorphic line bundle with
Hermitian metric h. Assume ϕ ∈ L1(X ) satisfies that

√
−1Θ(h) + Ric(ω) +

√
−1∂∂̄ϕ ≥ εω,

with ε > 0. Then for any g ∈ L2(X ,Λ0,1T ∗X ⊗ L) such that D′′g = 0, there exists
f ∈ L2(X ,L) such that ∂̄f = g, (when g is smooth, so is f ) and∫

X
|f |2he−ϕdVg ≤

1
ε

∫
X
|g|2h,ge−ϕdVg .
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Rough outline of proof
• We have the basic equality of Bochner-Kodaira-Nakano

∆D′′ −∆D′ = [
√
−1ΘF ,h,Λ]

• Assume at a given point gi j̄ = δij and
√
−1ΘF ,h =

√
−1

∑
j λjdzj ∧ dz̄j , then for a

section u of Λn,1T ∗X ⊗ F , write u =
∑

j uj̄dz1 ∧ · · · ∧ dzn ∧ dz̄j ⊗ e we have

〈[
√
−1ΘF ,h,Λ]u,u〉 =

∑
j

λj |uj̄ |
2h(e,e).

• If λj ≥ ε > 0 for all j , we have

ε‖u‖2 ≤ ‖D′′u‖2 + ‖D′′∗u‖2.

This is precisely the condition we need in Hörmander’s abstract lemma.
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Application: Kodaira’s embedding theorem
• Suppose L→ X is a holomorphic line bundle over a compact complex
manifold. h is an Hermitian metric on L such that

√
−1Θ(h) > 0. We can take

ω :=
√
−1Θ(h) as a Kähler metric on X .

• We want to prove that there is a m > 0 such that global sections of L⊗ will
embeds X into CPN with N = dim H0(X ,O(L⊗m)) − 1.

• Need to prove: for any p ∈ X , we can find global holomorphic sections
s0, s1, . . . , sn of L⊗m, such that s0(p) , 0, si(p) = 0, i = 1, . . . ,n and
s1/s0, . . . , sn/s0 can be viewed as a coordinate system near p. (Same argument
shows that for any two different points p,q, we can find global section s of
L⊗m such that s(p) , 0 but s(q) = 0. We omit this.)

• Using compactness, we can find m such that any basis of H0(X ,O(L⊗m)) will
give rise to an embedding of X .
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• Fix p ∈ X and choose holomorphic coordinates (z1, . . . , zn) near p such that
zi(p) = 0, i = 1, . . . ,n. Let ρ be a cut-off function near p. Also assume that e is
local holomorphic frame of L over U.

• We define f0 := ρe⊗m and fi := ρzie⊗m, they are smooth sections of L⊗m and are
holomorphic in a smaller neighborhood of p. Then gi := ∂̄fi are smooth
L⊗m-valued (0,1)-forms and D′′gi = 0 for i = 0, . . . ,n.

• We need to find smooth sections ui satisfying ∂̄ui = gi and ui = O(|z |2), so we
need singular weight ϕ, which is smooth away from the chart and is of the
form ϕ = (n + 1) log |z |2 near p.

• Note that |gi |
2
h,ge−ϕ is always integrable on X , so the condition we need to solve

∂̄ui = gi with estimates is

m
√
−1Θ(h) + Ric(ω) +

√
−1∂∂̄ϕ > εω.

Since
√
−1Θ(h) > 0 and

√
−1∂∂̄ϕ is non-negative near p, this is easily achieved

by enlarging m.
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§3 Variations of the theme: L2-extension theorems
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L2-extension theorem

In 1987, Ohsawa-Takegoshi proved the following extension theorem with
estimates:

Theorem (Ohsawa-Takegoshi)
Let Ω ⊂ Cn be a pseudoconvex domain, and H is a complex hyperplane in Cn with
supz∈Ωd(z,H) < +∞. Then for any ϕ ∈ PSH(Ω) and f ∈ O(Ω ∩ H) satisfying∫

Ω∩H |f |
2e−ϕ < ∞, we can find F ∈ O(Ω) such that F |Ω∩H = f and∫

Ω

|F |2e−ϕ ≤ C
∫

Ω∩H
|f |2e−ϕ

where C is a constant, depending only on supz∈Ωd(z,H) < +∞.
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L2-extension theorem

By induction, we get

Theorem (Ohsawa-Takegoshi)
Let Ω ⊂ Cn be a bounded pseudoconvex domain, and H is a complex affine subspace of
Cn. Then for any ϕ ∈ PSH(Ω) and f ∈ O(Ω ∩ H) satisfying

∫
Ω∩H |f |

2e−ϕ < ∞, we can
find F ∈ O(Ω) such that F |Ω∩H = f and∫

Ω

|F |2e−ϕ ≤ C
∫

Ω∩H
|f |2e−ϕ

where C is a constant, depending only on n,diamΩ.

This theorem is very powerful, even the simplest case H = point .
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Application: Demailly’s approximation theorem

Theorem (Demailly, 1992)
Let ϕ ∈ PSH(Ω), where Ω is a bounded pseudoconvex domain in Cn. Denote by
A2(Ω,mϕ) the Hilbert space of holomorphic functions f on Ω with

∫
Ω
|f |2e−mϕ < ∞.

And let ϕm := 1
m log(

∑
l |σl |

2) where (σl) is an orthonormal basis of A2(Ω,mϕ). Then
there are constants C1,C2 independent of m such that
1. ϕ(z) − C1

m ≤ ϕm(z) ≤ sup|ζ−z |<r ϕ(ζ) + 1
m log C2

r2n , for every z ∈ Ω and r < d(z, ∂Ω).
In particular, ϕm converges to ϕ pointwise and in L1

loc topology on Ω when
m → ∞.

2. ν(ϕ, z) − 2n
m ≤ ν(ϕm, z) ≤ ν(ϕ, z), for every z ∈ Ω. Here ν(ϕ, z) is the

Lelong-number.
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r2n , for every z ∈ Ω and r < d(z, ∂Ω).
In particular, ϕm converges to ϕ pointwise and in L1

loc topology on Ω when
m → ∞.

2. ν(ϕ, z) − 2n
m ≤ ν(ϕm, z) ≤ ν(ϕ, z), for every z ∈ Ω. Here ν(ϕ, z) is the

Lelong-number.
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Lelong number

For ϕ ∈ PSH(Ω) and x0 ∈ Ω, we define the Lelong number of ϕ at x0 to be

ν(ϕ, x0) := lim inf
z→x0

ϕ(z)

log |z − x0|
= lim

r→0+

supB(x0,r) ϕ

log r
.

If ϕ = log |f | with f ∈ O(Ω), then ν(ϕ, x0) = ordx0f .
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Proof of Demailly’s theorem

• ϕm is well-defined: consider the evaluation functional evz : A2(Ω,mϕ)→ C,
f 7→ f (z). It is bounded since the norm here dominates the L∞ norm by Cauchy
formula. By Riesz theorem, there is a hz ∈ A2(Ω,mϕ) such that for any
f ∈ A2(Ω,mϕ), we have f (z) =

∫
Ω

f h̄ze−mϕ. Also, we have hz =
∑

l(hz , σl)σl and
so

sup
f∈B(1)

|f (z)|2 = ‖hz‖
2 =

∑
l

|(hz , σl)|
2 =

∑
l

|σl(z)|2

So we get ϕm = 1
m log ‖hz‖

2 = supf∈B(1)
1
m log |f (z)|2. Since L2-topology here is

stronger than the uniform convergence topology, we know that
∑

l |σl |
2

converges uniformly on compact sets and is real analytic.
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• For any r < d(z0, ∂Ω), we have

|f (z0)|2 ≤
1

ω2nr 2n

∫
|z−z0 |<r

|f (z)|2dV (z)

≤
1

ω2nr 2n
exp

(
m sup
|z−z0 |<r

ϕ(z)
) ∫

Ω

|f |2e−mϕ

• So we get

ϕm(z0) ≤
1
m

(
log

1
ω2nr 2n

+ m sup
|z−z0 |<r

ϕ(z)
)

= sup
|z−z0 |<r

ϕ(z) +
1
m

log
C2

r 2n
.
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• Now we apply the L2-extension theorem: start with the point z0 and the
function a ∈ C, we can find f holomorphic on Ω and f (z0) = a with∫

Ω
|f |2e−mϕ ≤ C3|a|2e−mϕ(z0) where C3 depends only on n and diamΩ (may

assume ϕ(z0) , −∞).

• Choose a such that C3|a|2e−mϕ(z0) = 1, then we get

ϕm(z0) ≥
1
m

log |f (z0)|2 =
1
m

log |a|2 = ϕ(z0) −
C1

m
.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 32 / 43



• Now we apply the L2-extension theorem: start with the point z0 and the
function a ∈ C, we can find f holomorphic on Ω and f (z0) = a with∫

Ω
|f |2e−mϕ ≤ C3|a|2e−mϕ(z0) where C3 depends only on n and diamΩ (may

assume ϕ(z0) , −∞).
• Choose a such that C3|a|2e−mϕ(z0) = 1, then we get

ϕm(z0) ≥
1
m

log |f (z0)|2 =
1
m

log |a|2 = ϕ(z0) −
C1

m
.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 32 / 43



The conclusion for Lelong numbers follows easily form the first conclusion:

sup
|z−z0 |<r

ϕ(z) −
C1

m
≤ sup
|z−z0 |<r

ϕm(z) ≤ sup
|z−z0 |<2r

ϕ(z) +
1
m

log
C2

r 2n
,

and hence

sup|z−z0 |<2r ϕ(z) + 1
m log C2

r2n

log r
≤

sup|z−z0 |<r ϕm(z)

log r
≤

sup|z−z0 |<r ϕ(z) − C1
m

log r
.

Taking limit r → 0+, we get

ν(ϕ, z0) −
2n
m
≤ ν(ϕm, z0) ≤ ν(ϕ, z0).
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§4 Recent progresses: multiplier ideal sheaf, openness conjecture and
strong openness conjecture
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Multiplier ideal sheaves

Definition
Let ϕ ∈ PSH(Ω), we define the multiplier ideal sheaf of ϕ to be the sheaf of germs
f ∈ Oz such that |f |2e−ϕ is integrable near z. We denote it by I(ϕ). It is a subsheaf of
OΩ. Explicitly,

I(ϕ)(U) = {f ∈ O(U) | |f |2e−ϕ ∈ L1
loc}.

This is a useful tool, connecting complex analysis and potential theory to algebraic
geometry.
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Nadel’s vanishing theorem

Theorem
Let (X , ω) be a compact Kähler manifold, F a holomorphic line bundle with a possibly
singular Hermitian metric, locally of the form e−ϕ. If

√
−1Θ(h) =

√
−1∂∂̄ϕ ≥ εω for

some continuous positive function ε, then we have

Hq(X ,O(KX ⊗ F ) ⊗ I(ϕ)) = 0,∀q ≥ 1.

It contains several useful generalizations of Kodaira vanishing theorem, e.g. the
Kawamata-Viehweg vanishing theorem.
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Demailly-Kollár’s conjectures
Conjecture (Openness conjecture)
For a plurisubharmonic function ϕ defined in a neighbourhood of z0 ∈ C

n, the set of
those p ∈ R such that e−pϕ is integrable near z0 is an open interval of the form
(−∞,p0).

Conjecture (Strong openness conjecture)
For a plurisubharmonic function ϕ defined in the unit polydisc ∆1 and a holomorphic
function F satisfies

∫
∆1
|F |2e−ϕ < ∞, there is a r ∈ (0,1) and a p > 1 such that∫

∆r

|F |2e−pϕ < ∞
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• The openness conjecture was proved by Berndtsson in 2013.

• The strong openness conjecture was proved by Guan-Zhou later in the same
year. (Published in 2015).

• There is a shorter proof of openness conjecture by Berndtsson, using methods
of Guan-Zhou.
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Proof of Openness Conjecture

• We may assume that z0 = 0, ϕ is defined in a neighborhood of ∆̄n and ϕ ≤ 0.
We shall prove by induction on n. The n = 1 case is easy and known before. So
we omit this.

• We first claim that if e−ϕ is not locally integrable near the origin then∫
∆n−1

e−ϕ(·,zn)dV (z ′) ≥
cn

|zn|
2
, |zn| ≤

1
2
.

• Assuming the claim now, we can easily finish the proof:
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• Assume the result is proven for n − 1. Now suppose∫
∆n

e−p0ϕ < ∞.

• By definition of p0, if p > p0, e−pϕ is not integrable near the origin. So we can
use the claim to conclude∫

∆n−1
e−pϕ(·,zn)dV (z ′) ≥

cn

|zn|
2
, |zn| ≤

1
2
.

• Now for a.e. zn, we have
∫

∆n−1 e−p0ϕ(·,zn)dV (z ′) < ∞, so we can use induction
assumption to get that for any such zn and a p > p0,∫

∆n−1
e−pϕ(·,zn)dV (z ′) < ∞
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• Now apply Lebesgue’s dominated convergence theorem, we get for previous
zn, we have∫

∆n−1
e−p0ϕ(·,zn)dV (z ′) = lim

p→p0+

∫
∆n−1

e−pϕ(·,zn)dV (z ′) ≥
cn

|zn|
2
.

• But this implies
∫

∆n e−p0ϕ = ∞.
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Proof of the claim
• This is again an application of L2-extension theorem.

• Fix zn and assume
∫

∆n−1 e−ϕ(·,zn)dV (z ′) < +∞. Apply Ohsawa-Takegoshi to f ≡ 1
on ∆n−1 × zn, we get F holomorphic on ∆n with∫

∆n
|F |2e−ϕ ≤ C1

∫
∆n−1

e−ϕ(·,zn)dV (z ′)

• Using mean value inequality, we get

|F (0, ζ)|2 ≤ C2

∫
∆n
|F |2 ≤ C2

∫
∆n
|F |2e−ϕ, |ζ | ≤

1
2

• Now F (0,0) = 0, we can apply the one-variable Schwarz lemma to get

|F (0, ζ)|2 ≤ C3|ζ |
2
∫

∆n
|F |2e−ϕ, |ζ | ≤

1
2
.

Now take ζ = zn and use the fact F (0, zn) = 1.
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