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Cohomology class of the Ricci form

• Recall that ΛnT 1,0X =: K −1
X is the anticanonical line bundle, and g induced an

Hermitian metric on K −1
X , with | ∂

∂z1
∧ · · · ∧ ∂

∂zn
|2g := det(gi j̄), its curvature form is

exactly ∂̄∂ log det(gi j̄).

• So we get √
−1Θ(K −1

X , det g) = Ric(ωg).

• By Chern’s theorem,

[Ric(ωg)] = 2πc1(K −1
X ) =: 2πc1(X ).
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Calabi’s problem

Calabi asked the following questions:
1. Given a Kähler metric g and a closed (1,1)-form η such that its cohomology

class in H2
dR(X ) is [η] = 2πc1(X ), can we find another Kähler metric g′ within

the same Kähler class [ωg] such that Ric(ωg′) = η?

2. When can we find a Kähler metric which is at the same time an Einstein
metric? That is, Ric(ωg) = λωg for a constant λ ∈ R. We call such a metric a
Kähler-Einstein metric.

Recall that by ∂∂̄-lemma, different Kähler metrics in the same Kähler class
differ by

√
−1∂∂̄ϕ for a R-valued function ϕ. So Calabi’s problems actually ask

whether we can find smooth function ϕ satisfying a specific equation.
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Obvious necessary condition

Recall that for a real (1,1)-form η =
√
−1ηi j̄dzi ∧ dz̄j , we say it is positive (write

η > 0 ), if the matrix (ηi j̄) is positive definite everywhere. And we say a real
(1,1)-class α ∈ H2

dR(X ) is positive if we can find a closed η > 0 such that [η] = α.
First, observe that:

Lemma
If the compact Kähler manifold (X , J ,g) is Einstein, then either c1(X ) > 0 or
c1(X ) < 0 or c1(X ) = 0.

Also observe that the Ricci form is invariant under rescaling, so for the
Kähler-Einstein problem, we can assume λ = 1,−1 or 0.
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Aubin-Yau and Calabi-Yau Theorem
Theorem (Aubin-Yau)
If X is compact Kähler manifold with c1(X ) < 0, then there is a unique Kähler metric
g satisfying

Ric(ωg) = −ωg .

Theorem (Calabi-Yau theorem)
If X is compact Kähler manifold with a given Kähler metric g0, then given any closed
(1,1)-form η such that [η] = 2πc1(X ), there is a unique Kähler metric g with
[ωg] = [ωg0] satisfying

Ric(ωg) = η.

In particular, if c1(X ) = 0, then for any Kähler class α, there is a unique Ricci-flat
Kähler metric in the class α.
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Equation for Aubin-Yau Theorem
• For Aubin-Yau theorem, we start with a g0 such that its Kähler form
ω ∈ −2πc1(X ) = −[Ric(ω)], so we can apply the ∂∂̄-lemma to get a smooth
function h satisfying Ric(ω) + ω =

√
−1∂∂̄h, and h is unique if we require∫

X ehωn =
∫

X ω
n.

• We want to find ϕ ∈ C2(X ;R) s.t. ωϕ := ω +
√
−1∂∂̄ϕ > 0 and

Ric(ωϕ) + ωϕ = 0, i.e.,

0 = −∂i∂j̄ log det(gpq̄ + ϕpq̄) + gi j̄ + ϕi j̄ = −∂i∂j̄

(
log

det(gpq̄ + ϕpq̄)

det(gpq̄)
− h − ϕ

)
.

• So we get the equation

(ω +
√
−1∂∂̄ϕ)n = eh+ϕωn. (0.1)
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Equation for Calabi-Yau Theorem

• For Calabi-Yau theorem, we have a unique h satisfying Ric(ω) − η =
√
−1∂∂̄h

and
∫

X ehωn =
∫

X ω
n.

• We want to find ϕ such that ωϕ > 0 and Ric(ωϕ) = η, i.e.

−∂i∂j̄ log det(gpq̄ + ϕpq̄) = −∂i∂j̄ log det(gpq̄) − hi j̄ .

• So the equation is
(ω +

√
−1∂∂̄ϕ)n = ehωn. (0.2)
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Uniqueness
Lemma (Calabi)
The solutions to (0.1) and (0.2) are both unique.

Proof
• If both ϕ1 and ϕ2 solve (0.1), set ψ := ϕ2 − ϕ1. Then ψ satisfies

(ω1 +
√
−1∂∂̄ψ)n = eψωn

1.

• At the maximum point of ψ, we have eψωn
1 ≤ ω

n
1, so ψ ≤ 0. Similarly, we get

ψ ≥ 0, hence ψ ≡ 0.

• If both ϕ1 and ϕ2 solve (0.2), set ψ := ϕ2 − ϕ1. Then ψ satisfies an elliptic
equation of the form Lψ = 0, with L = Ai j̄(z, ∂2ϕ1, ∂

2ϕ2)∂i∂j̄ .
• Since ψ must achieve its maximum and minimum somewhere, by strong
maximum principle, ψ is a constant, and the corresponding metrics are the same.
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The “Continuity Method”

• We start with the Aubin-Yau theorem. The idea of proof is to use the so called
“continuity method”, introduced in the first half of 20th century by H. Weyl.

• We introduce an extra parameter t into (0.1):

(ω +
√
−1∂∂̄ϕ)n = eth+ϕωn. (0.3)

Then we study the set S := {t ∈ I = [0,1] | (0.3) is solvable in Ck ,α(X )}.
• Obviously 0 ∈ S, since in this case ϕ ≡ 0 is a solution. Then we try to show S is
both open and closed. By connectness of I, we will get 1 ∈ S, i.e. (0.1) is
solvable.
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Openness

• To show the openness, we shall use the implicit function theorem in Banach
spaces.

• We consider the operator Ψ : I × Ck ,α(X )→ Ck−2,α, where

Ψ(t , ϕ) := log
(ω +

√
−1∂∂̄ϕ)n

ωn − ϕ − th.

• Then we have
DϕΨ(ψ) = g j̄ i

ϕ∂i∂j̄ψ − ψ = (∆ϕ − 1)ψ.

• This is invertible by Fredholm alternative, since we can easily prove its
injectivity, either use maximum principle or integration by parts. So we get the
openness of S.
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A priori estimates: C0-estimates
• To prove the closedness, we shall derive a priori estimates: if ti ∈ S with
solution ϕi ∈ Ck ,α(X ) and ti → t0 ∈ I, we need to show that ‖ϕi‖k ,α ≤ C with a
uniform constant C. Then we can find a converging subsequence in Ck ,α. If
k ≥ 2, then we will get a solution for t0 and S must be closed.

• The C0 estimate of ϕ is rather direct: if

(ω +
√
−1∂∂̄ϕ)n = eth+ϕωn

and ϕ achieves its maximum at p ∈ X , then

eth(p)+maxϕωn(p) ≤ ωn(p),

so ϕ ≤ ‖h‖∞. Similarly, we get ϕ ≥ −‖h‖∞, so ‖ϕ‖∞ ≤ ‖h‖∞. This is already
known to Calabi.
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Preparation for C2-estimates

• We shall not prove C1 estimate directly, (which is not simple, and first proved
directly by Blocki, more than 30 years later than Yau’s work) but use C2

estimates.

• The C2 estimate is due independently to Aubin and Yau, with slightly different
calculations.

• We denote by ∆ := g j̄ i∂i∂j̄ and ∆ϕ := g j̄ i
ϕ∂i∂j̄ . Since (gi j̄ + ϕi j̄) is positive

definite, taking trace with respect to ω, we have
0 < g j̄ i(gi j̄ + ϕi j̄) =: trωωϕ = n + ∆ϕ. Now we compute ∆ϕtrωωϕ at a point p,
using Kähler normal coordinates of g at p.
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Note that at this point, we have Ri j̄k l̄ = −∂i∂j̄gk l̄ , so we have

∆ϕtrωωϕ = g j̄ i
ϕ∂i∂j̄(g

l̄kgϕ,k l̄) = g j̄ i
ϕ∂i(g l̄k

∂gϕ,k l̄

∂z̄j
− g l̄pgq̄k ∂gpq̄

∂z̄j
gϕ,k l̄)

= g j̄ i
ϕg l̄k

∂2gϕ,k l̄

∂zi∂z̄j
+ g j̄ i

ϕg l̄pgq̄kRi j̄pq̄gϕ,k l̄

= g j̄ i
ϕg l̄k

(
− R(gϕ)i j̄k l̄ + gq̄p

ϕ ϕp̄l j̄ϕkq̄i

)
+ g j̄ i

ϕg l̄pgq̄kRi j̄pq̄gϕ,k l̄

= −trωRic(ωϕ) + g j̄ i
ϕg l̄kgq̄p

ϕ ϕp̄l j̄ϕkq̄i + g j̄ i
ϕg l̄pgq̄kRi j̄pq̄gϕ,k l̄ .
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So we get

∆ϕ log trωωϕ = g j̄ i
ϕ∂i

∂j̄ trωωϕ

trωωϕ

=
∆ϕtrωωϕ

trωωϕ

−
|∂trωωϕ|

2
ϕ

(trωωϕ)2

=
1

trωωϕ

(
− trωRic(ωϕ) + g j̄ i

ϕg l̄pgq̄kRi j̄pq̄gϕ,k l̄

)
+

(trωωϕ)g j̄ i
ϕg l̄kgq̄p

ϕ ϕp̄l j̄ϕkq̄i − |∂trωωϕ|
2
ϕ

(trωωϕ)2
.
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Claim: We always have

(trωωϕ)g j̄ i
ϕg l̄kgq̄p

ϕ ϕp̄l j̄ϕkq̄i − |∂trωωϕ|
2
ϕ ≥ 0.

To see this, by an extra linear coordinate change, we can further assume that
ϕi j̄ = λiδij , with λi ∈ R and 1 + λi > 0. So at this point, we have

gϕ,i j̄ = (1 + λi)δij

and g j̄ i
ϕ =

δij

1+λi
, and so trωωϕ =

∑
i(1 + λi), and

g j̄ i
ϕg l̄kgq̄p

ϕ ϕp̄l j̄ϕkq̄i =
∑
i ,p,k

1
1 + λi

1
1 + λp

|ϕi p̄k |
2.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 15 / 31



So

|∂trωωϕ|
2
ϕ =

∑
i

1
1 + λi

|∂i(g l̄kgϕ,k l̄)|
2 =

∑
i

1
1 + λi

|g l̄k∂igϕ,k l̄ |
2

=
∑

i

1
1 + λi

|
∑

k

ϕkk̄ i |
2 =

∑
i

1
1 + λi

|
∑

k

√
1 + λk

ϕkk̄ i
√

1 + λk
|2

≤
∑

i

1
1 + λi

(∑
k

(1 + λk )
)(∑

p

|ϕpp̄i |
2

1 + λp

)
= (trωωϕ)

∑
i ,p

1
1 + λi

|ϕpp̄i |
2

1 + λp

≤ (trωωϕ)
∑
i ,p,k

1
1 + λi

1
1 + λp

|ϕkp̄i |
2.
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Main Lemma for C2-estimate

Lemma
Let ω be a Kähler metric on a compact Kähler manifold X and ϕ ∈ C4(X ;R) satisfies
ω +

√
−1∂∂̄ϕ > 0, then

∆ϕ log trωωϕ ≥
−trωRic(ωϕ)

trωωϕ

− Ctrωϕω. (0.4)
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Proof
By the above discussions, we have

∆ϕ log trωωϕ ≥
1

trωωϕ

(
− trωRic(ωϕ) + g j̄ i

ϕg l̄pgq̄kRi j̄pq̄gϕ,k l̄

)
=
−trωRic(ωϕ)

trωωϕ

+
1

trωωϕ

∑
i ,k

1 + λk

1 + λi
Ri īk k̄

≥
−trωRic(ωϕ)

trωωϕ

+
inf i ,k Ri īk k̄

trωωϕ

∑
i ,k

1 + λk

1 + λi

=
−trωRic(ωϕ)

trωωϕ

+ inf
i ,k

Ri īk k̄ trωϕω.

Since X is compact, we can find C > 0 such that inf i ,k Ri īk k̄ ≥ −C.
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Using the equation
Note that we haven’t use the equation! So the above computation applies to other
situations.
Now we rewrite the equation (0.3) as

Ric(ωϕ) = Ric(ω) − t
√
−1∂∂̄h −

√
−1∂∂̄ϕ

= Ric(ω) − t
(
Ric(ω) + ω

)
−

(
ωϕ − ω

)
= (1 − t)

(
Ric(ω) + ω

)
− ωϕ.

So −trωRic(ωϕ) ≥ trωωϕ − C. So we conclude that

∆ϕ log trωωϕ ≥ 1 − C
( 1
trωωϕ

+ trωϕω
)
≥ 1 − C′trωϕω.

The last step used the fact 1
trωωϕ

= 1∑
i (1+λi )

≤ 1
1+λ1

≤ trωϕω.
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Applying the maximum principle
• On the other hand, we have ∆ϕϕ = trωϕ(ωϕ − ω) = n − trωϕω, and so we get

∆ϕ

(
log trωωϕ − (C′ + 1)ϕ

)
≥ −C′′ + trωϕω.

• At the maximum point of log trωωϕ − (C′ + 1)ϕ, we have trωϕω ≤ C′′. Use Kähler
normal coordinates at that point and assume gϕ is diagonal as before, we get

1
1+λi
≤ C′′ for each i .

• By (0.3), we have Πi(1 + λi) = eth+ϕ ≤ C0, which implies 1 + λi ≤ C0(C′′)n−1.
So trωωϕ ≤ nC0(C′′)n−1. This implies at this point log trωωϕ − (C′ + 1)ϕ is
uniformly bounded from above (use |ϕ| ≤ ‖h‖C0). This in turn implies
trωωϕ ≤ C for a uniform constant C.

• Since we have L∞ control of ∆ϕ, using Lp theory for linear elliptic equations,
we get uniform control of C1-norm for ϕ. Also a direct consequence of the ∆ϕ
estimate is that there is a uniform constant C > 0 such that 1

Cω ≤ ωϕ ≤ Cω.
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C2,α and higher order derivatives
• After obtaining C2 estimates, there are two ways to get higher order
estimates. The original approach of Aubin and Yau used Calabi’s 3rd order
estimates, and then use Schauder estimates and then bootstrapping.

• Later, Evans and Krylov independently discovered that the C2,α estimate
follows directly from the C2 estimate. The basic idea is that if we differentiate
the equation in the tangent direction γ 2-times, we will get an elliptic equation
for uγγ. The above estimate implies that we have uniform control for the
ellipticity constants. Then we can get Harnack inequality for uγγ by exploring
the concavity structure of the complex Monge-Ampère operator.

• After obtaining C2,α control of ϕ, we can differentiate the equation once, then
the coefficients have uniform Hölder norm, so we can use Schauder estimates
and then bootstrapping. This finishes the proof to Aubin-Yau Theorem.
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Back to Calabi-Yau

• Now we study the Calabi-Yau equation. First, we need a continuity path for the
equation (0.2):

(ω +
√
−1∂∂̄ϕ)n = eth+ctωn, (0.5)

where ct is a constant defined by
∫

X eth+ctωn =
∫

X ω
n. Again let

S := {t ∈ I | (0.5) is solvable in Ck ,α
0 },

where we define Ck ,α
0 := {ϕ ∈ Ck ,α(X ) |

∫
X ϕω

n = 0}.

• When t = 0, ϕ ≡ 0 is the solution. So S , ∅. To show S is open, we use the
implicit function theorem. However, there is additional difficulty caused by the
change of ct , so we modify the function spaces in Aubin-Yau’s theorem.
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Openness
• We define the affine subspace of Ck−2,α:

Ck−2,α
V := {f ∈ Ck−2,α(X ) |

∫
X

fωn =

∫
X
ωn}.

• Then we define the operator Φ : Ck ,α
0 → Ck−2,α

V ,

Φ(ϕ) :=
(ω +

√
−1∂∂̄ϕ)n

ωn .

• The linearization at ϕt0 is DΦϕt0
: Ck ,α

0 → Ck−2,α
0

DΦϕt0
(ψ) =

ωn
ϕt0

ωn ∆ϕt0
ψ.

This operator is invertible since ∆ϕt0
ψ = f is solvable if and only if

∫
X fωn

ϕt0
= 0.

This proves the openness.
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Reduce the closedness to C0-estimate

• For closedness, as before, we need to derive a priori estimates. Only the C0

estimate is different, other parts are almost identical.

• We will basically follow Yau’s original proof using Moser iteration. Later there
are other proofs, e.g. S. Kolodziej’s approach using pluripotential theory and
Z. Blocki’s proof using Alexandrov’s maximum principles. We shall follow the
exposition of Phong-Song-Sturm.

• Rewrite the equation as (ω +
√
−1∂∂̄ϕ)n = Fωn with F = eth+ct . Note that F

has uniform positive upper and lower bounds, independent of t .
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Set ψ := supX ϕ − ϕ + 1 ≥ 1. Since

(F − 1)ωn = (ω +
√
−1∂∂̄ϕ)n − ωn =

√
−1∂∂̄ϕ ∧

n−1∑
j=0

ωn−j−1
ϕ ∧ ωj ,

we multiply ψα+1 on both sides for some α ≥ 0, and integrate over X :∫
X
ψα+1(F − 1)ωn = (α + 1)

n−1∑
j=0

∫
X
ψα
√
−1∂ψ ∧ ∂̄ψ ∧ ωn−j−1

ϕ ∧ ωj

≥ (α + 1)

∫
X
ψα
√
−1∂ψ ∧ ∂̄ψ ∧ ωn−1

=
α + 1

(α2 + 1)2

∫
X

√
−1∂ψ

α
2 +1 ∧ ∂̄ψ

α
2 +1 ∧ ωn−1

=
α + 1

(α2 + 1)2
‖∇ψ

α
2 +1‖2.
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So we get

‖∇ψ
α
2 +1‖2 ≤ C1

(α2 + 1)2

α + 1

∫
X
ψα+1ωn,

where C1 depends only on ‖F ‖L∞.
On the other hand, we have Sobolev inequality

‖u‖2
L

2n
n−1
≤ C2(‖∇u‖2L2 + ‖u‖2L2).

We apply this to u := ψ
p
2 :

‖ψ‖
p
Lpβ ≤ C2(‖∇ψ

p
2 ‖2L2 + ‖ψ‖pLp ),

where β := n
n−1 > 1. Then we choose p = α + 2, to get

‖ψ‖Lpβ ≤
(
C3p

) 1
p
‖ψ‖Lp , p ≥ 2.

Then we can iterate p → pβ→ pβ2 → · · · → pβk → . . . . Using the fact that
limk→∞ ‖ψ‖Lpβk = ‖ψ‖L∞, we conclude that once we have a uniform Lp bound for ψ for
some p ≥ 2, then we will have uniform L∞ estimate for ψ.
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The final ingredient: Tian’s α-invariant

• To get this Lp bound, one can use, for example, the following result of G. Tian:
Given a Kähler form ω, we can find a positive number c > 0, depending only
on the Kähler class, such that we can find another uniform constant C > 0
such that ∫

X
e−c(ϕ−supX ϕ)ωn ≤ C,

∀ϕ ∈ C∞(X ;R) such that ω +
√
−1∂∂̄ϕ > 0. From this, we get uniform estimate

of ‖ψ‖Lk for any k ∈ N.

• Alternatively, we can first use Green formula to bound ‖ψ‖L1, then use the
α = 0 case inequality and Poincaré inequality to bound ‖ψ‖L2.
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c1(X ) > 0 case
• When c1(X ) > 0, we want to find a Kähler metric g such that Ric(ωg) = ωg. A
necessary condition for solvability of this equation is
[ωg] = [Ric(ωg)] = 2πc1(X ).

• We start with an arbitrary Kähler metric ω in the class 2πc1(X ), then since
Ric(ω) has the same cohomology class as ω, by ∂∂̄-lemma, we can find a
smooth function h such that Ric(ω) − ω =

√
−1∂∂̄h.

• Want to find ϕ ∈ C∞(X ,R) such that ωϕ > 0 and Ric(ωϕ) = ωϕ. Equivalently,

ω +
√
−1∂∂̄ϕ = Ric(ω) +

√
−1∂∂̄ log

ωn

ωn
ϕ

= ω +
√
−1∂∂̄

(
h − log

ωn
ϕ

ωn

)
.

• We get
(ω +

√
−1∂∂̄ϕ)n = eh−ϕωn. (0.6)
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Continuity method
• Aubin introduced the following continuity path:

(ω +
√
−1∂∂̄ϕ)n = eh−tϕωn,

which means Ric(ω) − Ric(ωϕ) = Ric(ω) − ω − t(ωϕ − ω), or equivalently
Ric(ωϕ) = tωϕ + (1 − t)ω.

• This equation is solvable when t = 0 by Calabi-Yau theorem, and Aubin also
proved openness.

• For closedness, as before, if we have C0-estimate, we will get C2-estimate and
the remaining part is the same as before.

• However, C0-estimate may fail! There are obstructions to the existence of KE
metrics when c1(X ) > 0 (then we say “X is a Fano manifold” in honor of the
Italian algebraic geometer Fano), like the vanishing of Futaki invariant and the
reductiveness of the automorphism group of X .
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Continuity method
• Aubin introduced the following continuity path:

(ω +
√
−1∂∂̄ϕ)n = eh−tϕωn,
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Yau-Tian-Donaldson conjecture
The Fano case is solved by Tian in dimension 2 thirty years ago, and by
Chen-Donaldson-Sun and Tian recently in general dimensions. Now there are
other proofs, too. The ultimate result (first conjectured by Yau philosophically) is:

Theorem (Chen-Donaldson-Sun, Tian)
Let X be a compact Kähler manifold with c1(X ) > 0. Then X admits a Kähler-Einstein
metric if and only if X is K-polystable.

I won’t explain the meaning of K-stability here. For the original definition, we refer
the readers to Tian’s 1997 Invent. Math. paper. The proofs of CDS and Tian both
uses structure theory of Riemannian manifolds with lower Ricci curvature bounds
(developed by Cheeger-Colding and Cheeger-Colding-Tian) and Hörmander’s
L2-theory for the ∂̄-equation (We will discuss this tomorrow).
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