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§4.1 Hodge Theorem
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Motivation
Let (Mm,g) be a compact oriented Riemannian manifold. Then we can define inner
product on the space of real differential forms: for ω, η ∈ Ap(M)

(ω, η) :=

∫
M
〈ω, η〉gdVg .

The idea of Hodge theorem is to represent a de Rham cohomology class by a
“best"closed form. Since we can define norm of a differential form, a natural idea is
to find a closed form of minimal norm within its cohomology class. To be precise,
start with a closed p-form η ∈ Ap(M), we want to minimize the functional:

Φ(ξ) := ‖η + dξ‖2, ξ ∈ Ap−1(M).

We can solve this variational problem by considering the corresponding
Euler-Lagrange equation, which is an elliptic system.
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Harmonic forms

Suppose η0 = η+ dξ0 achieves the minimum of ‖η+ dξ‖2, then for any ξ ∈ Ap−1(M),

‖η0 + tdξ‖2 = (η0 + tdξ, η0 + tdξ) = ‖η0‖
2 + 2t(η0,dξ) + t2‖dξ‖2

achieves its minimum at t = 0. This happens if and only if (η0,dξ) = 0 for any
ξ ∈ Ap−1(M). We can define an operator d ∗, the “formal adjoint” of d , such that
(α,dβ) = (d ∗α, β) for any α ∈ Ap(M) and β ∈ Ap−1(M). Then (η0,dξ) = 0 for any
ξ ∈ Ap−1(M) if and only if (d ∗η0, ξ) = 0 for any ξ ∈ Ap−1(M), which implies d ∗η0 = 0.

Definition
Let (Mm,g) be a compact oriented Riemannian manifold. A smooth differential
form ω ∈ Ap(M) is called a “harmonic p-form” if dω = 0,d ∗ω = 0.
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Laplacian and Hodge’s ?-operator
If we define the Laplacian operator to be ∆d : Ap(M)→ Ap(M), ∆d := dd ∗ + d ∗d ,
then for any smooth p-form ω ∈ Ap(M), we have

(ω,∆dω) = (ω,dd ∗ω) + (ω,d ∗dω) = ‖d ∗ω‖2 + ‖dω‖2.

So we conclude that ω ∈ Ap(M) is harmonic if and only if ∆dω = 0.
To write down a precise formula for d ∗, we introduce Hodge’s “star”-operator:
∗ : Ap(M)→ Am−p(M). If ω1, . . . , ωm is an orthonormal basis of T ∗x M, such that
ω1 ∧ · · · ∧ ωm = dVg gives the positive orientation, then we define

∗ωi1 ∧ · · · ∧ ωip = δ
i1,...,ip ,j1,...,jm−p

1,2,...,m ωj1 ∧ · · · ∧ ωjm−p .

(Note that this implies ωi1 ∧ · · · ∧ ωip ∧ ∗(ωi1 ∧ · · · ∧ ωip ) = ω1 ∧ · · · ∧ ωm. ) Then we
extend ∗ linearly. It is direct to check that this is well-defined.
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Basic properties of ?
Moreover, if α =

∑
i1<···<ip ai1,...,ipωi1 ∧ · · · ∧ωip , β =

∑
i1<···<ip bi1,...,ipωi1 ∧ · · · ∧ωip , we have

α ∧ ∗β =
∑

k1<···<kp

∑
i1<···<ip

ak1,...,kpbi1,...,ipωk1 ∧ · · · ∧ ωkp ∧ ∗(ωi1 ∧ · · · ∧ ωip )

=
∑

i1<···<ip

ai1,...,ipbi1,...,ipωi1 ∧ · · · ∧ ωip ∧ ∗(ωi1 ∧ · · · ∧ ωip )

= 〈α, β〉gdVg = β ∧ ∗α.

From the definition, it is easy to check that ∗∗ = (−1)p(m−p) = (−1)pm+p on Ap(M).
Also, we have

〈∗α, ∗β〉gdVg = ∗α ∧ ∗ ∗ β = (−1)p(m−p) ∗ α ∧ β = β ∧ ∗α = 〈β, α〉gdVg = 〈α, β〉gdVg .

So ∗ is a point-wise isometry.
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Laplacian and ?
Using ∗, we can also express d ∗ as:

Lemma
We have d ∗ = (−1)mp+m+1 ∗ d∗ on Ap(M).

From this, it is easy to check:

Lemma
We always have ∗∆d = ∆d∗ and ∆dd = d∆d ,∆dd ∗ = d ∗∆d .

Exercise: check that in case of Rn, we have

∆d

( ∑
1≤i1<···<ip≤m

fi1...ipdxi1 ∧ · · · ∧ dxip

)
= −

∑
1≤i1<···<ip≤m

(∑
i

∂2fi1...ip
∂x2

i

)
dxi1 ∧ · · · ∧ dxip .
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Theorem (Hodge)
Let (Mm,g) be a compact oriented Riemannian manifold. Then each de Rham
cohomology class has a unique harmonic representative, so we have a linear
isomorphism

Hp(M) := {ω ∈ Ap(M)
∣∣∣ ∆dω = 0} � Hp

dR(M;R), p = 0, . . . ,m.

Moreover, Hp(M) is always a finite dimensional vector space, and we have a linear
operator G : Ap(M)→ Ap(M) such that for any ω ∈ Ap(M), if we denote its
orthogonal projection to Hp(M) by ωh, then we have the decomposition:

ω = ωh + ∆dGω = ωh + d(d ∗Gω) + d ∗(dGω).

In fact, we have a orthogonal direct sum decomposition

Ap(M) = Hp(M) ⊕ Im d ⊕ Im d ∗.
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Remark
• G is usually called the “Green operator”. It is constructed in the following way:
suppose the eigenvalues of ∆d on Ap(M) are 0 = λ0 < λ1 < λ2 < . . . . The
corresponding eigenspaces are Hp(M) and E1,E2, . . . . Then we define
G|Hp(M) ≡ 0 and G|Ei := 1

λi
idEi .

• Hp(M), Im d , Im d ∗ are indeed orthogonal to each other: Let ωh ∈ H
p(M),

ξ ∈ Ap+1(M), η ∈ Ap−1(M), then

(ωh,d ∗ξ) = (dωh, ξ) = 0, (ωh,dη) = (d ∗ωh, η) = 0, (d ∗ξ,dη) = (ξ,ddη) = 0.

• Hodge decomposition implies Hodge isomorphism: the map Hp(M)→ Hp
dR(M),

η 7→ [η] is injective: if η1, η2 are both harmonic and η2 = η1 + dξ, then
(dξ,dξ) = (η2 − η1,dξ) = (d ∗η2 − d ∗η1, ξ) = 0, and hence η1 = η2. For
surjectivity, if ω = ωh + dξ + d ∗η and dω = 0, then
(d ∗η,d ∗η) = (ω,d ∗η) = (dω, η) = 0. So we get ω = ωh + dξ, [ω] = [ωh].
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Outline of existence of decomposition
∆d is a 2nd order elliptic operator, and we have a “basic estimate” :

‖ω‖2W 1,2 ≤ C
(
∆dω + ω,ω

)
= C

(
‖ω‖2 + ‖dω‖2 + ‖d ∗ω‖2

)
.

We consider the quadratic form on W 1,2(M ,ΛpT ∗M):

D(ξ, η) := (ξ, η) + (dξ,dη) + (d ∗ξ,d ∗η).

Basic inequality implies that D(ω) is an equivalent norm on W 1,2(M ,ΛpT ∗M).
Given η ∈ L2(M ,ΛpT ∗M), ξ 7→ (ξ, η) is a bounded linear functional on
Ap(M) ⊂W 1,2(M ,ΛpT ∗M): |(ξ, η)| ≤ ‖ξ‖ · ‖η‖ ≤ ‖η‖ · ‖ξ‖W 1,2 ≤ C

√
D(ξ, ξ). This

extends to a bounded linear functional on W 1,2(M ,ΛpT ∗M), and we can use Riesz
representation theorem to get a unique ϕ ∈W 1,2(M ,ΛpT ∗M) such that for all
ξ ∈ Ap(M): (ξ, η) = D(ξ, ϕ).
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Outline of existence of decomposition(continued)

Using this to define a linear map T (η) := ϕ. It is a bounded linear operator from
L2(M ,ΛpT ∗M) to W 1,2(M ,ΛpT ∗M). Its composition with the compact embedding
W 1,2 → L2 (also denoted by T ) gives us a compact self-adjoint operator on
L2(M ,ΛpT ∗M). Intuitively, T = (id + ∆d )−1.

By spectrum theorem and elliptic regularity, we have a Hilbert space direct sum
decomposition L2(M ,ΛpT ∗M) = ⊕∞m=0Em, where each Em is a finite dimensional
space of smooth p-forms, satisfying Tϕ = ρmϕ,∀ϕ ∈ Em, with ρ0 = 1 > ρ1 > ρ2 . . .

and ρm → 0. Then E0 = Hp(M) and for ϕ ∈ Em, we have ∆dϕ =
(

1
ρm
− 1

)
ϕ =: λmϕ,

λm ↗ ∞.
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Hermitian case
Now let X n be a n-dimensional compact complex manifold, with almost complex
structure J and Hermitian metric g. As before, we define
ωg :=

√
−1

∑
i ,j gi j̄dzi ∧ dz̄j . It is a real (1,1)-form. A direct computation shows that

we always have dVg =
ωn

g

n!
.

In this case, we also extend Hodge’s star operator complex linearly to complex
differential forms. Then we also have ∗∗ = (−1)p(2n−p) = (−1)p on Ap(X ) and

α ∧ ∗β = 〈α, β〉CdVg .

On the space of smooth complex differential forms, the correct Hermitian inner
product should be

(α, β) :=

∫
X
α ∧ ∗β̄.

One can check that the ∗ operator maps Ap,q(X ) to An−q,n−p(X ).
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Formal adjoint of ∂̄
As in the real case, we consider the Hermitian inner product on Ap,q(X ), and define
an operator ∂̄∗ by

(ξ, ∂̄η) = (∂̄∗ξ, η), ∀ξ ∈ Ap,q(X ), η ∈ Ap,q−1(X ).

Then we get

(∂̄∗ξ, η) =

∫
X
∂̄∗ξ ∧ ∗η̄

= (ξ, ∂̄η) = (∂̄η, ξ) =

∫
X
∂̄η ∧ ∗ξ̄ =

∫
X
∂η̄ ∧ ∗ξ

=

∫
X
∂
(
η̄ ∧ ∗ξ

)
− (−1)p+q−1η̄ ∧ ∂(∗ξ) = (−1)p+q

∫
X
η̄ ∧ ∂(∗ξ)

= −

∫
X
∂(∗ξ) ∧ η̄ = −

∫
X
∗∂(∗ξ) ∧ ∗η̄.

So we get that on Ap,q(X ), we always have ∂̄∗ = − ∗ ∂∗.
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The ∂̄-laplacian and ∂̄-harmonic forms
We define the ∂̄-Laplacian ∆∂̄ : Ap,q(X )→ Ap,q(X ) by

∆∂̄ := ∂̄∂̄∗ + ∂̄∗∂̄.

We look for ∂̄-closed form of minimal norm within a given Dolbeault cohomology
class. Suppose ξ ∈ Ap,q(X ) is such a ∂̄-closed form, then for any η ∈ Ap,q−1(X ), the
quadratic function of t ∈ R:

‖ξ + t ∂̄η‖2 = (ξ + t ∂̄η, ξ + t ∂̄η) = ‖ξ‖2 + 2tRe(ξ, ∂̄η) + t2‖∂̄η‖2

takes its minimum at t = 0. We get Re(ξ, ∂̄η) = 0 for all η ∈ Ap,q−1(X ). Using
‖ξ + t

√
−1∂̄η‖2 instead, we get Im(ξ, ∂̄η) = 0 for all η ∈ Ap,q−1(X ). So we get

(ξ, ∂̄η) = (∂̄∗ξ, η) = 0 for all η ∈ Ap,q−1(X ). This implies ∂̄∗ξ = 0.

Definition
If ω ∈ Ap,q(X ) satisfies ∂̄ω = 0 and ∂̄∗ω = 0 (equivalently, ∆∂̄ω = 0), then ω is
called a “∂̄-harmonic (p,q)-form”.
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Hodge theorem for compact complex manifolds
Theorem (Hodge)
Let (X n, J ,g) be a compact Hermitian manifold. Then each Dolbeault cohomology
class has a unique ∂̄-harmonic representative, so we have a complex linear
isomorphism

Hp,q(X ) := {ω ∈ Ap,q(X )
∣∣∣ ∆∂̄ω = 0} � Hp,q

∂̄
(X ), p,q = 0, . . . ,n.

Moreover, Hp,q(X ) is always a finite dimensional complex vector space, and we have a
complex linear operator G : Ap,q(X )→ Ap,q(X ) such that for any ω ∈ Ap,q(X ), if we
denote its orthogonal projection to Hp,q(X ) by ωh, then we have the decomposition:

ω = ωh + ∆∂̄Gω = ωh + ∂̄(∂̄∗Gω) + ∂̄∗(∂̄Gω).

This is an orthogonal direct sum decomposition: Ap,q(X ) = Hp,q(X ) ⊕ Im ∂̄ ⊕ Im ∂̄∗.
SHI, Yalong (Nanjing University) BICMR Complex Geometry 16 / 50



Twisting with a bundle
Assume also that we have a holomorphic vector bundle E → X of rank r , with
Hermitian metric h. X is compact. We define an Hermitian inner product on
C∞(X ,Λp,q(X ) ⊗ E) by

(s, t) :=

∫
X
〈s, t〉g,hdVg ,

where the pointwise Hermitian inner product 〈, 〉g,h is induced from the Hermitian
metric g on X and bundle metric h on E . We can define a ∂̄-operator on Ap,q(X ,E),
which we shall write ∂̄E : Ap,q(X ,E)→ Ap,q+1(X ,E). We can also define a formal
adjoint operator ∂̄∗E : Ap,q(X ,E)→ Ap,q−1(X ,E) by requiring that

(s, ∂̄E t) = (∂̄∗Es, t), ∀s ∈ Ap,q(X ,E), t ∈ Ap,q−1(X ,E).

Then we define ∆∂̄E
:= ∂̄∗E ∂̄E + ∂̄E ∂̄

∗

E : Ap,q(X ,E)→ Ap,q(X ,E), and

Hp,q(X ,E) := Ker
(
∆∂̄E
|Ap,q(X ,E)

)
. The elements of Hp,q(X ,E) are called “E-valued

harmonic (p,q)-forms”.
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Generalized version
Theorem
Let (X n, J ,g) be a compact Hermitian manifold. E → X be a holomorphic vector
bundle of rank r , with Hermitian metric h. Then each cohomology class in Hp,q

∂̄
(X ,E)

has a unique harmonic representative, so we have a complex linear isomorphism

Hp,q(X ,E) � Hp,q
∂̄

(X ,E), p,q = 0, . . . ,n.

Moreover, Hp,q(X ,E) is always a finite dimensional complex vector space, and we
have a complex linear operator GE : Ap,q(X ,E)→ Ap,q(X ,E) such that for any
ω ∈ Ap,q(X ,E), if we denote its orthogonal projection to Hp,q(X ,E) by ωh, then we
have an orthogonal direct sum decomposition Ap,q(X ,E) = Hp,q(X ,E) ⊕ Im∂̄E

⊕Im∂̄∗E , given by

ω = ωh + ∆∂̄E
GEω = ωh + ∂̄E (∂̄∗EGEω) + ∂̄∗E (∂̄EGEω).
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§4.2 Applications
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Poincaré duality for de Rham cohomology

Theorem (Poincaré duality for de Rham cohomology)
Let Mm be a compact oriented differentiable manifold. Then

Hp
dR(M ,R) � Hm−p

dR (M ,R).

In particular, bp(M) = bm−p(M).

Proof
Since ∗ commutes with ∆d , and ∗∗ = ±1, we conclude that ∗ induces a linear
isomorphism between Hp(M) and Hm−p(M). Then the result follows from Hodge
theorem.
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Kodaira-Serre duality theorem
Theorem (Kodaira-Serre duality)
Let E → X be a holomorphic vector bundle over a compact complex manifold X of
complex dimension n. Then we have a conjugate-linear isomorphism

σ : H r (X ,Ωp(E))
�
−→ Hn−r (X ,Ωn−p(E ∗)).

Proof
We introduce a conjugate-linear operator ∗̄E , constructing from ∗ : Ap,q → An−q,n−p

and the conjugate-linear isomorphism τ : E → E ∗ via bundle metric h. To make
everything conjugate-linear, we also define ∗̄ : Ap,q(X )→ An−p,n−q(X ) by ∗̄(η) := ∗η̄.
Then ∗̄E : Ap,q(X ,E)→ An−p,n−q(X ,E ∗) is defined by ∗̄E (η ⊗ s) := ∗̄(η) ⊗ τ(s). Then
we have ∂̄∗E = −∗̄E∗ ◦ ∂̄E∗ ◦ ∗̄E and hence ∗̄E ∆∂̄E

= ∆∂̄E∗
∗̄E .
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Proof (continued)
By Dolbeault isomorphism theorem and the generalized version of Hodge theorem, we
have

H r (X ,Ωp(E)) � Hp,r
∂̄

(X ,E) � Hp,r (X ,E),

Hn−r (X ,Ωn−p(E ∗)) � Hn−p,n−r
∂̄

(X ,E ∗) � Hn−p,n−r (X ,E ∗).

Then ∗̄E induces a conjugate-linear map σ : H r (X ,Ωp(E))→ Hn−r (X ,Ωn−p(E ∗)), and
the Kodaira-Serre duality follows from the fact ∗̄E ◦ ∗̄E∗ = ±1.
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The Kähler case
Now we assume (X n, J ,g) is a compact Kähler manifold. Then we will have a
better understanding of harmonic forms and Dolbeault cohomology. We shall begin
by exploring the relation between ∆d and ∆∂̄.
We introduce some operators that will be useful in our discussion:

dc :=
√
−1(∂̄ − ∂).

Here my notation is the same as Wells, but differs from Griffiths-Harris by a factor
4π. Then ddc =

√
−1(∂ + ∂̄)(∂̄ − ∂) = 2

√
−1∂∂̄.We define the “Lefschetz operator”

L : Ap,q(X )→ Ap+1,q+1(X ) by:

L(η) := ωg ∧ η =: Lη.

Its adjoint will be denoted by Λ : Ap+1,q+1(X )→ Ap,q(X ). We have

(ξ,Lη) = (Λξ, η), ∀ξ ∈ Ap+1,q+1(X ), η ∈ Ap,q(X ).
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Kähler identity
The basic equality in the Kähler case is:

Lemma
On Ap,q(X ), we have [Λ, ∂] =

√
−1∂̄∗.

Given this, since L is a real operator, so is Λ, and we have

[Λ, ∂̄] = −
√
−1∂∗.

Combining these two identities, we further get

[Λ,d ] = −dc∗, [Λ,dc] = d ∗.

For the proof, one can use the Kähler normal coordinates to reduce it to the Cn case
(since only first order derivatives are involved).
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Consequences of the Kähler identity

A direct consequence of Kähler identities is that ∆d commutes with both L and Λ:
Since ωg is closed, we have dL(η) = d(ωg ∧ η) = ωg ∧ dη, so [L,d ] = 0. Taking
adjoints, we get [Λ,d ∗] = 0. So using [Λ,d ] = −dc∗, we get

Λ∆d = Λ(dd ∗ + d ∗d) = [Λ,d ]d ∗ + dΛd ∗ + d ∗Λd
= −dc∗d ∗ + dd ∗Λ + d ∗[Λ,d ] + d ∗dΛ

= −dc∗d ∗ − d ∗dc∗ + ∆d Λ = ∆d Λ.

Taking adjoints, we also get [L,∆d ] = 0.
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Consequences of the Kähler identity
Besides ∆d and ∆∂̄, we can similarly define ∆∂. For compact Kähler manifolds, we
have the following:

Proposition
In the Kähler case, we always have ∆∂̄ = ∆∂ = 1

2∆d .

Proof
Use d = ∂ + ∂̄ and d ∗ = ∂∗ + ∂̄∗ to compute:

∆d = dd ∗ + d ∗d = (∂ + ∂̄)(∂∗ + ∂̄∗) + (∂∗ + ∂̄∗)(∂ + ∂̄)

= (∂∂∗ + ∂∗∂) + (∂̄∂̄∗ + ∂̄∗∂̄) + ∂∂̄∗ + ∂̄∂∗ + ∂∗∂̄ + ∂̄∗∂

= ∆∂ + ∆∂̄ + (∂∂̄∗ + ∂̄∗∂) + (∂̄∂∗ + ∂∗∂̄).

We need to prove: ∂∂̄∗ + ∂̄∗∂ = 0, ∂̄∂∗ + ∂∗∂̄ = 0 and ∆∂ = ∆∂̄.
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Proof (continued)
To prove ∂∂̄∗ + ∂̄∗∂ = 0, we use the identity [Λ, ∂] =

√
−1∂̄∗:

√
−1(∂∂̄∗ + ∂̄∗∂) = ∂[Λ, ∂] + [Λ, ∂]∂ = ∂Λ∂ − ∂2Λ + Λ∂2 − ∂Λ∂ = 0.

Now we compute ∆∂ and ∆∂̄ separately, both using Kähler identities:

−
√
−1∆∂ = ∂[Λ, ∂̄] + [Λ, ∂̄]∂ = ∂Λ∂̄ − ∂∂̄Λ + Λ∂̄∂ − ∂̄Λ∂.

√
−1∆∂̄ = ∂̄[Λ, ∂] + [Λ, ∂]∂̄ = ∂̄Λ∂ − ∂̄∂Λ + Λ∂∂̄ − ∂Λ∂̄

= ∂̄Λ∂ + ∂∂̄Λ − Λ∂̄∂ − ∂Λ∂̄ =
√
−1∆∂.

From the above computations, we conclude that ∆d = ∆∂ + ∆∂̄ = 2∆∂ = 2∆∂̄.
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Hodge decomposition for compact Kähler manifolds
From this we conclude that ∆d preserves Ap,q(X ), and Hp+q

d (X ,C) ∩ Ap,q(X ) equals

H
p,q
∂̄

(X ). Since H r
d (X ,C) = ⊕p+q=r

(
H

p+q
d (X ,C) ∩ Ap,q(X )

)
= ⊕p+q=rH

p,q
∂̄

(X ), and

H
p,q
∂̄

(X ) = Hq,p
∂̄

(X ), applying Hodge theorem, we get:

Theorem (Hodge decomposition for compact Kähler manifolds)
Let (X n, J ,g) be a compact Kähler manifold, then we have isomorphisms

H r
dR(X ,C) � ⊕p+q=r H

p,q
∂̄

(X ) � ⊕p+q=r Hq(X ,Ωp), r = 0,1, . . . ,2n,

and
Hp,q
∂̄

(X ) � Hq,p
∂̄

(X ).

In particular, we have
br =

∑
p+q=r

hp,q, hp,q = hq,p.
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Direct application
For example, we always have

H
p,0
∂̄

(X ) = H0(X ,Ωp),

since any (p,0)-form is ∂̄∗-closed and it is ∂̄-closed if and only if it is holomorphic.
Then we conclude that any holomorphic p-form on a compact Kähler manifold is
also d -closed and even d -harmonic.

Corollary
The odd Betti number b2k+1 of a compact Kähler manifold X n is always even.

Proof
We have

b2k+1 =
∑

0≤p,q≤n,p+q=2k+1

hp,q = 2
∑

p<q,p+q=2k+1

hp,q ≡ 0 mod 2.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 29 / 50



Example (Computations for CPn)
The topological structure of CPn is rather simple: we have CPn = U0 ∪ {z0 = 0},
with U0 � C

n and {z0 = 0} � CPn−1. So we can construct CPn in the following way:
start with a point (a “0-cell”), glue a C1 (a “2-cell”) to get CP1, then glue a C2 (a
“4-cell”) to get CP2, . . . .... So the cellular cohomologies of CPn are:

H2k+1(CPn,Z) = 0, H2k (CPn,Z) = Z, k = 0, . . . ,n.

Now ωFS is a Kähler forms on CPn. Since ωk
FS = Lk1 and ∆dL = L∆d , each ωk

FS is a
harmonic (k , k)-form. So we conclude that hp,p ≥ 1,p = 0, . . . ,n. On the other
hand, 1 = b2p ≥ hp,p, we must have b2p = hp,p. Also, hp,q = 0 when p + q is odd. So
the only non-zero Dolbeault cohomologies of CPn are Hp,p

∂̄
(X ) � C,p = 0, . . . ,n. In

particular, there are no non-zero holomorphic forms on CPn.
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Example (Computations for CPn)
Now we can prove that Pic(CPn) � Z:

Recall that from the short exact sequence 0→ Z→ O → O∗ → 1, we get a long
exact sequence of cohomologies:

· · · → H1(CPn,O)→ H1(CPn,O∗)→ H2(CPn,Z)→ H2(CPn,O)→ . . .

Now we have Hp(CPn,O) � H0,p
∂̄

(CPn) = 0 when p > 0. This implies that

Pic(CPn) � H1(CPn,O∗) � H2(CPn,Z) � Z.
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The “∂∂̄-lemma”

Lemma
If η is any d -closed (p,q)-form on a compact Kähler manifold X n, and η is d - or ∂- or
∂̄-exact, then

η = ∂∂̄γ

for some (p − 1,q − 1)-form γ. When p = q and η is real, then we can take γ =
√
−1ξ

for a real (p − 1,q − 1)-form ξ.
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Proof
Recall that in the Kähler case we have ∆d = 2∆∂ = 2∆∂̄, they share the same kernel:
harmonic forms. Since η is d - or ∂- or ∂̄-exact, its harmonic projection must be zero.
So we have

η = ∆∂̄G∂̄η = ∂̄∂̄∗G∂̄η.

Here we use the fact that ∂̄ commutes with G∂̄ and that dη = 0⇒ ∂̄η = 0.
Now we look at the form ∂̄∗G∂̄η, it is also orthogonal to harmonic forms. Also since
G∂ = G∂̄, we have ∂∂̄∗G∂̄η = −∂̄∗∂G∂η = −∂̄∗G∂∂η = 0. Then we can use Hodge
decomposition for ∆∂:

∂̄∗G∂̄η = ∆∂G∂∂̄
∗G∂̄η = ∂∂∗G∂∂̄

∗G∂̄η.

So we get
η = ∂̄∂∂∗G∂∂̄

∗G∂̄η = ∂∂̄
(
− ∂∗G∂∂̄

∗G∂̄η
)

= ∂∂̄
(
− ∂∗∂̄∗G2

∂̄
η
)
.
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Importance of the ∂∂̄-Lemma
The most often used case is about (1,1)-class. Let ω and ω̃ be two Kähler forms on
X such that [ω] = [ω̃] ∈ H2

dR(X ). Then ω̃ −ω is a d−exact form, so by the ∂∂̄-lemma,
we can find a smooth function ϕ ∈ C∞(X ;R) such that

ω̃ = ω +
√
−1∂∂̄ϕ.

ϕ is unique up to a constant. On the other hand, if ϕ ∈ C∞(X ;R) satisfies
ω +

√
−1∂∂̄ϕ > 0, then it defines a Kähler metric with the same Kähler class. So we

conclude that the space of Kähler metrics within the same cohomology class [ω] is
isomorphic to

{ϕ ∈ C∞(X ;R) | ω +
√
−1∂∂̄ϕ > 0}

/
R.

One of the most important problem in Kähler geometry is the existence of
canonical metrics in a given Kähler class. Through the ∂∂̄-lemma, we can reduce
the problem to a (usually non-linear) partial differential equation for ϕ. This is the
starting point of using non-linear PDEs to solve problems in Kähler geometry.
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Lefschetz decomposition
Remark
If we further introduce the operator h : A∗(X )→ A∗(X ) by h =

∑2n
p=0(n − p)Πp , then

we will have
[Λ,L] = h, [h,Λ] = 2Λ, [h,L] = −2L.

Recall the 3-dimensional complex Lie algebra sl2, generated by

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

They satisfy
[H ,X ] = 2X , [H ,Y ] = −2Y , [X ,Y ] = H .

So H 7→ h,X 7→ Λ,Y 7→ L gives a representation of sl2 on H∗(X ,C). Using elementary
representation theory, we can get a finer decomposition result, due to S. Lefschetz.
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Hodge conjecture

• Let Z ⊂ X be a analytic subvariety of codimension k in a Kähler manifold X n.
The Poincaré dual of its fundamental class is denoted by ηZ := PD(i∗[Z ])
∈ H2k (X ,Z). Its image in H2k

dR(X ,C) must belong to Hk ,k
∂̄

(X ).

Conjecture (Hodge conjecture)
Let X be a projective algebraic manifold, then any Hodge class
α ∈ Hk ,k

∂̄
(X ) ∩ H2k (X ,Q) can be represented by a rational algebraic cycle

∑
i ciZi of

codimension k .

• It is known for k = 1,n − 1 (Lefschetz).
• It is not true for general Kähler manifolds.
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§4.3 Kodaira Vanishing Theorem and Embedding Theorem
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Kodaira vanishing theorem
We say a real (1,1)-form ω is “positive” if locally it can be written as
ω =

√
−1

∑
i ,j ai j̄dzi ∧ dz̄j where (ai j̄) is positive definite everywhere. A line bundle L

is called “positive” if there exists an Hermitian metric h on L such that
√
−1Θ(h) is

positive.

Theorem (Kodaira-Nakano)
If L→ X is a positive holomorphic line bundle on a compact Kähler manifold,1 then
we have

Hq(X ,Ωp(L)) = 0, for p + q > n.

In particular, Hq(X ,O(KX ⊗ L)) = 0 for q > 0.

1We can just assume X is compact complex manifold. Then if
√
−1Θ(h) > 0, then it is a Kähler

form on X and so X is in fact Kähler. Later, by Kodaira’s embedding theorem, X is in fact projective
algebraic.
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Preparation of the proof
We use ω :=

√
−1Θ(h) as our reference Kähler metric. The Hodge theorem ensures

that Hq(X ,Ωp(L)) � Hp,q(X ,L). So we need to show that when p + q > n each
L-valued harmonic (p,q)-form must be zero.

We need the following lemma, whose proof is almost identical to the “un-twisted
case” we proved before:

Lemma
Let E be a holomorphic vector bundle over a compact Kähler manifold (X , ω) with
Hermitian metric h. Introduce the operator L : Ap,q(X ,E)→ Ap+1,q+1(X ,E) as before
and define Λ := L∗. If we denote the (1,0) and (0,1) components of the Chern
connection D by D′ and D′′(= ∂̄), then we have

[Λ, ∂̄] = −
√
−1D′∗, [Λ,D′] =

√
−1∂̄∗.
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Bochner’s formula
The proof of Kodaira vanishing theorem essentially follows from the comparison of
two “Laplacians”, the so called “Bochner’s technique”:

∆∂̄,E −∆D′,E = [
√
−1Θ(h),Λ],

where ∆D′,E := D′D′∗ + D′∗D′. The reason for this equality is:

−
√
−1∆D′,E = D′[Λ, ∂̄] + [Λ, ∂̄]D′ = D′Λ∂̄ − D′∂̄Λ + Λ∂̄D′ − ∂̄ΛD′,

while
√
−1∆∂̄,E = ∂̄[Λ,D′] + [Λ,D′]∂̄ = ∂̄ΛD′ − ∂̄D′Λ + ΛD′∂̄ − D′Λ∂̄. So we get

√
−1∆∂̄,E −

√
−1∆D′,E = Λ(∂̄D′ + D′∂̄) − (∂̄D′ + D′∂̄)Λ.

Note that Θ(h) is of type (1,1), we get D′D′ = 0, ∂̄∂̄ = 0, so

Θ(h) = D2 = (D′ + ∂̄)(D′ + ∂̄) = D′∂̄ + ∂̄D′.

So we get
∆∂̄,E −∆D′,E = −

√
−1[Λ,Θ(h)] = [

√
−1Θ(h),Λ].
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Proof of the theorem
Now back to the proof of Kodaira’s vanishing theorem. We have

√
−1Θ(h) = ω, so

the above Bochner formula reduces to

∆∂̄ −∆D′ = [L,Λ] = (p + q − n)id .

So if s ∈ Hp,q(X ,L) is not identically zero, then we have

(∆∂̄s −∆D′s, s) = (p + q − n)‖s‖2 > 0.

On the other hand,

(∆∂̄s −∆D′s, s) = −(∆D′s, s) = −‖D′s‖2 − ‖D′∗s‖2 ≤ 0.

This is a contradiction.
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Application: the embedding theorem
One important application of the Kodaira vanishing theorem is the following
embedding theorem of Kodaira:

Theorem
If a compact complex manifold X has a positive line bundle, then it is projective
algebraic.

The basic construction we shall use is the following: Let L→ X be a holomorphic
line bundle, such that H0(X ,O(L)) , 0. Then we can take a basis of H0(X ,O(L)),
s0, . . . , sN , and define a “map” from X to CPN:

x 7→ [s0(x), . . . , sN(x)].

This is defined using a local trivialization, so that we can identify each si as a
locally defined holomorphic function. This map is independent of the trivialization
we choose, but it is un-defined on the set of common zeroes of s0, . . . , sN .
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Strategy of Kodaira’s proof

What Kodaira actually proved is the following: If L→ X is a positive line bundle on
a compact complex manifold, then we can find a large integer m0 > 0 such that for
all m > m0:
1. L⊗m is “base point free”, i.e. for any point p ∈ X , there is a global section

s ∈ Γ(X ,L⊗m) such that s(p) , 0;
2. Choose a basis of H0(X ,O(L⊗m)), s0, . . . , sNm , then the “Kodaira map”

ιLm : X → CPNm defined by

x 7→ [s0(x), . . . , sNm (x)]

is a holomorphic embedding.
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Some concepts from algebraic geometry

Definition
Let L→ X be a holomorphic line bundle on a compact complex manifold.
• If there is an integer m0 > 0 such that for all m > m0, L⊗m is base point free,
then we say L is semi-ample;

• If L is base point free and the Kodaira map ιL is a holomorphic embedding,
then we say L is very ample;

• If there is an integer m0 > 0 such that for all m > m0, L⊗m is very ample, then
we say L is ample.
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Ample=positive

A corollary of Kodaira’s theorem is that on a compact complex manifold, a
holomorphic line bundle is ample if and only if it is positive:

In fact, if L is positive, then it is ample by Kodaira’s theorem. On the other hand, if
L is ample, we can find m ∈ N such that ιLm is a holomorphic embedding. Then the
pulling back of the hyperplane bundle is isomorphic to L⊗m, and the induced metric
has positive curvature. The corresponding metric on L also has positive curvature.
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Proof (Outline of the proof of Kodaira embedding theorem:)
For simplicity, we only prove that there is a sufficiently large m such that ιLm is an
embedding. We need to prove the following 3 properties:
1. Prove that L⊗m is base point free when m large enough. We only need to show

that for any point p ∈ X , we can find a mp ∈ N such that for all m ≥ mp, we can
find a s ∈ H0(X ,O(L⊗m)) such that s(p) , 0. That is, the linear map
rp : H0(X ,O(L⊗m))→ L⊗m

p is surjective.
2. Prove that for m large, global sections of L⊗m separate points. For this, we need to

prove that for any two points p , q in X , the linear map
rp,q : H0(X ,O(L⊗m))→ L⊗m

p ⊕ L⊗m
q is surjective for m sufficiently large.

3. Prove that for m large, ιLm is an immersion. That is, for any point p ∈ X , global
sections of L⊗m separate tangent directions at p. We only need to show the linear
map rp,p : H0(X ,O(L⊗m))→ L⊗m

p ⊗
(
Op/m

2
p) is surjective for m sufficiently large.
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Proof (continued)
Note that property 2 is stronger than property 1. So we only need to prove 2 and 3.
Also note that if we denote by mp the ideal sheaf of holomorphic germs vanishing at p
and mp,q the ideal sheaf of holomorphic germs vanishing at p and q, then what we
need prove is that

H0(X ,O(L⊗m))→ H0(X ,O(L⊗m) ⊗ O/mp,q)

and
H0(X ,O(L⊗m))→ H0(X ,O(L⊗m) ⊗ O/m2

p)

are both surjective when m is large enough. For this, we use short exact sequences of
sheaves:

0→ mp,q → O → O/mp,q → 0, 0→ m2
p → O → O/m2

p → 0.
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Proof (continued)
Tensor with the locally free sheaf O(L⊗m), we get exact sequences

0→ O(L⊗m) ⊗mp,q → O(L⊗m)→ O(L⊗m) ⊗ O/mp,q → 0

and
0→ O(L⊗m) ⊗m2

p → O(L⊗m)→ O(L⊗m) ⊗ O/m2
p → 0.

The induced long exact sequences give us:

H0(X ,O(L⊗m))→ H0(X ,O(L⊗m) ⊗ O/mp,q)→ H1(X ,O(L⊗m) ⊗mp,q)

and
H0(X ,O(L⊗m))→ H0(X ,O(L⊗m) ⊗ O/m2

p)→ H1(X ,O(L⊗m) ⊗m2
p).

We need to prove the vanishing of H1(X ,O(L⊗m) ⊗mp,q) and H1(X ,O(L⊗m) ⊗m2
p).
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Proof (continued)
Comparing with Kodaira’s vanishing theorem, we found that the main problem is that
mp,q and m2

p are not sheaves of germs of holomorphic line bundles. They are examples
of “coherent analytic sheaves”. This “generalized Kodaira vanishing theorem” for
coherent analytic sheaves is indeed true, but harder to prove. Kodaira’s method (as
appeared in Griffiths-Harris and Wells) is to replace X by its blown-up X̃ at p and q.
Pulling everything back to X̃ we can work purely with line bundles, and then
Kodaira’s vanishing theorem works. Then one need to show that vanishing upstairs
implies vanishing downstairs.

Finally, since both property 2 and 3 are “open” properties, we can use a “finite
covering trick” to find a uniform m, independent of p,q ∈ X .
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Concluding remark

In short, the proof says that positivity of a line bundle L implies L⊗m has so many
global sections that they can separate points and tangent directions. Here we use
Kodaira’s cohomology vanishing to prove the existence of global sections satisfying
special properties. This is typical when applying vanishing theorems.

Also, to prove the existence of global sections separating points and tangent
directions, one can directly construct sections by solving ∂̄-equations using
Hörmander’s L2-method. It turns out that we also need a certain type of Bochner
type identity, and the positivity of the line bundle is also crucial. We will give an
overview of L2-theory for the ∂̄-equation later.
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