Introduction to Complex Geometry

Chapter 3 supplementary notes

SHI, Yalong (Nanjing University)

BICMR Summer School 2022

§3.S More about the bundle *End E* and *End E*-valued forms

The bundle *End E*

• Let *E* be a complex vector bundle of rank *r* over *X*, the bundle *End E* is defined to be (as a set) *End* $E := \coprod_{p \in X} End_{\mathbb{C}}(E_p) = \coprod_{p \in X} Hom_{\mathbb{C}}(E_p, E_p)$, with the natural projection map $\tilde{\pi} : End E \to X$.

The bundle *End E*

- Let *E* be a complex vector bundle of rank *r* over *X*, the bundle *End E* is defined to be (as a set) *End* $E := \coprod_{\rho \in X} End_{\mathbb{C}}(E_{\rho}) = \coprod_{\rho \in X} Hom_{\mathbb{C}}(E_{\rho}, E_{\rho})$, with the natural projection map $\tilde{\pi} : End E \to X$.
- If we have a local trivialization of E, $\pi^{-1}(U) \to U \times \mathbb{C}^r$, equivalently, we choose a local frame $\{e_{\alpha}\}_{\alpha=1}^r$. Now we have an induced local frame for *End* E: $E_{\alpha\beta} \in C^{\infty}(U, End E)$, defined by $E_{\alpha\beta}(e_{\beta}) = e_{\alpha}$ and $E_{\alpha\beta}(e_{\gamma}) = 0$ when $\gamma \neq \beta$. The notation indicates that its matrix representation is precisely the elementary matrix $E_{\alpha\beta}$ (whose (α, β) entry is 1 and others are 0).

The bundle *End E*

- Let *E* be a complex vector bundle of rank *r* over *X*, the bundle *End E* is defined to be (as a set) *End* $E := \coprod_{\rho \in X} End_{\mathbb{C}}(E_{\rho}) = \coprod_{\rho \in X} Hom_{\mathbb{C}}(E_{\rho}, E_{\rho})$, with the natural projection map $\tilde{\pi} : End E \to X$.
- If we have a local trivialization of *E*, π⁻¹(*U*) → *U*× C^{*r*}, equivalently, we choose a local frame {*e*_α}^{*r*}_{α=1}. Now we have an induced local frame for *End E*: *E*_{αβ} ∈ *C*[∞](*U*, *End E*), defined by *E*_{αβ}(*e*_β) = *e*_α and *E*_{αβ}(*e*_γ) = 0 when γ ≠ β. The notation indicates that its matrix representation is precisely the elementary matrix *E*_{αβ} (whose (α, β) entry is 1 and others are 0).
- Under this frame, we get a trivialization map: $\tilde{\pi}^{-1}(U) \to U \times M_r(\mathbb{C})$, where $M_r(\mathbb{C})$ is the (linear) space of $r \times r$ complex matrices. The trivialization map is given by

$$(p,\sum_{lphaeta}a_{lphaeta}\mathsf{E}_{lphaeta}(p))\mapsto (p,(a_{lphaeta})).$$

Local section of *End E* acts on local sections of *E*

A local section $\sigma = \sum_{\alpha,\beta} a_{\alpha\beta} E_{\alpha\beta} \in C^{\infty}(U, End E)$ can be identified with a $M_r(\mathbb{C})$ valued smooth function $A = (a_{\alpha\beta}) : U \to M_r(\mathbb{C})$. For a section $s = \sum_{\alpha} f^{\alpha} e_{\alpha}$, we have

$$\sigma oldsymbol{s} := \sigma(oldsymbol{s}) = \sum_{lphaeta} oldsymbol{a}_{lphaeta} oldsymbol{E}_{lphaeta} (\sum_{\gamma} oldsymbol{f}^{\gamma} oldsymbol{e}_{\gamma}) = \sum_{lphaeta} oldsymbol{a}_{lphaeta} oldsymbol{f}^{eta} oldsymbol{e}_{lpha}.$$

So under the trivialization, the action of σ on s is just the matrix $(a_{\alpha\beta})$ times the column vector (f^{α}) .

Effect of changing frames

If we change the local frame $\{e_{\alpha}\}$ to $\tilde{e}_{\alpha} = a_{\alpha}^{\beta} e_{\beta}$, then we have a corresponding induced frame $\tilde{E}_{\alpha\beta}$. Then for a local section $\sigma \in C^{\infty}(U, End E)$ (set $(b_{\alpha}^{\beta}) = (a_{\alpha}^{\beta})^{-1}$), if $\sigma = \sum_{\alpha\beta} c_{\alpha\beta} E_{\alpha\beta} = \sum_{\alpha\beta} \tilde{c}_{\alpha\beta} \tilde{E}_{\alpha\beta}$, then

$$\sigma(oldsymbol{e}_eta) = \sum_lpha oldsymbol{c}_{lphaeta} oldsymbol{e}_lpha, \quad \sigma(ilde{oldsymbol{e}}_eta) = \sum_lpha ilde{oldsymbol{c}}_{lphaeta} oldsymbol{ ilde{oldsymbol{e}}}_lpha,$$

so we get

$$\sum_{lpha} ilde{m{c}}_{lphaeta} ilde{m{e}}_{lpha}=\sigma(\sum_{\gamma}m{a}_{eta}^{\gamma}m{e}_{\gamma})=\sum_{\gamma}m{a}_{eta}^{\gamma}\sigma(m{e}_{\gamma})=\sum_{\gamma,\mu}m{a}_{eta}^{\gamma}m{c}_{\mu\gamma}m{e}_{\mu}=\sum_{\gamma,\mu,lpha}m{a}_{eta}^{\gamma}m{c}_{\mu\gamma}m{b}_{\mu}^{lpha} ilde{m{e}}_{lpha}$$

and hence $\tilde{c} = a^{-1}ca$.

End E-valued differential forms

So a smooth section of *End E* is given by a family of locally defined matrix-valued smooth functions $c_i : U_i \to M_r(\mathbb{C})$, and when $U_i \cap U_j \neq \emptyset$, we have $c_i = \psi_{ii}^{-1} c_j \psi_{ij}$.

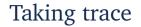
Similarly, *End E*-valued differential forms are locally given by $\eta = \sum_{i=1}^{N} \omega_i \otimes c_i$, where c_i is a matrix-valued smooth function and ω_i is a smooth k – *form* on a trivialization neighborhood U. To make it well-defined, we require that when we change the local frame by $\tilde{e}_{\alpha} = a_{\alpha}^{\beta} e_{\beta}$, we have $\tilde{\eta} = a^{-1} \eta a = \sum_i \omega_i \otimes (a^{-1} c_i a)$.

"Matrix-valued form" as "matrix of differential forms"

A $M_r(\mathbb{C})$ -valued differential form can always be written as a $r \times r$ matrix of differential forms: let $\eta = \sum_{i=1}^{N} \omega_i \otimes c_i$. Suppose $c_i = (c_{\alpha\beta}^i)$ with $c_{\alpha\beta}$ are smooth functions, then we have $c_i = \sum_{\alpha,\beta} c_{\alpha\beta}^i E_{\alpha\beta}$ and hence

$$egin{array}{rcl} \eta & = & \sum_i \omega_i \otimes oldsymbol{c}_i = \sum_i \sum_{lpha,eta} \omega_i \otimes (oldsymbol{c}^i_{lphaeta} oldsymbol{E}_{lphaeta}) \ & = & \sum_{lpha,eta} (\sum_i \omega_i oldsymbol{c}^i_{lphaeta}) \otimes oldsymbol{E}_{lphaeta} \ & = : & \sum_{lphaeta} \eta_{lphaeta} \otimes oldsymbol{E}_{lphaeta} \end{array}$$

This means that we can view η as a matrix whose (α, β) -entry is precisely the differential form $\eta_{\alpha\beta} = \sum_{i} c^{i}_{\alpha\beta} \omega_{i}$.



When take trace for an *End E*-valued differential form, these two ways of representation are equivalent:

$$\sum_{\alpha} \eta_{\alpha \alpha} = \sum_{\alpha} \sum_{i} c^{i}_{\alpha \alpha} \omega_{i}$$
$$= \sum_{i} (\sum_{\alpha} c^{i}_{\alpha \alpha}) \omega_{i} = \sum_{i} (tr c_{i}) \omega_{i}.$$

(super)-commutator

We also compute the super-commutator of two *End E*-valued forms with respect to these two ways of representations: by linearity, we only need to compute $[\omega \otimes A, \eta \otimes B]$ with $A = (A_{\alpha\beta}), B = (B_{\alpha\beta})$.

On one hand, we have by definition $[\omega \otimes A, \eta \otimes B] = (\omega \wedge \eta) \otimes [A, B]$.

On the other hand, as matrix of forms, they are $\omega A := (A_{\alpha\beta}\omega)$ and $\eta B := (B_{\alpha\beta}\eta)$, so the (α,β) *entry* of $\omega A \wedge \eta B - (-1)^{deg(\omega)deg(\eta)}\eta B \wedge \omega A$ is

$$\sum_{\gamma} (\omega A)_{lpha\gamma} \wedge (\eta B)_{\gammaeta} - (-1)^{deg(\omega)deg(\eta)} \sum_{\gamma} (\eta B)_{lpha\gamma} \wedge (\omega A)_{\gammaeta} \ = \ [\sum_{\gamma} (A_{lpha\gamma} B_{\gammaeta} - B_{lpha\gamma} A_{\gammaeta})] \omega \wedge \eta = [A, B]_{lphaeta} \omega \wedge \eta.$$

This is precisely $(\omega \wedge \eta) \otimes [A, B]$ viewed as a matrix of differential forms.

SHI, Yalong (Nanjing University) BICMR Complex Geometry

About the Bianchi identity

I shall prove that $[D, \Theta] = 0$ is your familiar 2nd Bianchi identity. In fact, let $s = f^{\alpha} e_{\alpha}$ be a local section of E, then

$$0 = [D, \Theta]s = D(\Theta_{\alpha}^{\beta}f^{\alpha}e_{\beta}) - \Theta_{\alpha}^{\beta} \wedge (df^{\alpha} + \theta_{\gamma}^{\alpha}f^{\gamma})e_{\beta}$$

= $[df^{\alpha} \wedge \Theta_{\alpha}^{\beta} + f^{\alpha}d\Theta_{\alpha}^{\beta} + \Theta_{\alpha}^{\gamma}f^{\alpha} \wedge \theta_{\gamma}^{\beta} - \Theta_{\alpha}^{\beta} \wedge (df^{\alpha} + \theta_{\gamma}^{\alpha}f^{\gamma})]e_{\beta}$
= $f^{\alpha}[d\Theta_{\alpha}^{\beta} + \Theta_{\alpha}^{\gamma} \wedge \theta_{\gamma}^{\beta} - \Theta_{\gamma}^{\beta} \wedge \theta_{\alpha}^{\gamma}]e_{\beta}$

That is, $d\Theta + \theta \wedge \Theta - \Theta \wedge \theta = 0$. In the RIemannian case, $\Theta_j^i = \frac{1}{2}R_{jpq}^i dx^p \wedge dx^q$ and $\theta_j^i = \Gamma_{ki}^j dx^k$, the equation $d\Theta + \theta \wedge \Theta - \Theta \wedge \theta = 0$ gives us (using the fact that Levi-Civita connection is torsion-free)

$$\sum_{k,p,q}
abla_k R^i_{jpq} dx^k \wedge dx^p \wedge dx^q = 0,$$

this is nothing but the more familiar formula $\nabla_k R^i_{jpq} + \nabla_p R^i_{jqk} + \nabla_q R^i_{jkp} = 0.$

SHI, Yalong (Nanjing University) BICMR Complex Geometry