Introduction to Complex Geometry

Chapter 3 supplementary notes
SHI, Yalong
(Nanjing University)
BICMR Summer School 2022
§3.S More about the bundle End E and End E-valued forms

The bundle End E

- Let E be a complex vector bundle of rank r over X, the bundle End E is defined to be (as a set) End $E:=\coprod_{p \in X} \operatorname{End}_{\mathbb{C}}\left(E_{p}\right)=山_{p \in X} \operatorname{Hom}_{\mathbb{C}}\left(E_{p}, E_{p}\right)$, with the natural projection map $\tilde{\pi}:$ End $E \rightarrow X$.

The bundle End E

- Let E be a complex vector bundle of rank r over X, the bundle End E is defined to be (as a set) End $E:=\coprod_{p \in X} \operatorname{End}_{\mathbb{C}}\left(E_{p}\right)=山_{p \in X} \operatorname{Hom}_{\mathbb{C}}\left(E_{p}, E_{p}\right)$, with the natural projection map $\tilde{\pi}:$ End $E \rightarrow X$.
- If we have a local trivialization of $E, \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{r}$, equivalently, we choose a local frame $\left\{\boldsymbol{e}_{\alpha}\right\}_{\alpha=1}^{r}$. Now we have an induced local frame for End E : $E_{\alpha \beta} \in C^{\infty}(U, E n d E)$, defined by $E_{\alpha \beta}\left(e_{\beta}\right)=e_{\alpha}$ and $E_{\alpha \beta}\left(e_{\gamma}\right)=0$ when $\gamma \neq \beta$. The notation indicates that its matrix representation is precisely the elementary matrix $E_{\alpha \beta}$ (whose (α, β) entry is 1 and others are 0).

The bundle End E

- Let E be a complex vector bundle of rank r over X, the bundle End E is defined to be (as a set) End $E:=\amalg_{p \in X} \operatorname{End}_{\mathbb{C}}\left(E_{p}\right)=山_{p \in X} \operatorname{Hom}_{\mathbb{C}}\left(E_{p}, E_{p}\right)$, with the natural projection map $\tilde{\pi}$: End $E \rightarrow X$.
- If we have a local trivialization of $E, \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{r}$, equivalently, we choose a local frame $\left\{e_{\alpha}\right\}_{\alpha=1}^{r}$. Now we have an induced local frame for End E : $E_{\alpha \beta} \in C^{\infty}(U, E n d E)$, defined by $E_{\alpha \beta}\left(e_{\beta}\right)=e_{\alpha}$ and $E_{\alpha \beta}\left(e_{\gamma}\right)=0$ when $\gamma \neq \beta$. The notation indicates that its matrix representation is precisely the elementary matrix $E_{\alpha \beta}$ (whose (α, β) entry is 1 and others are 0).
- Under this frame, we get a trivialization map: $\tilde{\pi}^{-1}(U) \rightarrow U \times M_{r}(\mathbb{C})$, where $M_{r}(\mathbb{C})$ is the (linear) space of $r \times r$ complex matrices. The trivialization map is given by

$$
\left(p, \sum_{\alpha, \beta} a_{\alpha \beta} E_{\alpha \beta}(p)\right) \mapsto\left(p,\left(a_{\alpha \beta}\right)\right) .
$$

Local section of E nd E acts on local sections of E

A local section $\sigma=\sum_{\alpha, \beta} a_{\alpha \beta} E_{\alpha \beta} \in C^{\infty}(U$, End $E)$ can be identified with a $M_{r}(\mathbb{C})$ valued smooth function $A=\left(a_{\alpha \beta}\right): U \rightarrow M_{r}(\mathbb{C})$. For a section $s=\sum_{\alpha} f^{\alpha} e_{\alpha}$, we have

$$
\sigma s:=\sigma(s)=\sum_{\alpha, \beta} a_{\alpha \beta} E_{\alpha \beta}\left(\sum_{\gamma} f^{\gamma} e_{\gamma}\right)=\sum_{\alpha, \beta} a_{\alpha \beta} f^{\beta} e_{\alpha} .
$$

So under the trivialization, the action of σ on s is just the matrix $\left(a_{\alpha \beta}\right)$ times the column vector $\left(f^{\alpha}\right)$.

Effect of changing frames

If we change the local frame $\left\{\boldsymbol{e}_{\alpha}\right\}$ to $\tilde{e}_{\alpha}=d_{\alpha}^{\beta} e_{\beta}$, then we have a corresponding induced frame $\tilde{E}_{\alpha \beta}$. Then for a local section $\sigma \in C^{\infty}(U$, End $E)\left(\right.$ set $\left.\left(b_{\alpha}^{\beta}\right)=\left(a_{\alpha}^{\beta}\right)^{-1}\right)$, if $\sigma=\sum_{\alpha, \beta} c_{\alpha \beta} E_{\alpha \beta}=\sum_{\alpha, \beta} \tilde{c}_{\alpha \beta} \tilde{E}_{\alpha \beta}$, then

$$
\sigma\left(e_{\beta}\right)=\sum_{\alpha} c_{\alpha \beta} e_{\alpha}, \quad \sigma\left(\tilde{e}_{\beta}\right)=\sum_{\alpha} \tilde{c}_{\alpha \beta} \tilde{e}_{\alpha}
$$

so we get

$$
\sum_{\alpha} \tilde{c}_{\alpha \beta} \tilde{\boldsymbol{e}}_{\alpha}=\sigma\left(\sum_{\gamma} a_{\beta}^{\gamma} e_{\gamma}\right)=\sum_{\gamma} a_{\beta}^{\gamma} \sigma\left(e_{\gamma}\right)=\sum_{\gamma, \mu} a_{\beta}^{\gamma} c_{\mu \gamma} \boldsymbol{e}_{\mu}=\sum_{\gamma, \mu, \alpha} a_{\beta}^{\gamma} c_{\mu \gamma} b_{\mu}^{\alpha} \tilde{\boldsymbol{e}}_{\alpha}
$$

and hence $\tilde{c}=a^{-1} c a$.

End E-valued differential forms

So a smooth section of End E is given by a family of locally defined matrix-valued smooth functions $c_{i}: U_{i} \rightarrow M_{r}(\mathbb{C})$, and when $U_{i} \cap U_{j} \neq \emptyset$, we have $c_{i}=\psi_{i j}^{-1} c_{j} \psi_{i j}$.

Similarly, End E-valued differential forms are locally given by $\eta=\sum_{i=1}^{N} \omega_{i} \otimes c_{i}$, where c_{i} is a matrix-valued smooth function and ω_{i} is a smooth k - form on a trivialization neighborhood U. To make it well-defined, we require that when we change the local frame by $\tilde{e}_{\alpha}=a_{\alpha}^{\beta} e_{\beta}$, we have $\tilde{\eta}=a^{-1} \eta a=\sum_{i} \omega_{i} \otimes\left(a^{-1} c_{i} a\right)$.

"Matrix-valued form" as "matrix of differential forms"

A $M_{r}(\mathbb{C})$-valued differential form can always be written as a $r \times r$ matrix of differential forms: let $\eta=\sum_{i=1}^{N} \omega_{i} \otimes c_{i}$. Suppose $c_{i}=\left(c_{\alpha \beta}^{i}\right)$ with $c_{\alpha \beta}$ are smooth functions, then we have $c_{i}=\sum_{\alpha, \beta} c_{\alpha \beta}^{i} E_{\alpha \beta}$ and hence

$$
\begin{aligned}
\eta & =\sum_{i} \omega_{i} \otimes c_{i}=\sum_{i} \sum_{\alpha, \beta} \omega_{i} \otimes\left(c_{\alpha \beta}^{i} E_{\alpha \beta}\right) \\
& =\sum_{\alpha, \beta}\left(\sum_{i} \omega_{i} c_{\alpha \beta}^{i}\right) \otimes E_{\alpha \beta} \\
& =: \sum_{\alpha \beta} \eta_{\alpha \beta} \otimes E_{\alpha \beta}
\end{aligned}
$$

This means that we can view η as a matrix whose (α, β)-entry is precisely the differential form $\eta_{\alpha \beta}=\sum_{i} c_{\alpha \beta}^{i} \omega_{i}$.

Taking trace

When take trace for an End E-valued differential form, these two ways of representation are equivalent:

$$
\begin{aligned}
\sum_{\alpha} \eta_{\alpha \alpha} & =\sum_{\alpha} \sum_{i} c_{\alpha \alpha}^{i} \omega_{i} \\
& =\sum_{i}\left(\sum_{\alpha} c_{\alpha \alpha}^{i}\right) \omega_{i}=\sum_{i}\left(\operatorname{tr} c_{i}\right) \omega_{i}
\end{aligned}
$$

(super)-commutator

We also compute the super-commutator of two End E-valued forms with respect to these two ways of representations: by linearity, we only need to compute $[\omega \otimes A, \eta \otimes B]$ with $A=\left(A_{\alpha \beta}\right), B=\left(B_{\alpha \beta}\right)$.

On one hand, we have by definition $[\omega \otimes A, \eta \otimes B]=(\omega \wedge \eta) \otimes[A, B]$.
On the other hand, as matrix of forms, they are $\omega A:=\left(A_{\alpha \beta} \omega\right)$ and $\eta B:=\left(B_{\alpha \beta} \eta\right)$, so the (α, β) entry of $\omega A \wedge \eta B-(-1)^{\operatorname{deg}(\omega) \operatorname{deg}(\eta)} \eta B \wedge \omega A$ is

$$
\begin{aligned}
& \sum_{\gamma}(\omega A)_{\alpha \gamma} \wedge(\eta B)_{\gamma \beta}-(-1)^{\operatorname{deg}(\omega) \operatorname{deg}(\eta)} \sum_{\gamma}(\eta B)_{\alpha \gamma} \wedge(\omega A)_{\gamma \beta} \\
= & {\left[\sum_{\gamma}\left(A_{\alpha \gamma} B_{\gamma \beta}-B_{\alpha \gamma} A_{\gamma \beta}\right)\right] \omega \wedge \eta=[A, B]_{\alpha \beta} \omega \wedge \eta . }
\end{aligned}
$$

This is precisely $(\omega \wedge \eta) \otimes[A, B]$ viewed as a matrix of differential forms.

About the Bianchi identity

I shall prove that $[D, \Theta]=0$ is your familiar 2nd Bianchi identity.
In fact, let $s=f^{\alpha} e_{\alpha}$ be a local section of E, then

$$
\begin{aligned}
0 & =[D, \Theta] \boldsymbol{s}=D\left(\Theta_{\alpha}^{\beta} f^{\alpha} e_{\beta}\right)-\Theta_{\alpha}^{\beta} \wedge\left(d f^{\alpha}+\theta_{\gamma}^{\alpha} f^{\gamma}\right) e_{\beta} \\
& =\left[d f^{\alpha} \wedge \Theta_{\alpha}^{\beta}+f^{\alpha} d \Theta_{\alpha}^{\beta}+\Theta_{\alpha}^{\gamma} f^{\alpha} \wedge \theta_{\gamma}^{\beta}-\Theta_{\alpha}^{\beta} \wedge\left(d f^{\alpha}+\theta_{\gamma}^{\alpha} f^{\gamma}\right)\right] e_{\beta} \\
& =f^{\alpha}\left[d \Theta_{\alpha}^{\beta}+\Theta_{\alpha}^{\gamma} \wedge \theta_{\gamma}^{\beta}-\Theta_{\gamma}^{\beta} \wedge \theta_{\alpha}^{\gamma}\right] e_{\beta}
\end{aligned}
$$

That is, $d \Theta+\theta \wedge \Theta-\Theta \wedge \theta=0$. In the RIemannian case, $\Theta_{j}^{i}=\frac{1}{2} R_{j p q}^{i} d x^{p} \wedge d x^{q}$ and $\theta_{j}^{i}=\Gamma_{k j}^{j} d x^{k}$, the equation $d \Theta+\theta \wedge \Theta-\Theta \wedge \theta=0$ gives us (using the fact that Levi-Civita connection is torsion-free)

$$
\sum_{k, p, q} \nabla_{k} R_{j p q}^{i} d x^{k} \wedge d x^{p} \wedge d x^{q}=0
$$

this is nothing but the more familiar formula $\nabla_{k} R_{j p q}^{i}+\nabla_{p} R_{j q k}^{i}+\nabla_{q} R_{j k p}^{i}=0$.

