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§3.1 Metrics, connections and curvatures
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Hermitian metrics
Definition
Let E → X be a complex (C∞) vector bundle of rank r over a smooth manifold X . A
smooth Hermitian metric on E is an assignment of Hermitian inner products
hp(·, ·) =< ·, · >p on each fiber Ep, such that if ξ, η are smooth sections of E over an
open set U, then h(ξ, η) ∈ C∞(U;C).

If U is a local triviliazation neighborhood of E via ϕU : π−1(U)→ U × Cr , then we
can define r smooth sections of E over U:

eα(p) := ϕ−1
U (p,0, . . . ,0,1,0 . . . ,0).

Then at any point p ∈ U, {eα(p)}r
α=1 is a basis of Ep. We call {eα}rα=1 a local frame of

E over U. Note that when E is a holomorphic bundle and (U, ϕU) a holomorphic
trivialization, then these eα’s are also holomorphic sections, and we call it a
holomorphic frame.
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Local representation of a metric

If ξ is a smooth section over U, then we can write in a unique way ξ = ξαeα, with
ξα ∈ C∞(U;C), α = 1, . . . , r . If we define the (positive definite) Hermitian
matrix-valuded smooth functions: hαβ̄ := h(eα,eβ), then we have

h(ξ, η) = h(ξαeα, ηβeβ) = hαβ̄ξαη̄β.

Sometimes, we also denote the matrix-valued smooth function (hαβ̄) by h.

Notation: We shall denote the space of smooth sections of E over U by C∞(U; E).
When E is a holomorphic bundle, the set of holomorphic sections over U is
denoted by Γ(U; E) or O(E)(U).
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Connection

Definition
A connection on a smooth rank r complex vector bundle over a manifold X is a
map D : C∞(X ; E)→ C∞(X ,T ∗CX ⊗ E) satisfying :
1. D is C-linear;
2. (Leibniz rule) D(f ξ) = df ⊗ ξ + fDξ, ∀f ∈ C∞(X ;C), ξ ∈ C∞(X ; E).

D is a local operator: if ξ ∈ C∞(X ; E) vanishes on an open subset U, then so is Dξ:

For any p ∈ U, choose a smooth function f on X such that f vanishes on a small
neighborhood V ⊂ U and f |Uc ≡ 1. Then f ξ = ξ, so by the Leibniz rule, we have

(Dξ)(p) =
(
D(f ξ)

)
(p) = (df ⊗ ξ + fDξ)(p) = 0.
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Local representation of a connection
• Locality of D implies that we can define Dξ for ξ ∈ C∞(U; E) when U ⊂ X is
an open subset: for any p ∈ U, choose open nbhd V ⊂ U and a global section
η ∈ C∞(X ; E) such that η|V ≡ ξ|V , then define (Dξ)|V := (Dη)|V .

• If {eα} is a local frame, then we can define a family of local smooth 1-forms
θ
β
α ∈ A1(U) satisfying:

Deα = θβα ⊗ eβ.

Sometimes we just write Deα = θ
β
αeβ for short. We call these {θβα} “connection

one-forms”.
• For ξ = ξαeα ∈ C∞(U; E), we then have

Dξ = D(ξαeα) = (dξα + ξβθαβ)eα.

• Regard ξα as a column vector, and for θαβ we always regard the upper index as
line index and the lower index the column index. So if we identify ξ with the
column vector ξα, then we can write D = d + θ (Physicists’ notation).
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The curvature

We can extend the action of D to bundle-valued differential forms. We write
Ak (X ,E) := C∞(X ; ΛkT ∗CX ⊗ E). Then we define D : Ak (X ,E)→ Ak+1(X ,E) by

D(ϕξ) := (dϕ)ξ + (−1)kϕ ∧ Dξ,

where ϕ is a C-valued k -form and ξ is a smooth section of E .

Definition
We define the curvature of D to be Θ := D2 : A0(X ; E)→ A2(X ,E).
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Curvature as a bundle-valued 2-form
If f is a smooth function and ξ ∈ A0(X ,E), we have

Θ(f ξ) = D(df ξ + fDξ)

= d(df )ξ − df ∧ Dξ + df ∧ Dξ + fD2ξ

= f Θ(ξ).

Locally if we define the 2-forms Θβ
α by

Θ(eα) = Θβ
αeβ.

Then we have
Θ(ξ) = Θ(ξαeα) = ξαΘ(eα) = Θα

βξ
βeα.

From this, we conclude that Θ ∈ A2(X ,End(E)).
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Local representation of the curvature

We can also represent Θα
β in terms of θαβ :

Θβ
αeβ = D(Deα) = D(θγαeγ)

= dθγαeγ − θ
γ
α ∧ Deγ

= dθβαeβ − θ
γ
α ∧ θ

β
γeβ

= (dθβα + θβγ ∧ θ
γ
α)eβ.

So we get
Θα
β = dθαβ + θαγ ∧ θ

γ
β,

or Θ = dθ + θ ∧ θ for short. Note that our sign convention is different from
Griffiths-Harris, since they regard the upper index as the column index.
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Changing the frame
• Suppose {ẽα} is another local frame on U, then we can write ẽα = aβαeβ, where

(aβα) is a GL(r ,C)-valued smooth function on U. (When both frames are local
holomorphic frames of a holomorphic bundle, then (aβα) is a GL(r ,C)-valued
holomorphic function on U.)

• The new connection forms and curvature forms are denoted by θ̃ and Θ̃. We
have

θ̃γαẽγ = Dẽα = D(aβαeβ)
= daβαeβ + aβαθ

γ
βeγ

= (daβα + θβγa
γ
α)eβ.

• On the other hand, the left equals θ̃γαa
β
γeβ. So we get aθ̃ = da + θa, or

θ̃ = a−1da + a−1θa.
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Change of curvature
From the above formula, we get

Θ̃ = d θ̃ + θ̃ ∧ θ̃

= d(a−1da + a−1θa) + (a−1da + a−1θa) ∧ (a−1da + a−1θa)

= −a−1da ∧ a−1da − a−1da ∧ a−1θa + a−1dθa − a−1θ ∧ da

+ a−1da ∧ a−1da + a−1da ∧ a−1θa + a−1θ ∧ da + a−1θ ∧ θa

= a−1(dθ + θ ∧ θ)a.

So we conclude
Θ̃ = a−1Θa.

From this, we can construct a family of globally defined differential forms:

c(E ,D) := det
(
Ir +

√
−1

2π
Θ
)

:= 1 + c1(E ,D) + · · ·+ cr (E ,D),

where ck (E ,D) ∈ A2k (X ) is called the “k-th” Chern form of E associated to D.
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Physicists’ language

In physicists’ language, a connection is a “field”, the curvature is the “strength” of
the field, and choosing a local frame is called “fixing the gauge”. The reason for
these names comes from H. Weyl’s work, rewriting Maxwell’s equations. The
“vector potential” and “scalar potential” together form the connection 1-form, and
the curvature 2-form has 6 components, consisting the components of the electric
field and the magnetic field.
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§3.2 Chern connection on holomorphic vector bundles
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Chern connection on a holomorphic vector bundle
In general, there is no “canonical connections” on a given vector bundle with a
smooth Hermitian metric. However, if the bundle is a holomorphic vector bundle,
there is indeed a canonical connection, called the “Chern connection”:

Theorem
On a given holomorphic vector bundle E with a smooth Hermitian metric h, there is a
unique connection D, called the “Chern connection” satisfying the following two
additional conditions:
1. (Compatibility with the metric) If s, t are two smooth sections, then we have

dh(s, t) = h(Ds, t) + h(s,Dt).

2. (Compatibility with the complex structure) If s is a holomorphic section of
E , then Ds is a E-valued (1,0)-form.
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Proof (Uniqueness)
Let {eα}rα=1 be a local holomorphic frame, and the connection 1-form with respect to
this frame is (θβα)1≤α,β≤r , satisfying Deα = θ

β
αeβ. By the compatibility with complex

structure, each θβα is a smooth (1,0)-form. Now we use the compatibility with metric
to get

dhαβ̄ = h(Deα,eβ) + h(eα,Deβ)
= θγαhγβ̄ + θ̄

γ
βhαγ̄.

On the other hand, we have dhαβ̄ = ∂hαβ̄ + ∂̄hαβ̄. Comparing types, we get ∂h = θth, so
θt = ∂h · h−1. Denote h−1 = (hβ̄α), then we can rewrite this as

θβα = hν̄β∂hαν̄.

Also, since h̄t = h, the (0,1)-part gives the same equation. This proves the uniqueness.
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Proof (Existence)
For existence, we simply set locally θβα := hν̄β∂hαν̄, and define for s = f αeα:

Ds := (df α + f βθαβ)eα.

We need to check that this is globally well-defined. For this, if ẽα = aβαeβ is another
holomorphic frame on V with U ∩ V , ∅. Then a is a holomorphic matrix. We have
h̃ = athā, so we have θ̃ := (h̃t)−1∂h̃t = a−1∂a + a−1θa. Since s = f̃ αẽα = f αeα, we have
f̃ = a−1f , so

ẽ(df̃ + θ̃f̃ ) = ea(−a−1daa−1f + a−1df + a−1∂aa−1f + a−1θaa−1f )

= e(df + θf ).

So D is globally defined. It is direct to check that D is compatible with both the metric
and the complex structure of the bundle.
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Remark
• If we define covariant derivatives of a smooth section s with respect to a complex
tangent vector ξ at a given point p by Dξs = Ds(ξ), where we use the dual
pairing of tangent vectors and differential 1-forms. Then the “compatibility with
metric” takes the form

ξ
(
h(s, t)

)
= h(Dξs, t) + h(s,Dξ̄t).

• If we write the (1,0) and (0,1) parts of D as D1,0 and D0,1, so that
D = D1,0 + D0,1. then the compatibility with complex structure condition can be
restated as D0,1 = ∂̄ on smooth sections.

• The line bundle case is particularly simple: if e is a local holomorphic frame and
we set h = h(e,e) > 0. Then the connection 1-form is θ = h−1∂h = ∂ log h. Then
the curvature is Θ = dθ + θ ∧ θ = dθ = d∂ log h = ∂̄∂ log h. It is already a
globally defined closed (1,1)-form.
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Property of the curvature of Chern connection

• In general, the curvature of Chern connection is locally given by:

Θ = dθ + θ ∧ θ = ∂̄θ + (∂θ + θ ∧ θ).

So Θ = Θ2,0 + Θ1,1, where Θ2,0 = ∂θ + θ ∧ θ and Θ1,1 = ∂̄θ.

• However, from the local expression of θ, we get

Θ2,0 = ∂
(
(ht)−1∂ht

)
+ (ht)−1∂ht ∧ (ht)−1∂ht

= −(ht)−1∂ht(ht)−1 ∧ ∂ht + (ht)−1∂2ht + (ht)−1∂ht ∧ (ht)−1∂ht

= 0.
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Property of the curvature of Chern connection(continued)
• So with respect to a local holomorphic frame we have Θ = Θ1,1 is of type

(1,1), and
Θ = ∂̄

(
(ht)−1∂ht

)
.

• What happens if we choose a local C∞ frame? Let ẽα = aβαeβ be such a C∞

frame, and let Θ̃β
α be the corresponding curvature 2-forms, then we still have

Θ̃ = a−1Θa,

which is also of type (1,1)!
• Conclusion:For Chern connection on a holomorphic vector bundle, its
curvature form is always of type (1,1), regardless of whether the frame is
holomorphic or not!
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frame, and let Θ̃β
α be the corresponding curvature 2-forms, then we still have

Θ̃ = a−1Θa,

which is also of type (1,1)!

• Conclusion:For Chern connection on a holomorphic vector bundle, its
curvature form is always of type (1,1), regardless of whether the frame is
holomorphic or not!

SHI, Yalong (Nanjing University) BICMR Complex Geometry 20 / 59



Property of the curvature of Chern connection(continued)
• So with respect to a local holomorphic frame we have Θ = Θ1,1 is of type

(1,1), and
Θ = ∂̄

(
(ht)−1∂ht

)
.

• What happens if we choose a local C∞ frame? Let ẽα = aβαeβ be such a C∞
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Koszul-Malgrange theorem
For a smooth vector bundle, the “compatibility with complex structure” condition
does not make sense any more. But we can always find connections compatible
with a given Hermitian metric. However, its curvature 2-form is never of type (1,1)
unless it is a holomorphic vector bundle:

Theorem
Let E → X be a smooth complex vector bundle over a complex manifold. If we can
define a linear operator ∂̄E : C∞(X ,E)→ A0,1(X ,E) satisfying

∂̄E (fs) = ∂̄f ⊗ s + f ∂̄Es

and ∂̄2
E = 0. Then we can make E into a holomorphic vector bundle, so that the ∂̄

operator of this holomorphic bundle is precisely ∂̄E .

Ref: Atiyah-Hitchin-Singer: Self-duality in four-dimensional Riemannian geometry,
Proc. Roy. Soc. London 362 (1978), 425–461. or Donaldson-Kronheimer.SHI, Yalong (Nanjing University) BICMR Complex Geometry 21 / 59



Example
Consider the universal bundle U → CPn. Recall that

U = {([z], v) | v ∈ [z]} ⊂ CPn × Cn+1.

We can define a very natural Hermitian metric on U:

h[z](v ,w) := 〈v ,w〉Cn+1 .

We now compute this metric and its curvature using local trivializations: Take
U0 = {[z]| z0 , 0} for example, the coordinates are (ξ1, . . . , xn) = ( z1

z0
, . . . , zn

z0
). As a

local frame of U over U0, we can choose e([z]) := ([z], (1, z1
z0
, . . . , zn

z0
)). So we get

h(e,e) = 1 + |ξ1|
2 + · · ·+ |ξn|

2, and hence

Θ(h) = ∂̄∂ log(1 + |ξ1|
2 + · · ·+ |ξn|

2) = −
( δij

1 + |ξ|2
−

ξ̄iξj

(1 + |ξ|2)2

)
dξi ∧ d ξ̄j .
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§3.3 Chern classes of a complex vector bundle
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Tools: trace and (super)-commutator
• We first define a trace map tr : Ak (X ,EndE)→ Ak (X ). For a EndE-valued
form η ∈ Ak (X ,EndE), the trace of η is the k -form tr(η) obtained by tracing
out the EndE factor. Locally, we can write η as a matrix of k -forms, and tr(η) is
just the trace of this matrix. Or equivalently, we can write η as

∑
i ωi ⊗ Ai with

ωi a family of k -forms and Ai a family of local sections of EndE , and then
tr(η) =

∑
i tr(Ai)ωi .

• Another tool we shall use is the (super)-commutator, defined by
[ω ⊗ A, η ⊗ B] := (ω ∧ η) ⊗ [A,B], where ω, η are locally defined forms and A,B
are local sections of EndE . It is easy to see that

[ω ⊗ A, η ⊗ B] = ωA ∧ ηB − (−1)deg(ω)deg(η)ηB ∧ ωA.

The appearance of the extra factor (−1)deg(ω)deg(η) is the reason why sometimes
it is called a “super”-commutator. We sometimes extend the definition: we
define for the connection D: [D, ω ⊗ A]s := D(ω ⊗ As) − (−1)deg(ω)ω ⊗ A ∧ Ds.
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∑
i ωi ⊗ Ai with

ωi a family of k -forms and Ai a family of local sections of EndE , and then
tr(η) =

∑
i tr(Ai)ωi .

• Another tool we shall use is the (super)-commutator, defined by
[ω ⊗ A, η ⊗ B] := (ω ∧ η) ⊗ [A,B], where ω, η are locally defined forms and A,B
are local sections of EndE . It is easy to see that

[ω ⊗ A, η ⊗ B] = ωA ∧ ηB − (−1)deg(ω)deg(η)ηB ∧ ωA.

The appearance of the extra factor (−1)deg(ω)deg(η) is the reason why sometimes
it is called a “super”-commutator. We sometimes extend the definition: we
define for the connection D: [D, ω ⊗ A]s := D(ω ⊗ As) − (−1)deg(ω)ω ⊗ A ∧ Ds.
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Three simple lemmas
Lemma
If D̃ is another connection on E , then D̃ − D ∈ A1(X ,EndE).

Lemma
If P,Q are both EndE-valued differential forms, then tr [P,Q] = 0.

The first nontrivial lemma is:

Lemma (Bianchi identity)
We have [D,Θk ] = 0, for any k ∈ N.

Proof
Simply note that Θ = D2, so [D,Θk ] = [D,D2k ] = 0.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 25 / 59



The key lemma
Lemma
For A ∈ Ak (X ,EndE), we have d tr(A) = tr [D,A].

Proof
First note that the left hand side is obviously independent of the connection. For the
right hand side, if we use another connection D̃, by Lemma10 and Lemma11, we have
tr [D̃,A] = tr [D̃ − D,A] + tr [D,A] = tr [D,A]. So the right hand side is also
independent of the connection.
So we can in fact choose a trivial connection locally to carry out the computation: Let
D0 = d be a trivial connection on E |U → U, then

[D0,A]s = D0(As) − (−1)deg(A)A ∧ D0s = d(Aβ
αf

α)eβ − (−1)deg(A)Aβ
α ∧ df αeβ = dAβ

αf
αeβ.

Hence tr [D0,A] = d tr(A).
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Chern-Weil Theorem

For any formal power series in one variable f (x) = a0 + a1x + . . . , we define
f (Θ) := a0 + a1Θ + · · ·+ anΘn ∈ A∗(X ).

Theorem (Chern-Weil)
For f as above, we have:
1. d trf (Θ) = 0;
2. If D̃ is another connection with curvature Θ̃, there is a differential form

η ∈ A∗(X ) such that tr f (Θ̃) − tr f (Θ) = dη.
So the cohomology class of tr f (Θ) is independent of the connection. We call it the
“characteristic class” of E associated to f , and tr f (Θ) the corresponding
“characteristic form” of E associated to f and D.
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Chern classes

Example

Since det(Ir +
√
−1

2π Θ) = exp
(
tr log(Ir +

√
−1

2π Θ)
)
. So ci(E ,D) ∈ A2i(X ) are all closed

forms, whose cohomology classes are all independent of D. These are called
“Chern classes”. For example we have

c1(E ,D) =

√
−1

2π
trΘ, c2(E ,D) =

1
8π2

(
tr(Θ2) − (trΘ)2

)
.
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Proof (Proof of Chern-Weil Theorem:)

• For the first conclusion, we have

d trf (Θ) = tr [D, f (Θ)] =
∑

k

ak tr [D,Θk ] = 0,

where we used Bianchi identity in the last step.

• For the second one, we choose a family of connections Dt := tD̃ + (1 − t)D. Then
Ḋt := dDt

dt = D̃ − D ∈ A1(X ,EndE), and

Θ̇t :=
dΘt

dt
=

dDt

dt
Dt + Dt

dDt

dt
= [Dt ,

dDt

dt
] = [Dt , Ḋt ].

SHI, Yalong (Nanjing University) BICMR Complex Geometry 29 / 59



Proof (Proof of Chern-Weil Theorem:)

• For the first conclusion, we have

d trf (Θ) = tr [D, f (Θ)] =
∑

k

ak tr [D,Θk ] = 0,

where we used Bianchi identity in the last step.
• For the second one, we choose a family of connections Dt := tD̃ + (1 − t)D. Then
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Proof of Chern-Weil Theorem:(continued).

• So we have (we can change the positions of Θ and Θ̇ by previous lemmas)

d
dt

tr f (Θt) = tr(Θ̇t f ′(Θt)) = tr([Dt , Ḋt ]f ′(Θt))

Bianchi
= tr [Dt , Ḋt f ′(Θt)]

= d tr
(
Ḋt f ′(Θt)

)
.

• So we conclude that tr f (Θ̃) − tr f (Θ) = d
∫ 1

0 tr
(
Ḋt f ′(Θt)

)
dt .

�
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Proof of Chern-Weil Theorem:(continued).
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.
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Chern classes are real
Let E → X be a complex vector bundle over X , we know that the Chern classes
ck (E) are independent of the connection, so we can choose a metric h and require
that D is compatible with the metric. Choose a local unitary frame, so that
hαβ̄ = δαβ. Then we have

0 = dhαβ̄ = θγαδγβ + δαγθ̄
γ
β = θβα + θ̄αβ .

In short, θ̄t = −θ. This in turn implies that Θ̄t = −Θ, and so

( √
−1

2π
Θ
)t

= −

√
−1

2π
Θ̄t =

√
−1

2π
Θ.

We have c(E ,D) = det(Ir +
√
−1

2π Θ) = det(Ir +
( √
−1

2π Θ
)t

) = det(Ir +
√
−1

2π Θ) = c(E ,D).
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Chern classes as obstructions
We shall prove that Chern classes are obstructions to the existence of global
linearly independent smooth sections:

Theorem
If E → X is a smooth complex vector bundle of rank r . If there are k smooth sections
s1, . . . , sk ∈ C∞(X ; E) such that {si(p)}ki=1 are linearly independent everywhere, then
we have ci(E) = 0 for i > r − k .

Proof
We first consider the k = r case. Then the assumption implies that E is a trivial
bundle. We use a trivial connection D = d on E , then Θ ≡ 0 and we have c(E ,D) = 1,
and hence ci(E) = 0 for i = 1, . . . , r .
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Proof (continued)
In general, the assumption implies that there is a rank k trivial sub-bundle T of E ,
generated by these k sections. Using a metric on E , we can define the orthogonal
complement of T in E , it is also a sub-bundle of E , denoted by E ′, so we get
E = T ⊕ E ′.

Now we choose connections DT and DE ′ respectively, where DT is the trivial
connection, and form the connection D := DT ⊕ DE ′ on E . Then locally we have
θ = diag{θT , θE ′}, and consequently θ = diag{θT , θE ′} = diag{0, θE ′}. Consequently, we
have Θ = diag{0,ΘE ′}. Note that c(T ,DT ) = 1, so we get

c(E ,D) = det(Ir +

√
−1

2π
Θ) = det Ik · det(Ir−k +

√
−1

2π
ΘE ′)

= 1 + c1(E ′,DE ′) + · · ·+ cr−k (E ′,DE ′).

This implies ci(E) = 0 for i > r − k .
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Comparing two definitions of first Chern classes

Recall: let X be a complex manifold, using the short exact sequence

0→ Z→ O
exp(2π

√
−1·)

−−−−−−−−−→ O∗ → 1

we get the exact sequence

· · · → H1(X ,O∗)
δ
−→ H2(X ,Z)→ . . . .

We call δ : H1(X ,O∗)→ H2(X ,Z) the “first Chern class” map.
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First Chern class classifies line bundles
Instead of holomorphic line bundles, we can consider C∞ line bundles. These
bundles are classified by H1(X ,E∗). Similarly, we have short exact sequence

0→ Z→ E
exp(2π

√
−1·)

−−−−−−−−−→ E∗ → 1,

and consequently a short exact sequence:

· · · → H1(X ,E) · · · → H1(X ,E∗)
δ
−→ H2(X ,Z)→ H2(X ,E)→ . . . .

Since E is a fine sheaf, we have Hp(X ,E) = 0 whenever p ≥ 1. So
δ : H1(X ,E∗)→ H2(X ,Z) is an isomorphism (also called “first Chern class map”).
This means that complex line bundles are determined up to C∞ isomorphisms by their
first Chern class.
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The problem

• On the other hand, we can use a connection on a given C∞ complex line
bundle L, and use the curvature form Θ to define

c1(L) :=
[ √
−1

2π
Θ
]
∈ H2

dR(X ;R) � H2(X ,R).

• Since we have a natural homomorphism Φ : H2(X ,Z)→ H2(X ,R) using the
sheaf morphism Z→ R. We shall explore the relation between
Φ
(
δ([L])

)
∈ H2(X ,R) and c1(L) ∈ H2

dR(X ,R).
• For simplicity, in the following we assume L is a holomorphic line bundle with
Hermitian metric h. We leave the necessary modification in the general
complex line bundle case as an exercise.
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Computing Φ
(
δ([L])

)
• First recall the construction of δ : H1(X ,O∗)→ H2(X ,Z). Let L be a complex
line bundle. We use sufficiently fine locally finite trivializations U = {Uα}α∈Λ

such that each Uα is simply connected and H∗(X ,O∗) is isomorphic to
H∗(U,O∗). Then [L] ∈ H1(X ,O∗) is determined by the Čech cocycle {ψαβ},
ψαβ ∈ O∗(Uα ∩ Uβ). We define φαβ := 1

2π
√
−1

logψαβ. Note that this is not a
well-defined Čech cochain: log is a multi-valued function!

• However, since ψαβψβγψγα = 1 on Uα ∩ Uβ ∩ Uγ, we get

zαβγ := φαβ + φβγ − φαγ ∈ Z(Uα ∩ Uβ ∩ Uγ).

This defines a Čech cocycle, whose cohomology class defines δ([L]). Then
Φ
(
δ([L])

)
is also defined by {zαβγ}, just viewing Z as a subsheaf of R.
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A closer look at the de Rham isomorphism
To compare we first break the resolution 0→ R→ A 0 → A 1 → . . . into short
exact sequences:

0→ R→ A 0 → K1 → 0, 0→ K1 → A 1 → K2 → 0, . . .

where Ki is the sheaf of closed i-forms. We get exact sequence for cohomology:

0→ H1(X ,K1)→ H2(X ,R)→ 0, A1(X )→ K2(X )→ H1(X ,K1)→ 0.

The first one gives δ2 : H1(X ,K1) � H2(X ,R) and the second gives
δ1 : H2

dR(X ) � H1(X ,K1).
Our de Rham class is given by

√
−1

2π Θ(h) ∈ K2(X ). Locally, we have Θ = dθα, where

θα = ∂ log hα, hα = h(eα,eα). Then δ1

([ √
−1

2π Θ(h)
])
is given by [{

√
−1

2π (θβ − θα)}].
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Now

eβ(p) = ϕ−1
β (p,1) = ϕ−1

α ◦ (ϕα ◦ ϕ
−1
β )(p,1) = ϕ−1

α (p, ψαβ(p)) = ψαβ(p)eα(p).

So we get hβ = hα|ψαβ|2, and hence log hβ = log hα + log |ψαβ|
2. So on Uα ∩ Uβ, we

have
√
−1

2π
(θβ − θα) =

√
−1

2π
∂ log |ψαβ|

2 =

√
−1

2π
∂ logψαβ =

√
−1

2π
d logψαβ.

Then δ2

(
[{
√
−1

2π (θβ − θα)}]
)
is represented by

{ √
−1

2π

(
logψβγ − logψαγ + logψαβ

)}
.

This is precisely −{zαβγ}.
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§3.4 Hermitian metrics and Kähler metrics
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Hermitian metric as a special Riemannian metric
Let X be a complex manifold of dimension n. We denote the canonical almost
complex structure by J. A Riemannian metric g on X is called “Hermitian”, if g is
J-invariant, i.e.

g(Ju, Jv) = g(u, v), ∀u, v ∈ T Rx X ,∀x ∈ X .

As before, we extend g to T CX as a complex bilinear form. For simplicity, we also
denote this bilinear form by g. Then we have

g(T 1,0,T 1,0) = 0 = g(T 0,1,T 0,1)

and 〈Z ,W 〉 := g(Z , W̄ ) defines an Hermitian metric on the rank n holomorphic
vector bundle T 1,0X . Conversely, any Hermitian metric on T 1,0X determines
uniquely a J-invariant Riemannian metric on X .
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Kähler form and Kähler metric

For an Hermitian metric g on (X , J), we define the associated Kähler form ωg by

ωg(u, v) := g(Ju, v).

It is direct to check that ωg is a real 2-form on X .

Definition
An Hermitian metric g on X is called a Kähler metric, if dωg = 0. Its cohomology
class in H2

dR(X ) is call the “Kähler class” of g. If a (compact) complex manifold
admits a Kähler metric, we call it a “Kähler manifold”.
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Local representation
Locally, if (z1, . . . , zn) is a holomorphic coordinate system, then g is determined by
gi j̄ := g( ∂

∂zi
, ∂
∂z̄j

), since gij = gī j̄ = 0. Then we have ωg =
√
−1gi j̄dzi ∧ dz̄j , where

Einstein’s summation convention is always used. Now we have

0 = dωg =
√
−1dgi j̄dzi ∧ dz̄j

=
√
−1

∂gi j̄

∂zk
dzk ∧ dzi ∧ dz̄j −

√
−1

∂gi j̄

∂z̄l
dzi ∧ dz̄l ∧ dz̄j

=
√
−1

[∑
j

∑
k<i

(∂gi j̄

∂zk
−
∂gk j̄

∂zi

)
dzk ∧ dzi ∧ dz̄j +

∑
i

∑
j<l

(∂gi j̄

∂z̄l
−
∂gi l̄

∂z̄j

)
dzi ∧ dz̄j ∧ dz̄l

]
.

So being Kähler mean that gi j̄ have the additional symmetries:

∂gi j̄

∂zk
=
∂gk j̄

∂zi
,

∂gi j̄

∂z̄l
=
∂gi l̄

∂z̄j
, ∀i , j , k , l .
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Example
The Euclidean metric g =

∑n
i=1(dxi ⊗ dxi + dyi ⊗ dyi) is a Kähler metric, since we

have ωg =
√
−1
2

∑n
i=1 dzi ∧ dz̄i , which is obviously closed.

For more examples, note that to define a Kähler metrics, it suffices to define its
associated Kähler form, since we have g(u, v) = g(Ju, Jv) = ωg(u, Jv).

Example
Let X = B(1) ⊂ Cn be the unit ball in Cn. We define a Kähler metric:

ωg :=
√
−1∂∂̄ log

1
1 − |z |2

=
√
−1∂

( zjdz̄j

1 − |z |2

)
.

Here, we have (gi j̄) = (
δij

1−|z |2 +
z̄i zj

(1−|z |2)2 ), which is positive definite. So it is indeed a
Kähler metric. This is called the “complex hyperbolic metric”.
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Example
Let X = CPn with homogeneous coordinates [Z0, . . . ,Zn], we define a Kähler
metric:

ωg :=

√
−1

2π
∂∂̄ log(|Z0|

2 + · · ·+ |Zn|
2).

It is easy to check that this is well-defined and equals −
√
−1

2π Θ(h), where h is the
natural metric on the universal bundle. It is called the “Fubini-Study metric”.

Not every compact complex manifold is Kähler, since, for example, H2
dR(X ) must be

non-trivial. For if not, ωg will be exact, so
∫

X ω
n
g = 0 by Stokes theorem. But this is

impossible since
∫

X ω
n
g > 0. So Calabi-Eckmann manifolds are never Kähler.
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Submanifold of a Kähler manifold

Lemma
If X is Kähler and Y is a complex analytic submanifold of X , then Y is also Kähler.

Proof (Outline)
Let g be a Kähler metric on X and ι : Y → X be the embedding map, then ι∗g is a
Kähler metric on Y and the associated Kähler form is just ι∗ωg.

By this lemma, all projective algebraic manifolds are Kähler.
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Kähler normal coordinates

In Riemannian geometry, normal coordinates are very useful in tensor calculations.
The next lemma shows that being Kähler is both necessary and sufficient for the
existence of complex analogue of normal coordinates.

Lemma
For an Hermitian metric g on X , the follows two properties are equivalent:
(1) g is Kähler;
(2) For any point p ∈ X , there are local holomorphic coordinates (z1, . . . , zn) such

that zi(p) = 0, gi j̄(p) = δij and dgi j̄(p) = 0.
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Proof
(2) =⇒ (1): For any given point p, we choose the coordinate in (2), then since first
order derivatives of gi j̄ at p vanish, we will have dωg(p) = 0. This implies dωg = 0,
i.e., g is Kähler.

(1) =⇒ (2): Suppose g is Kähler. Given any point p ∈ X , we can first choose local
holomorphic coordinates (w1, . . . ,wn) such that wi(p) = 0 and g( ∂

∂wi
, ∂
∂w̄j

)(p) = δij . We
want to find holomorphic coordinate transformation of the form wi = zi + 1

2aijkzjzk

with aijk = aikj such that

ωg =
√
−1(δij + O(|z |2))dzi ∧ dz̄j .
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Proof (continued)
Direct computation shows that

ωg =
√
−1

(
δij + gi j̄ ,k (0)wk + gi j̄ ,̄l(0)w̄l + O(|w |2)

)
dwi ∧ dw̄j

=
√
−1

(
δij + gi j̄ ,k (0)zk + gi j̄ ,̄l(0)z̄l + O(|z |2)

)
(dzi + aipqzpdzq) ∧ (dz̄j + ājst z̄sdz̄t)

=
√
−1

(
δijdzi ∧ dz̄j + āilj z̄ldzi ∧ dz̄j + ajkizkdzi ∧ dz̄j

+ (gi j̄ ,k (0)zk + gi j̄ ,̄l(0)z̄l)dzi ∧ dz̄j + O(|z |2)
)
.

So the condition we need is ajki + gi j̄ ,k (0) = 0 and āilj + gi j̄ ,̄l(0) = 0. So we simply take
ajki := −

∂gi j̄

∂wk
(0). The Kähler condition makes sure that this is well-defined.
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A useful corollary

Corollary
For a Kähler manifold (X , J ,g), we always have ∇J = 0.

Proof
For any given point p ∈ X , we compute using Kähler normal coordinates in Lemma
28. Now in complex coordinates, J has constant coefficients, this implies ∇J vanishes
at p. Since p is arbitrary, we have ∇J = 0.

By definition, this implies that ∇(JX ) = J∇X .
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Comparing Chern and Levi-Civita

Recall that for a connection ∇ on a vector bundle E , we can define the covariant
derivative of a section s with respect to a tangent vector v ∈ TpX by setting
∇vs := ∇s(v). If eα is a local frame of E , then we have ∇eα = ω

β
αeβ, and

∇veα = ω
β
α(v)eβ. Another good feature of the Kähler condition is that if we

complexify the usual Levi-Civita connection, we will automatically get the Chern
connection on T 1,0X .

Proposition
Let (X , J ,g) be a Kähler manifold. Then the complexification of the Levi-Civita
connection restricts to the Chern connection on T 1,0X .
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Proof
• Since the Levi-Civita connection ∇ preserves the metric, it suffices to check that ∇
is also compatible with the complex structure. If we use local holomorphic
coordinates z = (z1, . . . , zn), write ∂i := ∂

∂zi
and ∂j̄ := ∂

∂z̄j
. We only need to prove

that ∇∂i is a T CX -valued (1,0)-form, i.e. ∇j̄∂i := ∇∂̄j
∂i = 0.

• Now since ∇J = 0, we have J(∇j̄∂i) = ∇j̄(J∂i) =
√
−1∇j̄∂i . This implies that ∇j̄∂i

is of type (1,0).
• On the other hand, since ∇ is torsion free, we have ∇j̄∂i = ∇i∂j̄ , so we have

J(∇j̄∂i) = J(∇i∂j̄) = ∇i(J∂j̄) = −
√
−1∇i∂j̄ = −

√
−1∇j̄∂i .

This implies that ∇j̄∂i is of type (0,1). So we must have ∇j̄∂i = 0.
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Local formula for the Christoffel symbols

• We already get ∇i∂j̄ = 0 = ∇j̄∂i . Now since J(∇i∂j) = ∇i(J∂j) =
√
−1∇i∂j , we

can assume that ∇i∂j = Γk
ij∂k . Similarly, we can assume ∇ī∂j̄ = Γk̄

ī j̄
∂k̄ .

• But we also have ∇ī∂j̄ = ∇i∂j = Γk
ij∂k̄ , we get Γk̄

ī j̄
= Γk

ij . All the nontrivial
informations are contained in Γk

ij .
• Now we compute, using compatibility with metric to get

∂igj l̄ = g(∇i∂j , ∂l̄) + g(∂j ,∇i∂l̄) = Γk
ij gk l̄ ,

which implies that Γk
ij = g l̄k ∂gj l̄

∂zi
= g l̄k ∂gi l̄

∂zj
.
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ij∂k̄ , we get Γk̄
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Special symmetries of curvature tensor
For curvature, we also extend the curvature tensor C-linearly to the complexified
tangent bundle. Then this curvature tensor automatically satisfies the Bianchi
identities. The Kähler condition also implies that the curvature tensor has more
symmetries, and hence has much simpler formula. For the curvature
R(X ,Y ) = ∇X∇Y − ∇Y∇X − ∇[X ,Y ], we have R(X ,Y )JZ = JR(X ,Y )Z . Also, by
symmetry of curvature tensor, we have

〈R(JX , JY )Z ,W 〉 = 〈R(Z ,W )JX , JY 〉 = 〈R(Z ,W )X ,Y 〉 = 〈R(X ,Y )Z ,W 〉.

Since W is arbitrary, we also have R(JX , JY )Z = R(X ,Y )Z . Moreover, we have:

Proposition
For the curvature tensor of the Kähler metric g, we have 〈R(∂i , ∂j)·, ·〉 = 0
= 〈R(∂ī , ∂j̄)·, ·〉, and the only essentially non-trivial term is Ri j̄k l̄ := 〈R(∂i , ∂j̄)∂k , ∂l̄〉

= −
∂2gi j̄

∂zk∂z̄l
+ gq̄p ∂gi q̄

∂zk

∂gp̄j

∂z̄l
. In particular, Ri j̄k l̄ = Ri l̄k j̄ = Rk j̄ i l̄ .
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Proof
We compute by definition:

Ri j̄k l̄ = 〈(∇i∇j̄ − ∇j̄∇i)∂k , ∂l̄〉 = −〈∇j̄(Γp
ik∂p), ∂l̄〉

= −∂j̄Γ
p
ikgp̄l = −∂j̄(g

q̄p ∂gkq̄

∂zi
)gp̄l

= −gq̄p ∂
2gkq̄

∂zi∂zj̄
gp̄l + gq̄sg t̄p ∂gst̄

∂zj̄

∂gkq̄

∂zi
gp̄l

= −
∂2gk l̄

∂zi∂zj̄
+ gq̄s ∂gs̄l

∂zj̄

∂gkq̄

∂zi
.

The first conclusion follows by Kähler metric’s special symmetry.
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Special properties of Ricci

Proposition
The Ricci curvature Rc of a Kähler metric is also J-invariant, and the 2-form
Ric(ωg) := Rc(J ·, ·) is called the Ricci form, and we have Ric(ωg) =

√
−1Ri j̄dzi ∧ dz̄j ,

with
Ri j̄ = Rc(∂i , ∂j̄) = g l̄kRi j̄k l̄ = −

∂2

∂zi∂z̄j
log det(gpq̄).
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Proof
We choose a local orthonormal frame {ei }

2n
i=1 to compute:

Rc(JX , JY ) =
2n∑

i=1

〈R(JX ,ei)ei , JY 〉 =
2n∑

i=1

〈JR(JX ,ei)ei , J2Y 〉

= −
2n∑

i=1

〈R(JX ,ei)Jei ,Y 〉 = −
2n∑

i=1

〈R(J2X , Jei)Jei ,Y 〉

=
2n∑

i=1

〈R(X , Jei)Jei ,Y 〉 = Rc(X ,Y ),

since {Jei }
2n
i=1 is also an orthonormal frame. As the computation for ωg, we easily get

the formula
Ric(ωg) =

√
−1Ri j̄dzi ∧ dz̄j .
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Proof (continued)
Finally, we calculate Ri j̄ : Choose a local orthonormal frame of the form {eα, Jeα}nα=1 at
one point, and write Zα := eα −

√
−1Jeα. Then we have

Ri j̄ = Rc(∂i , ∂j̄) =
∑
α

〈R(∂i ,eα)eα, ∂j̄〉+
∑
α

〈R(∂i , Jeα)Jeα, ∂j̄〉

=
∑
α

〈R(∂i ,eα)eα, ∂j̄〉+
√
−1

∑
α

〈R(∂i , Jeα)eα, ∂j̄〉

=
∑
α

〈R(∂i , Z̄α)eα, ∂j̄〉

=
1
2

∑
α

〈R(∂i , Z̄α)eα, ∂j̄〉 −

√
−1
2

∑
α

〈R(∂i , Z̄α)Jeα, ∂j̄〉

=
1
2

∑
α

〈R(∂i , Z̄α)Zα, ∂j̄〉.
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Proof (continued)
On the other hand, we have Zα = aµα∂µ and ∂µ = bα

µZα, with aµαb
β
µ = δ

β
α, so at the given

point, we have
2δαβ = g(Zα, Z̄β) = aµαā

ν
βgµν̄,

which implies that g β̄α = 1
2 āβµaαµ, and so

Ri j̄ =
1
2

āναa
µ
αRi ν̄µ̄j = g l̄kRi l̄k j̄ = g l̄kRi j̄k l̄

= −g l̄k ∂
2gk l̄

∂zi∂z̄j
+ g l̄kgq̄p ∂gkq̄

∂zi

∂gp̄l

∂z̄j
=

∂

∂zi

(
− g l̄k ∂gk l̄

∂z̄j

)
= −

∂2

∂zi∂z̄j
log det(gpq̄).
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