Introduction to Complex Geometry

Chapter 2 Sheaf Theory

SHI, Yalong (Nanjing University)

BICMR Summer School 2022

Outline

- 1 Presheaves and sheaves
- 2 Sheaf cohomology (Čech's approch)
- 3 Fundamental results for sheaf cohomology
- **4** Applications

§2.1 Presheaves and sheaves

Presheaf

• A presheaf \mathscr{F} of abelian groups over a topological space X is a rule assigning an abelian group $\mathscr{F}(U)$ for each open set $U \subset X$, and for each pair $V \subset U$ a homomorphism $r_V^U : \mathscr{F}(U) \to \mathscr{F}(V)$ (called "restriction homomorphism"), satisfying $r_U^U = id$ and for any $W \subset V \subset U$, we have $r_W^U = r_W^V \circ r_V^U$.

Presheaf

- A presheaf \mathscr{F} of abelian groups over a topological space X is a rule assigning an abelian group $\mathscr{F}(U)$ for each open set $U \subset X$, and for each pair $V \subset U$ a homomorphism $r_V^U : \mathscr{F}(U) \to \mathscr{F}(V)$ (called "restriction homomorphism"), satisfying $r_U^U = id$ and for any $W \subset V \subset U$, we have $r_W^U = r_W^V \circ r_V^U$.
- An element of $\mathscr{F}(U)$ is usually called a "section" of \mathscr{F} over U. We also defined the stalk of \mathscr{F} at a point $p \in X$ to be

$$\mathscr{F}_{p} := \lim_{\longrightarrow} \mathscr{F}(U),$$

where the direct limit is taken with respect to open sets $p \in U$. This is $\prod_{U \ni p} \mathscr{F}(U) / \sim$, with $s \in \mathscr{F}(U)$ equivalent to $t \in \mathscr{F}(V)$ iff we can find another open set $p \in W \subset U \cap V$ such that $r_W^U(s) = r_W^V(t)$. The image of $s \in \mathscr{F}(U)$ in \mathscr{F}_p is denoted by s_p .

Caution

When the elements of $\mathscr{F}(U)$ are functions and the restriction homomorphisms are indeed restrictions, we need to be careful with stalks and germs: $s_p = t_p$ does not mean s(p) = t(p)! Instead, it is a much stronger condition, means that we can find a neighborhood *V* of *p* such that $s|_V \equiv t|_V$.

Morphism between presheaves

By a morphism *f* between two presheaves \mathscr{F} and \mathscr{G} over *X*, we mean for each *U* open, we are given a homomorphism of abelian groups $f_U : \mathscr{F}(U) \to \mathscr{G}(U)$, such that whenever we have open sets $V \subset U$, we have a commutative diagram:

$$\begin{array}{ccc} \mathscr{F}(U) & \stackrel{f_U}{\longrightarrow} & \mathscr{G}(U) \\ \begin{smallmatrix} r_V^U \\ \downarrow & & & \downarrow \rho_V^U \\ \mathscr{F}(V) & \stackrel{f_V}{\longrightarrow} & \mathscr{G}(V). \end{array}$$

Sheaf

Definition

A presheaf of abelian groups \mathcal{F} over X is called a sheaf, if it satisfies the following two properties:

- (S1) Assume we have a family of open sets $U_i \subset U$, $i \in \Lambda$ and $\cup_i U_i = U$. If $s \in \mathscr{F}(U)$ satisfies $r_{U_i}^U(s) = 0$, $\forall i \in \Lambda$, then s = 0.
- (S2) Assume we have a family of open sets $U_i \subset U, i \in \Lambda$ and $\bigcup_i U_i = U$. If we also have a family of sections $s_i \in \mathscr{F}(U_i), \forall i \in \Lambda$, satisfying $r_{U_i \cap U_j}^{U_i}(s_i) = r_{U_i \cap U_j}^{U_j}(s_i)$ whenever $U_i \cap U_j \neq \emptyset$, then there is a section $s \in \mathscr{F}(U)$ such that $r_{U_i}^U(s) = s_i, \forall i \in \Lambda$.

A morphism between two sheaves is just a morphism between presheaves.

Note that by (S1), the section in (S2) is also unique.

- Let X be a complex manifold, then \mathcal{O}_X is a sheaf of commutative rings over X. We call it the "structure sheaf" of X.
- We can also define other sheaves on X. For example, define &(U) := C[∞](U; C), then it is easy to see that & is a sheaf, called the "sheaf of smooth functions". Similarly, we can define the sheaf of continuous functions on X.

- Let X be a complex manifold, then \mathcal{O}_X is a sheaf of commutative rings over X. We call it the "structure sheaf" of X.
- We can also define other sheaves on X. For example, define &(U) := C[∞](U; C), then it is easy to see that & is a sheaf, called the "sheaf of smooth functions". Similarly, we can define the sheaf of continuous functions on X.
- If $E \to X$ is a holomorphic vector bundle, then $\mathcal{O}(E)(U)$ defines a sheaf of abelian groups. It can also be viewed as a sheaf of \mathcal{O}_X -modules. Similarly, we can define the sheaf of C^{∞} sections $\mathcal{E}(E)$.

- Let X be a complex manifold, then \mathcal{O}_X is a sheaf of commutative rings over X. We call it the "structure sheaf" of X.
- We can also define other sheaves on X. For example, define &(U) := C[∞](U; C), then it is easy to see that & is a sheaf, called the "sheaf of smooth functions". Similarly, we can define the sheaf of continuous functions on X.
- If $E \to X$ is a holomorphic vector bundle, then $\mathcal{O}(E)(U)$ defines a sheaf of abelian groups. It can also be viewed as a sheaf of \mathcal{O}_X -modules. Similarly, we can define the sheaf of C^{∞} sections $\mathcal{E}(E)$.
- For X = C, if we define O_b(U) to be the set of bounded holomorphic functions on U ⊂ X, then O_b is a presheaf over C, but not a sheaf.

- Let X be a complex manifold, then \mathcal{O}_X is a sheaf of commutative rings over X. We call it the "structure sheaf" of X.
- We can also define other sheaves on X. For example, define &(U) := C[∞](U; C), then it is easy to see that & is a sheaf, called the "sheaf of smooth functions". Similarly, we can define the sheaf of continuous functions on X.
- If $E \to X$ is a holomorphic vector bundle, then $\mathcal{O}(E)(U)$ defines a sheaf of abelian groups. It can also be viewed as a sheaf of \mathcal{O}_X -modules. Similarly, we can define the sheaf of C^{∞} sections $\mathcal{E}(E)$.
- For X = C, if we define O_b(U) to be the set of bounded holomorphic functions on U ⊂ X, then O_b is a presheaf over C, but not a sheaf.
- Let *G* be a given abelian group, we define the constant presheaf over *X* to be $\underline{G}_{pre}(U) := G$ for any non-empty open set $U \subset X$, and $r_V^U = id$ for any non-empty pair $V \subset U$. Then it is in general not a sheaf.

Sheafification

Proposition

For any presheaf \mathscr{F} over X, there is a unique (up to isomorphism) sheaf \mathscr{F}^+ and a morphism $\theta : \mathscr{F} \to \mathscr{F}^+$ satisfying the following "universal property": for any sheaf \mathscr{G} over X and any morphism of presheaves $f : \mathscr{F} \to \mathscr{G}$, there is a unique morphism of sheaves $f^+ : \mathscr{F}^+ \to \mathscr{G}$ such that $f = f^+ \circ \theta$. If \mathscr{F} is already a sheaf, then θ is an isomorphism. \mathscr{F}^+ is called the "sheafification" of \mathscr{F} . (By the universal property, if it exists, then must be unique up to isomorphisms.)

The most direct proof is to define $\mathscr{F}^+(U)$ explicitely: a map $\tilde{s} : U \to \coprod_{p \in U} \mathscr{F}_p$ is an element of $\mathscr{F}^+(U)$ if and only if:

1.
$$\pi \circ \tilde{s} = id_U$$
, i.e. $\tilde{s}(p) \in \mathscr{F}_p, \forall p \in U$;

2. For any $p \in U$, there is an open neighborhood $p \in V \subset U$ and a $s \in \mathscr{F}(V)$ such that for any $q \in V$, $\tilde{s}(q)$ equals s_q , the germ of s at q.

One can check that \mathscr{F}^+ is the sheaf ification of $\mathscr{F}.$

SHI, Yalong (Nanjing University) BICMR Complex Geometry

"étalé space" appraoch

From \mathscr{F} , we define a topological space, called the "étalé space" associated to \mathscr{F} :

$$\tilde{\mathscr{F}} := \coprod_{p \in X} \mathscr{F}_p$$

We have a natural surjective projection map $\pi : \tilde{\mathscr{F}} \to X$. The topology on $\tilde{\mathscr{F}}$ is given as follows: If $s \in \mathscr{F}(U)$, then we have a natural map $\tilde{s} : U \to \tilde{\mathscr{F}}$, sending p to the germ of s at p, which is an element of \mathscr{F}_p . Then we require $\{\tilde{s}(U) | s \in \mathscr{F}(U), \forall U\}$ to be a topological basis for $\tilde{\mathscr{F}}$. For any open $U \subset X$, define $\mathscr{F}^+(U) := \{s : U \to \tilde{\mathscr{F}} \text{ continuous} | \pi \circ s = id_U\}$. The morphism θ is defined by $\theta_U : \mathscr{F}(U) \to \mathscr{F}^+(U), \theta_U(s) := \tilde{s}$.

For the presheaf 𝒫_b of bounded holomorphic functions, its stalk at 𝒫 𝒫_{b,} is isomorphic to the ring of convergent power series C{*Z*} (i.e. power series with a positive convergent radius). Then it is easy to see that its sheafification is the sheaf of holomorphic functions 𝒫.

- For the presheaf 𝒫_b of bounded holomorphic functions, its stalk at 𝒫 𝒫_{b,} is isomorphic to the ring of convergent power series ℂ{𝔅} (i.e. power series with a positive convergent radius). Then it is easy to see that its sheafification is the sheaf of holomorphic functions 𝒫.
- For the constant presheaf <u>G</u>_{pre} over a manifold X, denote its sheafification by <u>G</u>. Then the elements of <u>G</u>(U) consists of locally constant maps from U to the abelian group G. <u>G</u> is called "constant sheaf".

- For the presheaf 𝒫_b of bounded holomorphic functions, its stalk at 𝒫 𝒫_{b,} is isomorphic to the ring of convergent power series ℂ{𝔅} (i.e. power series with a positive convergent radius). Then it is easy to see that its sheafification is the sheaf of holomorphic functions 𝒫.
- For the constant presheaf <u>G</u>_{pre} over a manifold X, denote its sheafification by <u>G</u>. Then the elements of <u>G</u>(U) consists of locally constant maps from U to the abelian group G. <u>G</u> is called "constant sheaf".
- Let X be a complex manifold, we define a presheaf *M*_{pre} over X as follows: for open set U ⊂ X, elements of *M*_{pre}(U) are quotients of holomorphic functions on U, with denominator not identically zero on any connected component of U. Its sheafification *M* is the sheaf of meromorphic functions. Elements of *M*(U) are called meromorphic functions on U.

In dim 1 case (Riemann surface), a meromorphic function = a holomorphic map to Ĉ = ℂP¹. However, when dim ≥ 2, there are meromorphic functions that can not be viewed as holomorphic maps to ℂP¹, e.g., ^{Z1}/_{Z0} ∈ M(ℂ²).

- In dim 1 case (Riemann surface), a meromorphic function = a holomorphic map to Ĉ = ℂP¹. However, when dim ≥ 2, there are meromorphic functions that can not be viewed as holomorphic maps to ℂP¹, e.g., ^{z₁}/_{z₂} ∈ ℳ(ℂ²).
- Let X be a compact complex manifold of dimension n, then $\mathcal{M}(X)$ is an extension field of \mathbb{C} . Its transcendental degree over \mathbb{C} , a(X), is called the "algebraic dimension" of X. It is known (Serre, Siegel, Chow, Thimm...) that $a(X) \leq n$.

- In dim 1 case (Riemann surface), a meromorphic function = a holomorphic map to Ĉ = ℂP¹. However, when dim ≥ 2, there are meromorphic functions that can not be viewed as holomorphic maps to ℂP¹, e.g., ^{z₁}/_{z₀} ∈ ℳ(ℂ²).
- Let X be a compact complex manifold of dimension n, then $\mathcal{M}(X)$ is an extension field of \mathbb{C} . Its transcendental degree over \mathbb{C} , a(X), is called the "algebraic dimension" of X. It is known (Serre, Siegel, Chow, Thimm...) that $a(X) \leq n$.
- When X is projective algebraic, then a(X) = n. When n = 2, the converse is also true (Chow-Kodaira).

- In dim 1 case (Riemann surface), a meromorphic function = a holomorphic map to Ĉ = ℂP¹. However, when dim ≥ 2, there are meromorphic functions that can not be viewed as holomorphic maps to ℂP¹, e.g., ^{z₁}/_{z₀} ∈ ℳ(ℂ²).
- Let X be a compact complex manifold of dimension n, then $\mathcal{M}(X)$ is an extension field of \mathbb{C} . Its transcendental degree over \mathbb{C} , a(X), is called the "algebraic dimension" of X. It is known (Serre, Siegel, Chow, Thimm...) that $a(X) \leq n$.
- When X is projective algebraic, then a(X) = n. When n = 2, the converse is also true (Chow-Kodaira).
- There are compact complex manifolds such that there are no non-constant meromorphic functions. For example, the Hopf surface X := C² \ {0}/ ~, where we identify (z₁, z₂) with (α₁z₁, α₂z₂) where α_i are constants and |α_i| > 1. Then X is diffeomorphic to S³ × S¹. For generic α_i, X has no non-constant meromorphic functions.

§2.2 Sheaf cohomology (Čech's approch)

We always assume X is a manifold and \mathscr{F} is a sheaf of abelian groups.

Motivation: the Mittag-Leffler problem

Sheaf is a useful tool to describe the obstructions to solve global problems when we can always solve a local one.

To illustrate this point, we come back to the Mittag-Leffler problem on a Riemann surface *M*. Suppose we are given finitely many points $p_1, \ldots, p_m \in M$, and for each p_i we are given a Laurant polynomial $\sum_{k=1}^{n_i} \frac{c_k^{(i)}}{z^k}$. We can view this as an element of $\mathcal{M}_p/\mathcal{O}_p$. We want to find a meromorphic function on *M* whose poles are precisely those p_i 's with the given Laurant polynomial as its principal part at p_i .

Čech cocycles in the Mittag-Leffler problem

This problem is always solvable locally: we can find a locally finite open covering U = {U_i | i ∈ Λ} of M such that each U_i contains at most one of the p_i's, and f_i ∈ M(U_i) such that the only poles of f_i are those of {p_i} contained in U_i with principal part equals the given Laurent polynomial.

Čech cocycles in the Mittag-Leffler problem

- This problem is always solvable locally: we can find a locally finite open covering U = {U_i | i ∈ Λ} of M such that each U_i contains at most one of the p_i's, and f_i ∈ M(U_i) such that the only poles of f_i are those of {p_i} contained in U_i with principal part equals the given Laurent polynomial.
- The problem is that we can not patch them together: if $U_i \cap U_j \neq \emptyset$, there is no reason to have $f_i = f_j$. We have to define $f_{ij} := f_i f_j$ and view the totality of these f_{ij} 's as the obstruction to solve the problem.

Čech cocycles in the Mittag-Leffler problem

- This problem is always solvable locally: we can find a locally finite open covering U = {U_i | i ∈ Λ} of M such that each U_i contains at most one of the p_i's, and f_i ∈ M(U_i) such that the only poles of f_i are those of {p_i} contained in U_i with principal part equals the given Laurent polynomial.
- The problem is that we can not patch them together: if $U_i \cap U_j \neq \emptyset$, there is no reason to have $f_i = f_j$. We have to define $f_{ij} := f_i f_j$ and view the totality of these f_{ij} 's as the obstruction to solve the problem.
- Now by our choice of f_i , $f_{ij} \in \mathcal{O}(U_i \cap U_j)$. Note that we have $f_{ij} + f_{ji} = 0$ on $U_i \cap U_j$ and whenever $U_i \cap U_j \cap U_k \neq \emptyset$, we have on $U_i \cap U_j \cap U_k$: $f_{ij} + f_{jk} + f_{ki} = 0$. We call this the "cocycle" condition and $\{f_{ij}\}$ is a "Čech cocycle" for the sheaf \mathcal{O} with respect to the cover \mathcal{U} .

True obstruction to the Mittag-Leffler problem

• When can we solve the Mittag-Leffler problem on *M*? We can solve it if we can modify the f_i by a holomorphic function $h_i \in \mathcal{O}(U_i)$ such that $\tilde{f}_i := f_i - h_i$ will patch together.

True obstruction to the Mittag-Leffler problem

- When can we solve the Mittag-Leffler problem on M? We can solve it if we can modify the f_i by a holomorphic function $h_i \in \mathcal{O}(U_i)$ such that $\tilde{f}_i := f_i h_i$ will patch together.
- This means that $\tilde{f}_i = \tilde{f}_j$ on $U_i \cap U_j$, equivalently, $f_{ij} = h_i h_j$.

True obstruction to the Mittag-Leffler problem

- When can we solve the Mittag-Leffler problem on *M*? We can solve it if we can modify the f_i by a holomorphic function $h_i \in \mathcal{O}(U_i)$ such that $\tilde{f}_i := f_i h_i$ will patch together.
- This means that $\tilde{f}_i = \tilde{f}_j$ on $U_i \cap U_j$, equivalently, $f_{ij} = h_i h_j$.
- We call a cocycle of the form $\{h_i h_j\}$ (where each h_i is holomorphic) a Čech coboundary. We get the conclusion that we can solve the Mittag-Leffler problem if the Čech cocycle $\{f_{ij}\}$ is a coboundary.

Definition of Čech cohomology: the space of cochains This motivates the introduction of the following Čech cohomology of a sheaf \mathscr{F} with respect to a locally finite cover \mathscr{U} of X:We first define the chain groups:

$$C^0(\mathcal{U},\mathscr{F}) := \prod_{i \in \Lambda} \mathscr{F}(U_i)$$

 $C^1(\mathcal{U},\mathscr{F}) \subset \prod_{(i,j) \in \Lambda^2} \mathscr{F}(U_i \cap U_j)$

. . .

. . .

$$\mathcal{C}^{p}(\mathcal{U},\mathscr{F}) \subset \Pi_{(i_{0},i_{1},...,i_{p})\in\Lambda^{p+1}}\mathscr{F}(U_{i_{0}}\cap\cdots\cap U_{i_{p}})$$

where $\{\sigma_{i_0,...,i_p}\}$ is in $C^p(\mathcal{U},\mathscr{F})$ if and only if: (1) Whenever $i_k = i_l$ for some $k \neq l$, we have $\sigma_{i_0,...,i_p} = 0$; (2) For any permutation $\tau \in S_{p+1}$, we have $\sigma_{i_{\tau(0)},...,i_{\tau(p)}} = (-1)^{\tau} \sigma_{i_0,...,i_p}$. Note that we always define $\mathscr{F}(U) = \{0\}$ if $U = \emptyset$.

SHI, Yalong (Nanjing University) BICMR Complex Geometry

Definition of Čech cohomology: the coboundary maps We define the coboundary operator $\delta : C^{p}(\mathcal{U}, \mathscr{F}) \to C^{p+1}(\mathcal{U}, \mathscr{F})$ to be:

$$(\delta\sigma)_{i_0,...,i_{p+1}} := \sum_{j=0}^{p+1} (-1)^j \sigma_{i_0,...,\hat{i_j},...,i_{p+1}} |_{U_{i_0} \cap \cdots \cap U_{i_{p+1}}}.$$

Here we use $\ldots \mid_{\ldots}$ to denote the restriction homomorphism of \mathscr{F} . It is direct to check that $\delta \circ \delta = 0$. So we have a cochain complex

$$0 \to C^0(\mathcal{U},\mathscr{F}) \xrightarrow{\delta} C^1(\mathcal{U},\mathscr{F}) \xrightarrow{\delta} \dots \xrightarrow{\delta} C^p(\mathcal{U},\mathscr{F}) \xrightarrow{\delta} \dots$$

We can define the space of Čech p-cocycles

$$Z^{
ho}(\mathcal{U},\mathscr{F})=\mathit{Ker}\delta\subset \mathcal{C}^{
ho}(\mathcal{U},\mathscr{F}),$$

and the space of Čech p-coboundaries

$$B^p(\mathcal{U},\mathscr{F}) = \delta C^{p-1}(\mathcal{U},\mathscr{F}) \subset Z^p(\mathcal{U},\mathscr{F}).$$

We define the Čech cohomology wrt \mathcal{U} to be $H^p(\mathcal{U}, \mathscr{F}) := Z^p(\mathcal{U}, \mathscr{F})/B^p(\mathcal{U}, \mathscr{F}).$

SHI, Yalong (Nanjing University) BICMR Complex Geometry

Meanings of H^0, H^1

• An element of $H^0(\mathcal{U}, \mathscr{F})$ is given by a family of sections $f_i \in \mathscr{F}(U_i)$ such that $\delta\{f_i\} = 0$. This means precisely $r_{U_i \cap U_j}^{U_i}(f_i) = r_{U_i \cap U_j}^{U_j}(f_j)$ whenever $U_i \cap U_j \neq \emptyset$. By sheaf axiom (S2), we get a global section of \mathscr{F} over X. So $H^0(\mathcal{U}, \mathscr{F})$ is in fact independent of \mathcal{U} and we have a canonical isomorphism

 $H^0(\mathcal{U},\mathscr{F})\cong\mathscr{F}(X).$

Meanings of H^0 , H^1

• An element of $H^0(\mathcal{U}, \mathscr{F})$ is given by a family of sections $f_i \in \mathscr{F}(U_i)$ such that $\delta\{f_i\} = 0$. This means precisely $r_{U_i \cap U_j}^{U_i}(f_i) = r_{U_i \cap U_j}^{U_j}(f_j)$ whenever $U_i \cap U_j \neq \emptyset$. By sheaf axiom (S2), we get a global section of \mathscr{F} over X. So $H^0(\mathcal{U}, \mathscr{F})$ is in fact independent of \mathcal{U} and we have a canonical isomorphism

$$H^0(\mathcal{U},\mathscr{F})\cong\mathscr{F}(X).$$

When *p* = 1, {*f_{ij}*} ∈ *C^p*(*U*, *F*) is a cocycle if *f_{ij}* + *f_{ji}* = 0 and *f_{jk}* - *f_{ik}* + *f_{ij}* = *f_{ij}* + *f_{jk}* + *f_{ki}* = 0. This is precisely the "cocycle condition" we met before (Note that we use "+" for the group operation instead of ".".). However, this time the cohomology may depend on the cover.

Refining the cover

Let $\mathcal{V} = \{V_{\alpha}\}_{\alpha \in \Gamma}$ be a locally finite refinement of \mathcal{U} . This means we have a map $\tau : \Gamma \to \Lambda$ (not unique) such that $V_{\alpha} \subset U_{\tau(\alpha)}$. Then we have a homomorphism $\Phi_{\mathcal{V}}^{\mathcal{U}} : H^{p}(\mathcal{U}, \mathscr{F}) \to H^{p}(\mathcal{V}, \mathscr{F})$ induced by

$$\{\sigma_{i_0,\ldots,i_p}\}\mapsto\{\sigma_{\tau(\alpha_0),\ldots,\tau(\alpha_p)}|_{V_{\alpha_0}\cap\cdots\cap V_{\alpha_p}}\}.$$

One can prove that $\Phi_{\mathcal{V}}^{\mathcal{U}}$ is in fact independent of the choice of the map τ .

Čech cohomology of *X*

The cohomology of X with coefficients sheaf \mathcal{F} is defined to be the direct limit:

$$H^p(X,\mathscr{F}):= \displaystyle \lim_{\longrightarrow} H^p(\mathcal{U},\mathscr{F}) = \displaystyle \coprod_{\mathcal{U}} H^p(\mathcal{U},\mathscr{F})/\sim \mathbb{I}$$

where two cohomology classes $[\{\sigma_{i_0,...,i_p}\}] \in H^p(\mathcal{U}, \mathscr{F})$ and $[\{\eta_{j_0,...,j_p}\}] \in H^p(\mathcal{V}, \mathscr{F})$ are equivalent if we can find a common refinement \mathcal{W} of \mathcal{U}, \mathcal{V} such that

$$\Phi^{\mathcal{U}}_{\mathcal{W}}([\{\sigma_{i_0,\ldots,i_p}\}]) = \Phi^{\mathcal{V}}_{\mathcal{W}}([\{\eta_{j_0,\ldots,j_p}\}]).$$

Thus an element of $H^p(X, \mathscr{F})$ is an equivalent class of Čech cohomology classes, represented by an element of $H^p(\mathcal{U}, \mathscr{F})$, for some cover \mathcal{U} . But in many cases, in particular all the sheaves we use in this course, there exists sufficiently fine cover \mathcal{U} such that $H^p(\mathcal{U}, \mathscr{F}) \cong H^p(X, \mathscr{F})$.

A detailed study of $H^1(\mathcal{U}, \mathscr{F})$ and $H^1(X, \mathscr{F})$ Proposition

If \mathcal{V} is a refinement of \mathcal{U} , then $\Phi^{\mathcal{U}}_{\mathcal{V}} : H^1(\mathcal{U}, \mathscr{F}) \to H^1(\mathcal{V}, \mathscr{F})$ is injective, and hence so is the induced homomorphism $H^1(\mathcal{U}, \mathscr{F}) \to H^1(X, \mathscr{F})$. We can simply write $H^1(X, \mathscr{F}) = \cup_{\mathcal{U}} H^1(\mathcal{U}, \mathscr{F})$.

Proof

Let $\mathcal{U} = \{U_i\}_{i \in \Gamma}$, $\mathcal{V} = \{V_{\alpha}\}_{\alpha \in \Lambda}$ and $\tau : \Gamma \to \Lambda$ be a map such that $U_i \subset V_{\tau(i)}$. Consider a common refinement of $\mathcal{U}, \mathcal{V}, \mathcal{W} := \{W_{i\alpha} := U_i \cap V_{\alpha} \neq \emptyset \mid i \in \Gamma, \alpha \in \Lambda\}$. Suppose $[\{f_{ij}\}] \in H^1(\mathcal{U}, \mathscr{F})$ satisfies $\Phi^{\mathcal{U}}_{\mathcal{V}}([\{f_{ij}\}]) = 0$. Then we also have $\Phi^{\mathcal{U}}_{\mathcal{W}}([\{f_{ij}\}]) = 0$. This mean that $\{f_{ij}\}$ is a cocycle and $\{f_{ij}|_{W_{i\alpha}\cap W_{j\beta}}\}$ is a coboundary. So we can find $h_{i\alpha} \in \mathscr{F}(W_{i\alpha})$ such that on $W_{i\alpha} \cap W_{j\beta}$, we have

$$f_{ij}|_{W_{i\alpha}\cap W_{j\beta}}=h_{j\beta}-h_{i\alpha}.$$

SHI, Yalong (Nanjing University) BICMR Complex Geometry

Proof (continued)

Since $f_{ii} = 0$, we must have $0 = h_{i\alpha}|_{W_{i\alpha} \cap W_{i\beta}} - h_{i\beta}|_{W_{i\alpha} \cap W_{i\beta}}$. Since $\{W_{i\alpha}\}_{\alpha \in \Lambda}$ is an open covering of U_i , by sheaf axiom (S2), we can find a $h_i \in \mathscr{F}(U_i)$ such that $h_i|_{W_{i\alpha}} = h_{i\alpha}$. Now consider the open covering of $U_i \cap U_j$ by $U_i \cap U_j \cap V_\alpha = W_{i\alpha} \cap W_{j\alpha}$. Since

$$f_{ij}|_{W_{ilpha}\cap W_{jlpha}}=h_j|_{W_{ilpha}\cap W_{jlpha}}-h_i|_{W_{ilpha}\cap W_{jlpha}}=(h_j|_{U_i\cap U_j}-h_i|_{U_i\cap U_j})|_{W_{ilpha}\cap W_{jlpha}}.$$

This means $\delta\{h_i\} = \{f_{ij}\}$, equivalently, $[\{f_{ij}\}] = 0$. This implies that $\Phi_{\mathcal{V}}^{\mathcal{U}}$ is injective.

Picard group as sheaf cohomology

Theorem

Let X be a complex manifold, then we have $Pic(X) \cong H^1(X, \mathcal{O}^*)$, where \mathcal{O}^* is the sheaf of nowhere vanishing holomorphic functions.

Proof

• Given a holomorphic line bundle L with local trivializing covering \mathcal{U} , we get a cocycle $\{\psi_{ij}\}$ and hence a cohomology class $[\{\psi_{ij}\}] \in H^1(\mathcal{U}, \mathcal{O}^*) \subset H^1(X, \mathcal{O}^*)$. Easy to see that it is well-defined, and is surjective.

Picard group as sheaf cohomology

Theorem

Let X be a complex manifold, then we have $Pic(X) \cong H^1(X, \mathcal{O}^*)$, where \mathcal{O}^* is the sheaf of nowhere vanishing holomorphic functions.

Proof

• Given a holomorphic line bundle L with local trivializing covering \mathcal{U} , we get a cocycle $\{\psi_{ij}\}$ and hence a cohomology class $[\{\psi_{ij}\}] \in H^1(\mathcal{U}, \mathcal{O}^*) \subset H^1(X, \mathcal{O}^*)$. Easy to see that it is well-defined, and is surjective.

If L is isomorphic to L', we can assume that they have common trivializing coverings U, with cocycles {ψ_{ij}} and {ψ'_{ij}} respectively. The bundle isomorphism map gives λ_i ∈ O^{*}(U_i) such that ψ'_{ij}λ_j = λ_iψ_{ij}. This implies that {ψ'_{ij}ψ⁻¹_{ij}} is a coboundary, so [{ψ_{ij}}] = [{ψ'_{ij}}] ∈ H¹(X, O^{*}). So we get a map Pic(X) → H¹(X, O^{*}), which is easily seen to be a group isomorphism.

§2.3 Fundamental results for sheaf cohomology

Short exact sequence

Recall that a morphism $f : \mathscr{F} \to \mathscr{G}$ of sheaves over X induces for each point $p \in X$ a homomorphism of stalks: $f_p : \mathscr{F}_p \to \mathscr{G}_p$. We call a sequence of morphisms of sheaves an "exact sequence" if the induced sequence on stalks is so for each pint p.

Theorem

If we have a short exact sequence for sheaves of abelian groups over X

$$0 \to \mathscr{F} \xrightarrow{f} \mathscr{G} \xrightarrow{g} \mathscr{H} \to 0,$$

then we have a long exact sequence for cohomologies

$$0 \to H^{0}(X, \mathscr{F}) \to H^{0}(X, \mathscr{G}) \to H^{0}(X, \mathscr{H}) \to H^{1}(X, \mathscr{F}) \to \dots$$
$$\dots \to H^{p}(X, \mathscr{H}) \to H^{p+1}(X, \mathscr{F}) \to H^{p+1}(X, \mathscr{G}) \to \dots$$

Explanation

For the given short exact sequence, we always get an exact sequence

$$0 \to \mathscr{F}(X) \to \mathscr{G}(X) \to \mathscr{H}(X),$$

(Exercise: for any open set U, the sequence $0 \to \mathscr{F}(U) \to \mathscr{G}(U) \to \mathscr{H}(U)$ is always exact.)but the last homomorphism is in general not surjective:

Given $\sigma \in \mathscr{H}(X)$, can we find $\eta \in \mathscr{G}(X)$ such that $q_X(\eta) = \sigma$? We know that $0 \to \mathscr{F}_p \xrightarrow{f_p} \mathscr{G}_p \xrightarrow{g_p} \mathscr{H}_p \to 0$ is exact, so we can always find $\eta_p \in \mathscr{G}_p$ s.t. $g_p(\eta_p) = \sigma_p$. This means that we can find a cover $\mathcal{U} = \{U_i\}$ of X and a sequence $n_i \in \mathscr{G}(U_i)$ s.t. $g_{U_i}(\eta_i) = \sigma|_{U_i}$. If all the $\eta_{ii} := \eta_i - \eta_i = 0$ on $U_i \cap U_i$, we can patch these η_i 's together, then we solve the problem. Need to modify η_i ! Since $g_{U_i \cap U_i}(\eta_{ii}) = 0$, we can find $\mu_{ij} \in \mathscr{F}(U_i \cap U_j)$ such that $f_{U_i \cap U_i}(\mu_{ij}) = \eta_{ij}$. By the injectivity of f, we in fact get a cocycle $\{\mu_{ii}\} \in C^1(\mathcal{U}, \mathscr{F})$. So we get a homomorphism $\mathscr{H}(X) \to H^1(X, \mathscr{F})$. It is easy to check that if σ goes to 0 in $H^1(X, \mathcal{F})$, then we can modify η_i properly (on a refinement of \mathcal{U}) such that they patch together to get an element of $\mathscr{G}(X)$.

SHI, Yalong (Nanjing University) BICMR Complex Geometry

"Abstract de Rham theorem"

A corollary of the above Theorem is the following "abstract de Rham theorem":

Theorem

Suppose we have an exact sequence of the form:

$$0 \to \mathscr{F} \to \mathscr{S}_0 \to \mathscr{S}_1 \to \cdots \to \mathscr{S}_r \to \dots$$

where each \mathscr{S}_r satisfies $H^p(X, \mathscr{S}_r) = 0, \forall p \ge 1$. (This is called an "acyclic resolution of \mathscr{F} ".) Then $H^*(X, \mathscr{F})$ is isomorphic to the cohomology of the cochain complex

$$0 \to \mathscr{S}_0(X) \to \mathscr{S}_1(X) \to \cdots \to \mathscr{S}_r(X) \to \ldots$$

i.e., $H^*(X, \mathscr{F}) \cong H^*(\Gamma(X, \mathscr{S}^*)).$

Proof

We break the sheaf sequence into a sequence of short exact sequences for $p \ge 1$:

$$0 \to \mathscr{K}_{p-1} \to \mathscr{S}_{p-1} \to \mathscr{K}_p \to 0,$$

where $\mathscr{K}_{p} = \operatorname{Ker}(\mathscr{S}_{p} \to \mathscr{S}_{p+1}) = \operatorname{Im}(\mathscr{S}_{p-1} \to \mathscr{S}_{p})$. Note that $\mathscr{K}_{0} \cong \mathscr{F}$. By the above theorem and the assumption for \mathscr{S}_{p} , we have an exact sequence

$$0 \to \mathscr{K}_{p-1}(X) \to \mathscr{S}_{p-1}(X) \to \mathscr{K}_p(X) \to H^1(X, \mathscr{K}_{p-1}) \to 0.$$

Also note that $\mathscr{K}_{p}(X) \cong \operatorname{Ker}(\mathscr{S}_{p}(X) \to \mathscr{S}_{p+1}(X))$, so we get

$$H^{1}(X,\mathscr{K}_{p-1})\cong Ker(\mathscr{S}_{p}(X)\to \mathscr{S}_{p+1}(X))/Im(\mathscr{S}_{p-1}(X)\to \mathscr{K}_{p}(X))=H^{p}(\Gamma(X,\mathscr{S}^{*})).$$

We need to prove $H^1(X, \mathscr{K}_{p-1}) \cong H^p(X, \mathscr{F}) = H^p(X, \mathscr{K}_0).$

Proof

For this, we only need to show for $2 \le r \le p$

$$H^{r-1}(X, \mathscr{K}_{p-r+1}) \cong H^r(X, \mathscr{K}_{p-r}).$$

But this again follows from the segment of long exact sequence:

$$\cdots \to H^{r-1}(X, \mathscr{S}_{p-r}) \to H^{r-1}(X, \mathscr{K}_{p-r+1}) \to H^{r}(X, \mathscr{K}_{p-r}) \to H^{r}(X, \mathscr{S}_{p-r}) \to \ldots$$

Fine sheaves

When can we get an acyclic resolution? In particular, how can we find a lot of sheaves \mathscr{S}_r such that $H^p(X, \mathscr{S}_r) = 0, \forall p \ge 1$?

Definition

A sheaf \mathscr{F} over X is called a "fine sheaf", if for any locally finite open cover $\mathcal{U} = \{U_i\}$, we can find a family of morphisms $\eta_i : \mathscr{F} \to \mathscr{F}$ such that: (1) For each i, $\eta_i(p) : \mathscr{F}_p \to \mathscr{F}_p$ equals 0 for p outside a compact set $W_i \subset U_i$; (2) $\sum_i \eta_i = id_{\mathscr{F}}$.

It is obvious that in case we can use a smooth function to multiply the sections of \mathscr{F} , then a usual partition of unity will make \mathscr{F} a fine sheaf.

Proposition

If \mathscr{F} is a fine sheaf, then $H^p(X, \mathscr{F}) = 0, \forall p \ge 1$.

Proof

For any *p*-cocycle $\{\sigma_{i_0,...,i_p}\} \in C^p(\mathcal{U}, \mathscr{F})$ for a locally finite cover $\mathcal{U} = \{U_i\}_{i \in \Lambda}$. Let η_i be the above morphisms in the definition. We define a p-1 cochain $\{\psi_{i_0,...,i_{p-1}}\}$ as follows:

$$\psi_{i_0,...,i_{p-1}} := \sum_i \eta_i(\sigma_{i,i_0,...,i_{p-1}}).$$

Then (using the fact that $\delta\{\sigma_{...}\} = 0$)

$$(\delta\psi)_{i_0,\ldots,i_p} = \sum_{j=0}^{p} (-1)^j \psi_{i_0,\ldots,\hat{i}_j,\ldots,i_p} = \sum_j \sum_i (-1)^j \eta_i (\sigma_{i,i_0,\ldots,\hat{i}_j,\ldots,i_p}) = \sum_i \eta_i (\sigma_{i_0,\ldots,i_p}) = \sigma_{i_0,\ldots,i_p}.$$

§2.4 Applications

Cohomology of constant sheaves

• Let *G* be a given abelian group, we can define the constant sheaf \underline{G} over *X* by $\underline{G}(U) = \{\text{locally constant maps } U \to G\}$, then we usually denote $H^p(X, \underline{G})$ by $H^p(X, G)$.

Cohomology of constant sheaves

- Let *G* be a given abelian group, we can define the constant sheaf \underline{G} over *X* by $\underline{G}(U) = \{\text{locally constant maps } U \to G\}$, then we usually denote $H^p(X, \underline{G})$ by $H^p(X, G)$.
- One can show that when *X* is a manifold, this is isomorphic to the singular cohomology or simplicial cohomology. But we won't prove this. For the isomorphism to simplicial cohomology when $G = \mathbb{Z}$, one can read Chapter 0 of Griffiths-Harris.

de Rham theorem and Dolbeault theorem

• We use the de Rham resolution of $\underline{\mathbb{C}}$:

$$0 \to \underline{\mathbb{C}} \to \mathscr{A}^0 \xrightarrow{d} \mathscr{A}^1 \xrightarrow{d} \dots \xrightarrow{d} \mathscr{A}^{2n} \to 0$$

to get de Rham isomorphism:

$$H^p(X,\mathbb{C})\cong H^p_{dR}(X,\mathbb{C}), \quad p=0,\ldots,2n.$$

The reason for this to be a resolution is Poincaré's Lemma.

de Rham theorem and Dolbeault theorem

• We use the de Rham resolution of $\underline{\mathbb{C}}$:

$$0 \to \underline{\mathbb{C}} \to \mathscr{A}^0 \xrightarrow{d} \mathscr{A}^1 \xrightarrow{d} \dots \xrightarrow{d} \mathscr{A}^{2n} \to 0$$

to get de Rham isomorphism:

$$H^p(X,\mathbb{C})\cong H^p_{dR}(X,\mathbb{C}), \quad p=0,\ldots,2n.$$

The reason for this to be a resolution is Poincaré's Lemma.

• Similarly, we have a Dolbeault-Grothendieck Lemma, which says that a $\bar{\partial}$ -closed form is locally $\bar{\partial}$ -exact. So we get a fine resolution for any $0 \le p \le n$:

$$0 \to \Omega^{p} \to \mathscr{A}^{p,0} \xrightarrow{\bar{\partial}} \mathscr{A}^{p,1} \xrightarrow{\bar{\partial}} \dots \xrightarrow{\bar{\partial}} \mathscr{A}^{p,n} \to 0,$$

so we get

$$H^q(X, \Omega^p) \cong H^{p,q}_{\overline{\partial}}(X).$$

Also for a holomorphic vector bundle E, we have $H^q(X, \Omega^p(E)) \cong H^{p,q}_{\overline{\partial}}(X, E)$.

Divisors

Recall: we define the sheaf of meromorphic functions \mathcal{M} on X, where X is a compact complex manifold, to be the sheafification of the presheaf

 $U \mapsto$ quotient field of $\mathcal{O}(U)$.

We define \mathscr{M}^* to be the sheaf of meromorphic functions that are not identically 0, and let \mathscr{O}^* be the subsheaf of \mathscr{M}^* , consisting of no-where vanishing holomorphic functions. The short exact sequence

$$\mathbf{1} \to \mathscr{O}^* \to \mathscr{M}^* \to \mathscr{M}^*/\mathscr{O}^* \to \mathbf{1}$$

gives us a long exact sequence, starting with

$$\{1\} \to \mathbb{C}^* \to \mathscr{M}^*(X) \to \mathscr{M}^*/\mathscr{O}^*(X) \to H^1(X, \mathscr{O}^*) \to \dots$$

The global section of $\mathcal{M}^*/\mathcal{O}^*(X)$ can be equivalently described as a finite formal sum $\sum_i a_i D_i$, where $a_i \in \mathbb{Z}$ and D_i is codimension 1 irreducible analytic subvariety of X. This is called a "divisor".

SHI, Yalong (Nanjing University) BICMR Complex Geometry

Line bundles associated to a divisor

We define the groups of divisor classes by

$$Div(X) := \left(\mathscr{M}^* / \mathscr{O}^*(X) \right) / \mathscr{M}^*(X).$$

Two divisors are called linearly equivalent, if their difference is a divisor of a global meromorphic function.

The map $\mathcal{M}^*/\mathcal{O}^*(X) \to H^1(X, \mathcal{O}^*)$ is given as follows: locally we can cover X by $\{U_i\}$ such that an element of $\mathcal{M}^*/\mathcal{O}^*(X)$ is given by $f_i \in \mathcal{M}^*(U_i)$. Then $g_{ij} := f_i/f_j$ defines a class in $H^1(X, \mathcal{O}^*)$.

First Chern class of a line bundle

A very useful exact sequence is the following

$$0 \to \underline{\mathbb{Z}} \to \mathscr{O} \xrightarrow{\exp(2\pi\sqrt{-1}\cdot)} \mathscr{O}^* \to 1.$$

We get the exact sequence

$$\cdots \to H^1(X, \mathscr{O}^*) \xrightarrow{c_1} H^2(X, \mathbb{Z}) \to \ldots$$

We call $c_1 : H^1(X, \mathcal{O}^*) \to H^2(X, \mathbb{Z})$ the "first Chern class" map. We shall use differential forms to give another characterization of Chern classes in the next chapter.