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Presheaf
• A presheaf F of abelian groups over a topological space X is a rule assigning
an abelian group F (U) for each open set U ⊂ X , and for each pair V ⊂ U a
homomorphism rU

V : F (U)→ F (V ) (called “restriction homomorphism”),
satisfying rU

U = id and for any W ⊂ V ⊂ U, we have rU
W = rV

W ◦ rU
V .

• An element of F (U) is usually called a “section” of F over U. We also defined
the stalk of F at a point p ∈ X to be

Fp := lim
−→

F (U),

where the direct limit is taken with respect to open sets p ∈ U. This is∐
U3p F (U)/ ∼, with s ∈ F (U) equivalent to t ∈ F (V ) iff we can find another

open set p ∈W ⊂ U ∩ V such that rU
W (s) = rV

W (t). The image of s ∈ F (U) in
Fp is denoted by sp.
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Caution

When the elements of F (U) are functions and the restriction homomorphisms are
indeed restrictions, we need to be careful with stalks and germs: sp = tp does not
mean s(p) = t(p)! Instead, it is a much stronger condition, means that we can find
a neighborhood V of p such that s|V ≡ t |V .
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Morphism between presheaves

By a morphism f between two presheaves F and G over X , we mean for each U
open, we are given a homomorphism of abelian groups fU : F (U)→ G (U), such
that whenever we have open sets V ⊂ U, we have a commutative diagram:

F (U)
fU
−−−−−→ G (U)

rU
V

y yρU
V

F (V ) −−−−−→
fV

G (V ).
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Sheaf

Definition
A presheaf of abelian groups F over X is called a sheaf, if it satisfies the following
two properties:
(S1) Assume we have a family of open sets Ui ⊂ U , i ∈ Λ and ∪iUi = U. If s ∈ F (U)

satisfies rU
Ui

(s) = 0,∀i ∈ Λ, then s = 0.
(S2) Assume we have a family of open sets Ui ⊂ U, i ∈ Λ and ∪iUi = U. If we also

have a family of sections si ∈ F (Ui),∀i ∈ Λ, satisfying rUi
Ui∩Uj

(si) = rUj

Ui∩Uj
(si)

whenever Ui ∩ Uj , ∅, then there is a section s ∈ F (U) such that
rU
Ui

(s) = si ,∀i ∈ Λ.
A morphism between two sheaves is just a morphism between presheaves.

Note that by (S1), the section in (S2) is also unique.
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Example

• Let X be a complex manifold, then OX is a sheaf of commutative rings over X .
We call it the “structure sheaf” of X .

• We can also define other sheaves on X . For example, define E (U) := C∞(U;C),
then it is easy to see that E is a sheaf, called the “sheaf of smooth functions”.
Similarly, we can define the sheaf of continuous functions on X .

• If E → X is a holomorphic vector bundle, then O(E)(U) defines a sheaf of
abelian groups. It can also be viewed as a sheaf of OX -modules. Similarly, we
can define the sheaf of C∞ sections E (E).

• For X = C, if we define Ob(U) to be the set of bounded holomorphic functions
on U ⊂ X , then Ob is a presheaf over C, but not a sheaf.

• Let G be a given abelian group, we define the constant presheaf over X to be
Gpre(U) := G for any non-empty open set U ⊂ X , and rU

V = id for any
non-empty pair V ⊂ U. Then it is in general not a sheaf.
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Sheafification
Proposition
For any presheaf F over X , there is a unique (up to isomorphism) sheaf F + and a
morphism θ : F → F + satisfying the following “universal property”: for any sheaf G
over X and any morphism of presheaves f : F → G , there is a unique morphism of
sheaves f + : F + → G such that f = f + ◦ θ. If F is already a sheaf, then θ is an
isomorphism. F + is called the “sheafification” of F . (By the universal property, if it
exists, then must be unique up to isomorphisms.)

The most direct proof is to define F +(U) explicitely: a map s̃ : U →
∐

p∈U Fp is an
element of F +(U) if and only if:
1. π ◦ s̃ = idU , i.e. s̃(p) ∈ Fp,∀p ∈ U;
2. For any p ∈ U, there is an open neighborhood p ∈ V ⊂ U and a s ∈ F (V ) such

that for any q ∈ V , s̃(q) equals sq, the germ of s at q.
One can check that F + is the sheafification of F .
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“étalé space” appraoch

From F , we define a topological space, called the “étalé space” associated to F :

F̃ :=
∐
p∈X

Fp.

We have a natural surjective projection map π : F̃ → X . The topology on F̃ is
given as follows: If s ∈ F (U), then we have a natural map s̃ : U → F̃ , sending p to
the germ of s at p, which is an element of Fp. Then we require
{s̃(U)| s ∈ F (U),∀U} to be a topological basis for F̃ .
For any open U ⊂ X , define F +(U) := {s : U → F̃ continuous

∣∣∣ π ◦ s = idU}.
The morphism θ is defined by θU : F (U)→ F +(U), θU(s) := s̃.
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Example

• For the presheaf Ob of bounded holomorphic functions, its stalk at p Ob,p is
isomorphic to the ring of convergent power series C{z} (i.e. power series with
a positive convergent radius). Then it is easy to see that its sheafification is the
sheaf of holomorphic functions O.

• For the constant presheaf Gpre over a manifold X , denote its sheafification by
G. Then the elements of G(U) consists of locally constant maps from U to the
abelian group G. G is called “constant sheaf”.

• Let X be a complex manifold, we define a presheaf Mpre over X as follows: for
open set U ⊂ X , elements of Mpre(U) are quotients of holomorphic functions
on U, with denominator not identically zero on any connected component of
U. Its sheafification M is the sheaf of meromorphic functions. Elements of
M (U) are called meromorphic functions on U.
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More about meromorphic functions
• In dim 1 case (Riemann surface), a meromorphic function= a holomorphic
map to Ĉ = CP1. However, when dim≥ 2, there are meromorphic functions
that can not be viewed as holomorphic maps to CP1, e.g., z1

z2
∈M (C2).

• Let X be a compact complex manifold of dimension n, then M (X ) is an
extension field of C. Its transcendental degree over C, a(X ), is called the
“algebraic dimension” of X . It is known (Serre, Siegel, Chow, Thimm...) that
a(X ) ≤ n.

• When X is projective algebraic, then a(X ) = n. When n = 2, the converse is
also true (Chow-Kodaira).

• There are compact complex manifolds such that there are no non-constant
meromorphic functions. For example, the Hopf surface X := C2 \ {0}/ ∼, where
we identify (z1, z2) with (α1z1, α2z2) where αi are constants and |αi | > 1. Then
X is diffeomorphic to S3 × S1. For generic αi , X has no non-constant
meromorphic functions.
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§2.2 Sheaf cohomology (Čech’s approch)

We always assume X is a manifold and F is a sheaf of abelian groups.
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Motivation: the Mittag-Leffler problem

Sheaf is a useful tool to describe the obstructions to solve global problems when
we can always solve a local one.

To illustrate this point, we come back to the Mittag-Leffler problem on a Riemann
surface M. Suppose we are given finitely many points p1, . . . ,pm ∈ M, and for each

pi we are given a Laurant polynomial
∑ni

k=1
c(i)

k
zk . We can view this as an element of

Mp/Op. We want to find a meromorphic function on M whose poles are precisely
those pi ’s with the given Laurant polynomial as its principal part at pi .
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Čech cocycles in the Mittag-Leffler problem

• This problem is always solvable locally: we can find a locally finite open
covering U = {Ui | i ∈ Λ} of M such that each Ui contains at most one of the
pi ’s, and fi ∈M (Ui) such that the only poles of fi are those of {pi } contained in
Ui with principal part equals the given Laurent polynomial.

• The problem is that we can not patch them together: if Ui ∩ Uj , ∅, there is no
reason to have fi = fj . We have to define fij := fi − fj and view the totality of
these fij ’s as the obstruction to solve the problem.

• Now by our choice of fi , fij ∈ O(Ui ∩ Uj). Note that we have fij + fji = 0 on
Ui ∩ Uj and whenever Ui ∩ Uj ∩ Uk , ∅, we have on Ui ∩ Uj ∩ Uk :
fij + fjk + fki = 0. We call this the “cocycle” condition and {fij } is a “Čech cocycle”
for the sheaf O with respect to the cover U.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 15 / 38
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True obstruction to the Mittag-Leffler problem

• When can we solve the Mittag-Leffler problem on M? We can solve it if we can
modify the fi by a holomorphic function hi ∈ O(Ui) such that f̃i := fi − hi will
patch together.

• This means that f̃i = f̃j on Ui ∩ Uj , equivalently, fij = hi − hj .
• We call a cocycle of the form {hi − hj } (where each hi is holomorphic) a Čech
coboundary. We get the conclusion that we can solve the Mittag-Leffler
problem if the Čech cocycle {fij } is a coboundary.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 16 / 38



True obstruction to the Mittag-Leffler problem

• When can we solve the Mittag-Leffler problem on M? We can solve it if we can
modify the fi by a holomorphic function hi ∈ O(Ui) such that f̃i := fi − hi will
patch together.

• This means that f̃i = f̃j on Ui ∩ Uj , equivalently, fij = hi − hj .

• We call a cocycle of the form {hi − hj } (where each hi is holomorphic) a Čech
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coboundary. We get the conclusion that we can solve the Mittag-Leffler
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Definition of Čech cohomology: the space of cochains
This motivates the introduction of the following Čech cohomology of a sheaf F
with respect to a locally finite cover U of X :We first define the chain groups:

C0(U,F ) := Πi∈ΛF (Ui)

C1(U,F ) ⊂ Π(i ,j)∈Λ2F (Ui ∩ Uj)

. . .

Cp(U,F ) ⊂ Π(i0,i1,...,ip)∈Λp+1F (Ui0 ∩ · · · ∩ Uip )

. . .

where {σi0,...,ip} is in Cp(U,F ) if and only if:
(1) Whenever ik = il for some k , l , we have σi0,...,ip = 0;
(2) For any permutation τ ∈ Sp+1, we have σiτ(0),...,iτ(p)

= (−1)τσi0,...,ip .
Note that we always define F (U) = {0} if U = ∅.
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Definition of Čech cohomology: the coboundary maps
We define the coboundary operator δ : Cp(U,F )→ Cp+1(U,F ) to be:

(δσ)i0,...,ip+1 :=

p+1∑
j=0

(−1)jσi0,...,îj ,...,ip+1
|Ui0∩···∩Uip+1

.

Here we use . . . |... to denote the restriction homomorphism of F . It is direct to
check that δ ◦ δ = 0. So we have a cochain complex

0→ C0(U,F )
δ
−→ C1(U,F )

δ
−→ . . .

δ
−→ Cp(U,F )

δ
−→ . . .

We can define the space of Čech p-cocycles

Z p(U,F ) = Kerδ ⊂ Cp(U,F ),

and the space of Čech p-coboundaries

Bp(U,F ) = δCp−1(U,F ) ⊂ Z p(U,F ).

We define the Čech cohomology wrt U to be Hp(U,F ) := Z p(U,F )/Bp(U,F ).
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Meanings of H0,H1

• An element of H0(U,F ) is given by a family of sections fi ∈ F (Ui) such that
δ{fi } = 0. This means precisely rUi

Ui∩Uj
(fi) = rUj

Ui∩Uj
(fj) whenever Ui ∩ Uj , ∅. By

sheaf axiom (S2), we get a global section of F over X . So H0(U,F ) is in fact
independent of U and we have a canonical isomorphism

H0(U,F ) � F (X ).

• When p = 1, {fij } ∈ Cp(U,F ) is a cocycle if fij + fji = 0 and
fjk − fik + fij = fij + fjk + fki = 0. This is precisely the “cocycle condition” we met
before (Note that we use “+” for the group operation instead of “·”.). However,
this time the cohomology may depend on the cover.
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Refining the cover

Let V = {Vα}α∈Γ be a locally finite refinement of U. This means we have a map
τ : Γ→ Λ (not unique) such that Vα ⊂ Uτ(α). Then we have a homomorphism
ΦU
V

: Hp(U,F )→ Hp(V,F ) induced by

{σi0,...,ip} 7→ {στ(α0),...,τ(αp)|Vα0∩···∩Vαp
}.

One can prove that ΦU
V
is in fact independent of the choice of the map τ.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 20 / 38



Čech cohomology of X
The cohomology of X with coefficients sheaf F is defined to be the direct limit:

Hp(X ,F ) := lim
−→

Hp(U,F ) =
∐
U

Hp(U,F )/ ∼

where two cohomology classes [{σi0,...,ip}] ∈ Hp(U,F ) and [{ηj0,...,jp}] ∈ Hp(V,F ) are
equivalent if we can find a common refinementW of U,V such that

ΦU
W

([{σi0,...,ip}]) = ΦV
W

([{ηj0,...,jp}]).

Thus an element of Hp(X ,F ) is an equivalent class of Čech cohomology classes,
represented by an element of Hp(U,F ), for some cover U. But in many cases, in
particular all the sheaves we use in this course, there exists sufficiently fine cover
U such that Hp(U,F ) � Hp(X ,F ).
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A detailed study of H1(U,F ) and H1(X ,F )
Proposition
IfV is a refinement ofU, then ΦU

V
: H1(U,F )→ H1(V,F ) is injective, and hence so

is the induced homomorphism H1(U,F )→ H1(X ,F ). We can simply write
H1(X ,F ) = ∪UH1(U,F ).

Proof
Let U = {Ui }i∈Γ, V = {Vα}α∈Λ and τ : Γ→ Λ be a map such that Ui ⊂ Vτ(i). Consider a
common refinement of U,V,W := {Wiα := Ui ∩ Vα , ∅ | i ∈ Γ, α ∈ Λ}. Suppose
[{fij }] ∈ H1(U,F ) satisfies ΦU

V

(
[{fij }]

)
= 0. Then we also have ΦU

W

(
[{fij }]

)
= 0. This

mean that {fij } is a cocycle and {fij |Wiα∩Wjβ} is a coboundary. So we can find
hiα ∈ F (Wiα) such that on Wiα ∩Wjβ, we have

fij |Wiα∩Wjβ = hjβ − hiα.
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Proof (continued)
Since fii = 0, we must have 0 = hiα|Wiα∩Wiβ − hiβ|Wiα∩Wiβ. Since {Wiα}α∈Λ is an open
covering of Ui , by sheaf axiom (S2), we can find a hi ∈ F (Ui) such that hi |Wiα = hiα.

Now consider the open covering of Ui ∩ Uj by Ui ∩ Uj ∩ Vα = Wiα ∩Wjα. Since

fij |Wiα∩Wjα = hj |Wiα∩Wjα − hi |Wiα∩Wjα = (hj |Ui∩Uj − hi |Ui∩Uj )|Wiα∩Wjα .

This means δ{hi } = {fij }, equivalently, [{fij }] = 0. This implies that ΦU
V
is injective.
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Picard group as sheaf cohomology
Theorem
Let X be a complex manifold, then we have Pic(X ) � H1(X ,O∗), where O∗ is the
sheaf of nowhere vanishing holomorphic functions.

Proof
• Given a holomorphic line bundle L with local trivializing covering U, we get a
cocycle {ψij } and hence a cohomology class [{ψij }] ∈ H1(U,O∗) ⊂ H1(X ,O∗). Easy
to see that it is well-defined, and is surjective.

• If L is isomorphic to L′, we can assume that they have common trivializing
coverings U, with cocycles {ψij } and {ψ′ij } respectively. The bundle isomorphism
map gives λi ∈ O∗(Ui) such that ψ′ijλj = λiψij . This implies that {ψ′ijψ

−1
ij } is a

coboundary, so [{ψij }] = [{ψ′ij }] ∈ H1(X ,O∗). So we get a map
Pic(X )→ H1(X ,O∗), which is easily seen to be a group isomorphism.
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§2.3 Fundamental results for sheaf cohomology
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Short exact sequence
Recall that a morphism f : F → G of sheaves over X induces for each point p ∈ X a
homomorphism of stalks: fp : Fp → Gp. We call a sequence of morphisms of sheaves
an “exact sequence” if the induced sequence on stalks is so for each pint p.

Theorem
If we have a short exact sequence for sheaves of abelian groups over X

0→ F
f
−→ G

g
−→H → 0,

then we have a long exact sequence for cohomologies

0→ H0(X ,F )→ H0(X ,G )→ H0(X ,H )→ H1(X ,F )→ . . .

. . .→ Hp(X ,H )→ Hp+1(X ,F )→ Hp+1(X ,G )→ . . .
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Explanation
For the given short exact sequence, we always get an exact sequence

0→ F (X )→ G (X )→H (X ),

(Exercise: for any open set U, the sequence 0→ F (U)→ G (U)→H (U) is always
exact.)but the last homomorphism is in general not surjective:

Given σ ∈H (X ), can we find η ∈ G (X ) such that gX (η) = σ? We know that

0→ Fp
fp
−→ Gp

gp
−→Hp → 0 is exact, so we can always find ηp ∈ Gp s.t. gp(ηp) = σp.

This means that we can find a cover U = {Ui } of X and a sequence ηi ∈ G (Ui) s.t.
gUi (ηi) = σ|Ui . If all the ηij := ηj − ηi = 0 on Ui ∩Uj , we can patch these ηi ’s together,
then we solve the problem. Need to modify ηi! Since gUi∩Uj (ηij) = 0, we can find
µij ∈ F (Ui ∩ Uj) such that fUi∩Uj (µij) = ηij . By the injectivity of f , we in fact get a
cocycle {µij } ∈ C1(U,F ). So we get a homomorphism H (X )→ H1(X ,F ). It is
easy to check that if σ goes to 0 in H1(X ,F ), then we can modify ηi properly (on a
refinement of U ) such that they patch together to get an element of G (X ).
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“Abstract de Rham theorem”
A corollary of the above Theorem is the following “abstract de Rham theorem”:

Theorem
Suppose we have an exact sequence of the form:

0→ F → S0 → S1 → · · · → Sr → . . .

where each Sr satisfies Hp(X ,Sr ) = 0,∀p ≥ 1. (This is called an “acyclic resolution of
F ”.) Then H∗(X ,F ) is isomorphic to the cohomology of the cochain complex

0→ S0(X )→ S1(X )→ · · · → Sr (X )→ . . .

i.e., H∗(X ,F ) � H∗(Γ(X ,S ∗)).
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Proof
We break the sheaf sequence into a sequence of short exact sequences for p ≥ 1:

0→ Kp−1 → Sp−1 → Kp → 0,

where Kp = Ker(Sp → Sp+1) = Im(Sp−1 → Sp). Note that K0 � F . By the above
theorem and the assumption for Sp, we have an exact sequence

0→ Kp−1(X )→ Sp−1(X )→ Kp(X )→ H1(X ,Kp−1)→ 0.

Also note that Kp(X ) � Ker(Sp(X )→ Sp+1(X )), so we get

H1(X ,Kp−1) � Ker(Sp(X )→ Sp+1(X ))/Im(Sp−1(X )→ Kp(X )) = Hp(Γ(X ,S ∗)).

We need to prove H1(X ,Kp−1) � Hp(X ,F ) = Hp(X ,K0).
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Proof
For this, we only need to show for 2 ≤ r ≤ p

H r−1(X ,Kp−r+1) � H r (X ,Kp−r ).

But this again follows from the segment of long exact sequence:

· · · → H r−1(X ,Sp−r )→ H r−1(X ,Kp−r+1)→ H r (X ,Kp−r )→ H r (X ,Sp−r )→ . . . .
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Fine sheaves

When can we get an acyclic resolution? In particular, how can we find a lot of
sheaves Sr such that Hp(X ,Sr ) = 0,∀p ≥ 1?

Definition
A sheaf F over X is called a “fine sheaf”, if for any locally finite open cover
U = {Ui }, we can find a family of morphisms ηi : F → F such that:
(1) For each i , ηi(p) : Fp → Fp equals 0 for p outside a compact set Wi ⊂ Ui ;
(2)

∑
i ηi = idF .

It is obvious that in case we can use a smooth function to multiply the sections of
F , then a usual partition of unity will make F a fine sheaf.
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Proposition
If F is a fine sheaf, then Hp(X ,F ) = 0,∀p ≥ 1.

Proof
For any p-cocycle {σi0,...,ip} ∈ Cp(U,F ) for a locally finite cover U = {Ui }i∈Λ. Let ηi be
the above morphisms in the definition. We define a p − 1 cochain {ψi0,...,ip−1} as follows:

ψi0,...,ip−1 :=
∑

i

ηi(σi ,i0,...,ip−1).

Then (using the fact that δ{σ...} = 0)

(δψ)i0,...,ip =

p∑
j=0

(−1)jψi0,...,îj ,...,ip =
∑

j

∑
i

(−1)jηi(σi ,i0,...,îj ,...,ip ) =
∑

i

ηi(σi0,...,ip ) = σi0,...,ip .
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§2.4 Applications
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Cohomology of constant sheaves

• Let G be a given abelian group, we can define the constant sheaf G over X by
G(U) = {locally constant maps U → G}, then we usually denote Hp(X ,G) by
Hp(X ,G).

• One can show that when X is a manifold, this is isomorphic to the singular
cohomology or simplicial cohomology. But we won’t prove this. For the
isomorphism to simplicial cohomology when G = Z, one can read Chapter 0 of
Griffiths-Harris.
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de Rham theorem and Dolbeault theorem
• We use the de Rham resolution of C:

0→ C→ A 0 d
−→ A 1 d

−→ . . .
d
−→ A 2n → 0

to get de Rham isomorphism:

Hp(X ,C) � Hp
dR(X ,C), p = 0, . . . ,2n.

The reason for this to be a resolution is Poincaré’s Lemma.

• Similarly, we have a Dolbeault-Grothendieck Lemma, which says that a
∂̄-closed form is locally ∂̄-exact. So we get a fine resolution for any 0 ≤ p ≤ n:

0→ Ωp → A p,0 ∂̄
−→ A p,1 ∂̄

−→ . . .
∂̄
−→ A p,n → 0,

so we get
Hq(X ,Ωp) � Hp,q

∂̄
(X ).

Also for a holomorphic vector bundle E , we have Hq(X ,Ωp(E)) � Hp,q
∂̄

(X ,E).
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Divisors
Recall: we define the sheaf of meromorphic functions M on X , where X is a
compact complex manifold, to be the sheafification of the presheaf

U 7→ quotient field of O(U).

We define M ∗ to be the sheaf of meromorphic functions that are not identically 0,
and let O∗ be the subsheaf of M ∗, consisting of no-where vanishing holomorphic
functions. The short exact sequence

1→ O∗ →M ∗ →M ∗/O∗ → 1

gives us a long exact sequence, starting with

{1} → C∗ →M ∗(X )→M ∗/O∗(X )→ H1(X ,O∗)→ . . . .

The global section of M ∗/O∗(X ) can be equivalently described as a finite formal
sum

∑
i aiDi , where ai ∈ Z and Di is codimension 1 irreducible analytic subvariety

of X . This is called a “divisor”.
SHI, Yalong (Nanjing University) BICMR Complex Geometry 36 / 38



Line bundles associated to a divisor

We define the groups of divisor classes by

Div(X ) :=
(
M ∗/O∗(X )

)
/M ∗(X ).

Two divisors are called linearly equivalent, if their difference is a divisor of a global
meromorphic function.

The map M ∗/O∗(X )→ H1(X ,O∗) is given as follows: locally we can cover X by
{Ui } such that an element of M ∗/O∗(X ) is given by fi ∈M ∗(Ui). Then gij := fi/fj
defines a class in H1(X ,O∗).
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First Chern class of a line bundle

A very useful exact sequence is the following

0→ Z→ O
exp(2π

√
−1·)

−−−−−−−−−→ O∗ → 1.

We get the exact sequence

· · · → H1(X ,O∗)
c1
−→ H2(X ,Z)→ . . . .

We call c1 : H1(X ,O∗)→ H2(X ,Z) the “first Chern class” map. We shall use
differential forms to give another characterization of Chern classes in the next
chapter.
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