Introduction to Complex Geometry

Chapter 1 Complex Manifolds and Vector Bundles
SHI, Yalong
(Nanjing University)
BICMR Summer School 2022

Outline

1 Complex manifolds

2 Vector bundles

3 Almost complex structure and $\bar{\partial}$-operator

§1.1 Complex manifolds

Defining a complex manifold: the 1st condition

Roughly speaking, a complex manifold is a topological space X on which we can talk about "holomorphic" functions. Since we know what does a holomorphic function means in Euclidean spaces, the first condition we impose on X is:

Condition 1:(existence of coordinate charts) X is locally homeomorphic to open sets of \mathbb{C}^{n}. To be precise, we require that there is an open covering $\mathcal{U}=\left\{U_{i}\right\}_{i \in \Lambda}$ of X such that for each U_{i} we have a homeomorphism $\varphi_{i}: U_{i} \rightarrow \varphi_{i}\left(U_{i}\right) \subset \mathbb{C}^{n}$ onto an open set $\varphi_{i}\left(U_{i}\right)$ of \mathbb{C}^{n}.

Defining a complex manifold: the 2nd condition

Given these coordinates, we should define a function $f: \Omega \rightarrow \mathbb{C}$ to be holomorphic if all its coordinate-representations $f \circ \varphi_{i}^{-1} \in \mathscr{O}\left(\varphi_{i}\left(U_{i} \cap \Omega\right)\right)$. But is this a well-defined notion? For example if $\Omega \subset U_{i} \cap U_{j} \neq \emptyset$, then on Ω we have two sets of coordinates. Is it possible that $f \circ \varphi_{i}^{-1} \in \mathscr{O}\left(\varphi_{i}\left(U_{i} \cap \Omega\right)\right)$ but $f \circ \varphi_{j}^{-1} \notin \mathscr{O}\left(\varphi_{j}\left(U_{j} \cap \Omega\right)\right)$? To avoid this, note that $f \circ \varphi_{j}^{-1}=\left(f \circ \varphi_{i}^{-1}\right) \circ\left(\varphi_{i} \circ \varphi_{j}^{-1}\right)$, so we require:

Condition 2:(compatibility) Coordinate changes of Condition 1 should be holomorphic. To be precise, we require that whenever $U_{i} \cap U_{j} \neq \emptyset$, we have $\varphi_{i} \circ \varphi_{j}^{-1}$ is a biholomorphic map from $\varphi_{j}\left(U_{i} \cap U_{j}\right)$ to $\varphi_{i}\left(U_{i} \cap U_{j}\right)$.

Defining a complex manifold: the 3rd condition

Given these 2 conditions, one can check easily that the notion of "holomorphic function" makes perfect sense. However, to avoid pathology and use more analytic tools such as metrics and integration, we also require a complex manifold to be a nice topological space:

Condition 3: X satisfies T_{2} and C_{2} axioms, i.e. X is a Hausdorff space, and has a countable topological basis.

The definition

Definition

- A complex (analytic) manifold of dimension n is a topological space X satisfying Conditions 1,2,3 above. A 1-dimensional complex manifold is also known as a "Riemann surface". A map $f: X \rightarrow \mathbb{C}$ from a complex manifold X is called a "holomorphic function", if $f \circ \varphi_{i}^{-1} \in \mathscr{O}\left(\varphi_{i}\left(U_{i}\right)\right)$ for all $i \in \Lambda$. In this case, we write $f \in \mathscr{O}(X)$.

The definition

Definition

- A complex (analytic) manifold of dimension n is a topological space X satisfying Conditions 1,2,3 above. A 1-dimensional complex manifold is also known as a "Riemann surface". A map $f: X \rightarrow \mathbb{C}$ from a complex manifold X is called a "holomorphic function", if $f \circ \varphi_{i}^{-1} \in \mathscr{O}\left(\varphi_{i}\left(U_{i}\right)\right)$ for all $i \in \Lambda$. In this case, we write $f \in \mathscr{O}(X)$.
- If X, Y are both complex manifolds of dimensions n and m respectively, a map $F: X \rightarrow Y$ is called "holomorphic", if for all coordinate charts (U, φ) of X and (V, ψ) of Y, the map $\psi \circ F \circ \varphi^{-1}$ is a holomorphic map on $\varphi\left(U \cap F^{-1}(V)\right) \subset \mathbb{C}^{n}$ whenever $U \cap F^{-1}(V) \neq \emptyset$. A holomorphic map with a holomorphic inverse is called "biholomorphic".

A technical remark

Remark

In standard textbooks, the set of coordinate charts $\left\{\left(U_{i}, \varphi_{i}\right)\right\}_{i \in \Lambda}$ is assumed to be maximal, i.e., whenever a homeomorphism from an open set $V, \psi: V \rightarrow \psi(V) \subset \mathbb{C}^{n}$ is compatible with $\left(U_{i}, \varphi_{i}\right)$ for all $U_{i} \cap V \neq \emptyset$, we have $(V, \psi) \in\left\{\left(U_{i}, \varphi_{i}\right)\right\}_{i \in \wedge}$. It is easy to check that from the coordinate charts in our definition, one can always enlarge it to a unique maximal one satisfying the compatibility condition.

Example

1. Open subsets of \mathbb{C}^{n} are complex manifolds.

Example

1. Open subsets of \mathbb{C}^{n} are complex manifolds.
2. Let $\left\{e_{1}, \ldots, e_{2 n}\right\}$ be any fixed \mathbb{R}-basis of \mathbb{C}^{n}, and let
$\Lambda:=\left\{m_{1} e_{1}+\cdots+m_{2 n} e_{2 n} \mid m_{i} \in \mathbb{Z}\right\}$ be a lattice of rank $2 n$. Then we can define the quotient space \mathbb{C}^{n} / Λ, it is a compact Hausdorff space equipped with quotient topology. There is a natural complex manifold structure on \mathbb{C}^{n} / Λ, we call this complex manifold a "complex torus".

Example

1. Open subsets of \mathbb{C}^{n} are complex manifolds.
2. Let $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{2 n}\right\}$ be any fixed \mathbb{R}-basis of \mathbb{C}^{n}, and let
$\Lambda:=\left\{m_{1} e_{1}+\cdots+m_{2 n} e_{2 n} \mid m_{i} \in \mathbb{Z}\right\}$ be a lattice of rank $2 n$. Then we can define the quotient space \mathbb{C}^{n} / Λ, it is a compact Hausdorff space equipped with quotient topology. There is a natural complex manifold structure on \mathbb{C}^{n} / Λ, we call this complex manifold a "complex torus".
3. Let $P \in \mathbb{C}[z, w]$ be a polynomial of degree d. Define

$$
C:=\{(z, w) \mid P(z, w)=0\}
$$

We call it an "affine plane algebraic curve". Assume P is irreducible and $\frac{\partial P}{\partial z}, \frac{\partial P}{\partial w}$ have no common zeroes on C. Then C is a natural complex manifold.

More about example 3

The coordinates can be chosen in the following way: if $\frac{\partial P}{\partial w}\left(z_{0}, w_{0}\right) \neq 0$, then we can apply the (holomorphic version of) implicit function theorem to find a neighborhood $\Delta\left(z_{0}, \epsilon\right) \times \Delta\left(w_{0}, \delta\right)$ and a holomorphic function $g(z)$ such that $U:=C \cap\left(\Delta\left(z_{0}, \epsilon\right) \times \Delta\left(w_{0}, \delta\right)\right)=\left\{(z, w) \mid z \in \Delta\left(z_{0}, \epsilon\right), w=g(z)\right\}$. We choose $\varphi: U \rightarrow \mathbb{C}$ to be $\varphi(z, w)=z$. If $\frac{\partial P}{\partial z}\left(z_{0}, w_{0}\right) \neq 0$, we use w as local coordinate.
Exercise: what's the coordinates transformation function?

Complex (analytic) submanifolds

Definition

A closed subset Y of a n-dimensional complex manifold X is called a (closed) "complex (analytic) submanifold" of dimension k, if for any $p \in Y$, we can find a compatible chart (U, φ) of X such that $p \in U$ and

$$
\varphi(U \cap Y)=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \varphi(U) \mid z_{k+1}=\cdots=z_{n}=0\right\} .
$$

One can check that the restriction of such charts (we call them "adapted charts") to Y makes Y a complex manifold and the inclusion $Y \subset X$ is a holomorphic map.

Complex submanifolds of \mathbb{C}^{n}

A direct application of the maximum principle gives:

Lemma

Any holomorphic function on a compact connected complex manifold should be a constant.

Let M be a complex submanifolds of \mathbb{C}^{n}. Since the restriction of complex coordinate functions of \mathbb{C}^{n} to M are holomorphic functions on M, we get:

Corollary

There are no compact complex submanifolds of \mathbb{C}^{n} of positive dimension.

Remark

Those non-compact complex manifolds which admit proper holomorphic embeddings into \mathbb{C}^{N} for some large N are precisely "Stein manifolds" in complex analysis.

The complex projective space

Example

Define an equivalence relation on $\mathbb{C}^{n+1} \backslash\{0\}:\left(z_{0}, \ldots, z_{n}\right) \sim\left(w_{0}, \ldots, w_{n}\right)$ iff $\exists \lambda \in \mathbb{C}^{*}$ such that $w_{i}=\lambda z_{i}, \forall i=0, \ldots, n$. The equivalent class of $\left(z_{0}, \ldots, z_{n}\right)$ is denoted by $\left[z_{0}, \ldots, z_{n}\right]$. The n-dimensional complex projective space $\mathbb{C} P^{n}$ is defined to be the space of all equivalent classes, endowed with quotient topology. It is compact, Hausdorff. Choose holomorphic coordinate charts as follows: Define $U_{i}:=\left\{\left[z_{0}, \ldots, z_{n}\right] \in \mathbb{C} P^{n} \mid z_{i} \neq 0\right\}, \quad i=0, \ldots, n$. and define

$$
\varphi_{i}: U_{i} \rightarrow \mathbb{C}^{n}, \quad \varphi_{i}\left(\left[z_{0}, \ldots, z_{n}\right]\right):=\left(\frac{z_{0}}{z_{i}}, \ldots, \frac{\hat{z}_{i}}{z_{i}}, \ldots, \frac{z_{n}}{z_{i}}\right) .
$$

The checking of compatibility is left as an exercise. Also it is easy to check that $\mathbb{C} P^{1}$ is diffeomorphic to our familiar S^{2}.

Projective algebraic manifolds

Let $F_{1}, \ldots, F_{k} \in \mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$ be a set of irreducible homogeneous polynomials of degrees d_{1}, \ldots, d_{k} respectively. Then the set

$$
V\left(F_{1}, \ldots, F_{k}\right):=\left\{\left[z_{0}, \ldots, z_{n}\right] \mid F_{1}\left(z_{0}, \ldots, z_{n}\right)=\cdots=F_{k}\left(z_{0}, \ldots, z_{n}\right)=0\right\}
$$

is well-defined and is called a (complex) projective algebraic variety. If we assume that $V\left(F_{1}, \ldots, F_{k}\right)$ is a complex submanifold of $\mathbb{C} P^{n}$, then it will be called a "projective algebraic manifold" (or "Hodge manifold").

Example

Let $F \in \mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$ be irreducible and homogeneous of degree d. If the only common zero of $\frac{\partial F}{\partial z_{0}}, \ldots, \frac{\partial F}{\partial z_{n}}$ in \mathbb{C}^{n+1} is $(0, \ldots, 0)$. Then $V(F)$ is a complex submanifold of dimension $n-1$. E.g., the "Fermat hypersurface" $V\left(z_{0}^{d}+\cdots+z_{n}^{d}\right)$.

Proof

We check this on $U_{0} . V(F) \cap U_{0}$ is the zero locus of $F\left(1, z_{1}, \ldots, z_{n}\right) \in \mathscr{O}\left(U_{0}\right)$. Need to show that $\frac{\partial F}{\partial z_{1}}\left(1, z_{1}, \ldots, z_{n}\right), \ldots \frac{\partial F}{\partial z_{n}}\left(1, z_{1}, \ldots, z_{n}\right)$ have no common zeroes on $V(F) \cap U_{0}$.
Suppose $F\left(1, z_{1}^{0}, \ldots z_{n}^{0}\right)=\frac{\partial F}{\partial z_{1}}\left(1, z_{1}^{0}, \ldots, z_{n}^{0}\right)=\cdots=\frac{\partial F}{\partial z_{n}}\left(1, z_{1}^{0}, \ldots, z_{n}^{0}\right)=0$. By Euler:

$$
\frac{\partial F}{\partial z_{0}}\left(1, z_{1}^{0}, \ldots, z_{n}^{0}\right)+z_{1}^{0} \frac{\partial F}{\partial z_{1}}\left(1, z_{1}^{0}, \ldots, z_{n}^{0}\right)+\cdots+z_{n}^{0} \frac{\partial F}{\partial z_{n}}\left(1, z_{1}^{0}, \ldots, z_{n}^{0}\right)=d F=0 .
$$

This implies $\frac{\partial F}{\partial z_{0}}\left(1, z_{1}^{0}, \ldots, z_{n}^{0}\right)=0$, so $\left(1, z_{1}^{0}, \ldots, z_{n}^{0}\right)$ is a common zero of $\frac{\partial F}{\partial z_{0}}, \ldots, \frac{\partial F}{\partial z_{n}}$ $\mathrm{in}_{\text {Hin }} \mathbb{C}_{\text {Yalong }}^{n+1}$ different from $\left.\left(0_{\text {amir }}, 0\right)\right)_{\text {piplex Geometry }}$

Analytic subvarieties

A generalization of submanifold is the following:

Definition

A closed subset \boldsymbol{A} of a complex manifold X is called an "analytic subvariety", if it is locally the common zeroes of finitely many holomorphic functions, i.e. $\forall p \in A$, there is an open set $U \subset X$ and $f_{1}, \ldots, f_{k} \in \mathscr{O}(U)$ such that

$$
A \cap U=\left\{z \in U \mid f_{1}(z)=\cdots=f_{k}(z)=0\right\} .
$$

An analytic subvariety A is called a "hypersurface" if it is locally the zero locus of a holomorphic function.

Relations between submanifolds and subvarieties

- A complex submanifold is an analytic subvariety, we just choose U to be the domain of the adapted chart and f_{i} to be z_{k+1}, \ldots, z_{n}.

Relations between submanifolds and subvarieties

- A complex submanifold is an analytic subvariety, we just choose U to be the domain of the adapted chart and f_{i} to be z_{k+1}, \ldots, z_{n}.
- Let $A \subset X$ be an analytic subvariety. $p \in A$ is called a "regular point", if we can find open $U \subset X$ and $f_{1}, \ldots, f_{k} \in \mathscr{O}(U)$ s.t.
$A \cap U=\left\{z \in U \mid f_{1}(z)=\cdots=f_{k}(z)=0\right\}$ and $\operatorname{rank} \frac{\partial\left(f_{1}, \ldots, f_{k}\right)}{\partial\left(z_{1}, \ldots, z_{n}\right)}(p)=k$. In this case, A is locally near p a complex submanifold of dimension $n-k$.

Relations between submanifolds and subvarieties

- A complex submanifold is an analytic subvariety, we just choose U to be the domain of the adapted chart and f_{i} to be z_{k+1}, \ldots, z_{n}.
- Let $A \subset X$ be an analytic subvariety. $p \in A$ is called a "regular point", if we can find open $U \subset X$ and $f_{1}, \ldots, f_{k} \in \mathscr{O}(U)$ s.t.
$A \cap U=\left\{z \in U \mid f_{1}(z)=\cdots=f_{k}(z)=0\right\}$ and $\operatorname{rank} \frac{\partial\left(f_{1}, \ldots, f_{k}\right)}{\partial\left(z_{1}, \ldots, z_{n}\right)}(p)=k$. In this case, A is locally near p a complex submanifold of dimension $n-k$.
- The locus of regular points of \boldsymbol{A} is denoted by $\boldsymbol{A}_{\text {reg }}$. Its complement in \boldsymbol{A} is called the "singular locus", and its elements are called "singular points of \boldsymbol{A} ".

Relations between submanifolds and subvarieties

- A complex submanifold is an analytic subvariety, we just choose U to be the domain of the adapted chart and f_{i} to be z_{k+1}, \ldots, z_{n}.
- Let $A \subset X$ be an analytic subvariety. $p \in A$ is called a "regular point", if we can find open $U \subset X$ and $f_{1}, \ldots, f_{k} \in \mathscr{O}(U)$ s.t.
$A \cap U=\left\{z \in U \mid f_{1}(z)=\cdots=f_{k}(z)=0\right\}$ and $\operatorname{rank} \frac{\partial\left(f_{1}, \ldots, f_{k}\right)}{\partial\left(z_{1}, \ldots, z_{n}\right)}(p)=k$. In this case, A is locally near p a complex submanifold of dimension $n-k$.
- The locus of regular points of \boldsymbol{A} is denoted by $\boldsymbol{A}_{\text {reg }}$. Its complement in \boldsymbol{A} is called the "singular locus", and its elements are called "singular points of \boldsymbol{A} ".
- Chow's theorem: complex analytic subvarieties of $\mathbb{C} P^{n}$ are algebraic, i.e., the common zeroes of finitely many homogeneous polynomials.

Existence of complex structures on a given C^{∞} manifold

- A complex manifold is an even dimensional orientable differential manifold. (Exercise)

Existence of complex structures on a given C^{∞} manifold

- A complex manifold is an even dimensional orientable differential manifold. (Exercise)
- However, for a given even dimensional oriented manifold, it is not always clear whether or not we can make it a complex manifold.

Existence of complex structures on a given C^{∞} manifold

- A complex manifold is an even dimensional orientable differential manifold. (Exercise)
- However, for a given even dimensional oriented manifold, it is not always clear whether or not we can make it a complex manifold.
- There are topological obstructions to "almost complex structure", this can rule out all even dimensional spheres except S^{2} and S^{6}. We already knew S^{2} is a complex manifold. But the S^{6} case is still open.

Existence of complex structures on a given C^{∞} manifold

- A complex manifold is an even dimensional orientable differential manifold. (Exercise)
- However, for a given even dimensional oriented manifold, it is not always clear whether or not we can make it a complex manifold.
- There are topological obstructions to "almost complex structure", this can rule out all even dimensional spheres except S^{2} and S^{6}. We already knew S^{2} is a complex manifold. But the S^{6} case is still open.
- In this view, we give an example of complex structures on product of odd dimensional spheres:

Example (Calabi-Eckmann manifolds)

We can make $S^{2 p+1} \times S^{2 q+1}$ into a complex manifold. The idea is that we can write

$$
S^{2 p+1}=\left\{\left.z \in \mathbb{C}^{p+1}\left|\sum_{i=0}^{p}\right| z_{i}\right|^{2}=1\right\}, \quad S^{2 q+1}=\left\{\left.z \in \mathbb{C}^{q+1}\left|\sum_{j=0}^{q}\right| z_{j}\right|^{2}=1\right\},
$$

and we have the Hopf fibration maps:

$$
\pi_{p}: S^{2 p+1} \rightarrow \mathbb{C} P^{p}, \quad \pi_{q}: S^{2 q+1} \rightarrow \mathbb{C} P^{q},
$$

each with fiber S^{1}. So if we consider the map $\pi=\left(\pi_{p}, \pi_{q}\right): S^{2 p+1} \times S^{2 q+1} \rightarrow \mathbb{C} P^{p} \times \mathbb{C} P^{q}$, then we can view $S^{2 p+1} \times S^{2 q+1}$ as a fiber bundle on $\mathbb{C} P^{p} \times \mathbb{C} P^{q}$, which is a complex manifold, with fiber $S^{1} \times S^{1}=T^{2}$, which can also be made a complex manifold.

Example (Calabi-Eckmann manifolds (continued))

To be precise, fix a $\tau \in \mathbb{C}$ with $\operatorname{Im} \tau>0$. We donote by T_{τ} the complex torus $\mathbb{C} /\langle 1, \tau\rangle$. Consider the open sets:

$$
U_{k j}:=\left\{\left(z, z^{\prime}\right) \in S^{2 p+1} \times S^{2 q+1} \mid z_{k} z_{j}^{\prime} \neq 0\right\}
$$

and the map $h_{k j}: U_{k j} \rightarrow \mathbb{C}^{p+q} \times T_{\tau}$ given by

$$
h_{k j}\left(z, z^{\prime}\right)=\left(\frac{z_{0}}{z_{k}}, \ldots, \frac{\hat{z}_{k}}{z_{k}}, \ldots, \frac{z_{p}}{z_{k}}, \frac{z_{0}^{\prime}}{z_{j}^{\prime}}, \ldots, \frac{\hat{z}_{j}^{\prime}}{z_{j}^{\prime}}, \ldots, \frac{z_{q}^{\prime}}{z_{j}^{\prime}}, t_{k j}\right),
$$

where $t_{k j}:=\frac{1}{2 \pi \sqrt{-1}}\left(\log z_{k}+\tau \log z_{j}^{\prime}\right) \bmod \langle 1, \tau\rangle$.
Exercise: check that these charts makes $S^{2 p+1} \times S^{2 q+1}$ a complex manifold.
$\S 1.2$ Vector bundles

Holomorphic vector bundle

Roughly speaking, a holomorphic vector bundle over a complex manifold is a family of vector spaces, varying holomorphically.

Definition

A holomorphic vector bundle of rank r over a n-dimensional complex manifold X is a complex manifold E of dimension $n+r$, together with a holomorphic surjective map $\pi: E \rightarrow X$ satisfying:

1. (Fiberwise linear) Each fiber $E_{p}:=\pi^{-1}(p)$ has the structure of r-dimensional vector space over \mathbb{C};

A vector bundle of rank 1 is usually called a "line bundle".

Holomorphic vector bundle

Roughly speaking, a holomorphic vector bundle over a complex manifold is a family of vector spaces, varying holomorphically.

Definition

A holomorphic vector bundle of rank r over a n-dimensional complex manifold X is a complex manifold E of dimension $n+r$, together with a holomorphic surjective map $\pi: E \rightarrow X$ satisfying:

1. (Fiberwise linear) Each fiber $E_{p}:=\pi^{-1}(p)$ has the structure of r-dimensional vector space over \mathbb{C};
2. (Locally trivial) There is an open cover of $\boldsymbol{X}, \mathcal{U}=\left\{U_{i}\right\}_{i \in \Lambda}$ such that each $\pi^{-1}\left(U_{i}\right)$ is biholomorphic to $U_{i} \times \mathbb{C}^{r}$ via $\varphi_{i}: \pi^{-1}\left(U_{i}\right) \rightarrow U_{i} \times \mathbb{C}^{r}$, and $E_{p} \hookrightarrow \pi^{-1}\left(U_{i}\right) \rightarrow U_{i} \times \mathbb{C}^{r}$ is a linear isomorphism onto $\{p\} \times \mathbb{C}^{r}$ for any $p \in U_{i .} \varphi_{i}$ is called a "local trivialization".
A vector bundle of rank 1 is usually called a "line bundle".

Cocycles of a vector bundle

In this case, whenever $U_{i} \cap U_{j} \neq \emptyset$, we have a holomorphic map, called the "transition map", $\psi_{i j}: U_{i} \cap U_{j} \rightarrow G L(r, \mathbb{C})$ (viewed as an open subset of $\mathbb{C}^{r^{2}}$) such that $\varphi_{i} \circ \varphi_{j}^{-1}(z, v)=\left(z, \psi_{i j}(z) v\right)$. These families of transition maps satisfies the "cocycle condition":
(1) $\psi_{i j} \psi_{j i}=I_{r}$ on $U_{i} \cap U_{j}$;
(2) Whenever $U_{i} \cap U_{j} \cap U_{k} \neq \emptyset$, we have $\psi_{i j} \psi_{j k} \psi_{k i}=I_{r}$ on $U_{i} \cap U_{j} \cap U_{k}$. The name "cocycle" is no coincidence. In fact we will see later that $\left\{\psi_{i j}\right\}$ above is indeed a cocycle in Čech's approach to sheaf cohomology theory.

From cocycles to vector bundles

Remark

On the other hand, if we are given a set of holomorphic transition maps $\psi_{i j}: U_{i} \cap U_{j} \rightarrow G L(r, \mathbb{C})$ satisfying the cocycle condition, we can construct a holomorphic vector bundle by setting $E=\coprod_{i \in \Lambda}\left(U_{i} \times \mathbb{C}^{r}\right) / \sim$, where $(z, v) \sim\left(z^{\prime}, w\right)$ for $(z, v) \in U_{i} \times \mathbb{C}^{r}$ and $\left(z^{\prime}, w\right) \in U_{j} \times \mathbb{C}^{r}$ if and only if $z=z^{\prime}$ and $v=\psi_{i j}(z) w$. We leave the detail as an exercise.

C^{∞} and continuous vector bundles

Remark

We can similarly define C^{∞} (real or complex) vector bundles over a smooth manifold, and more generally continuous vector bundles over a topological space. There are similar characterizations using C^{∞} or continuous cocycles.

We leave all these details as exercises.

Holomorphic sections of a vector bundle

Definition (holomorphic section)

Let $\pi: E \rightarrow X$ be a holomorphic vector bundle over X. Let $U \subset X$ be an open set. A holomorphic section of E over U is a holomorphic map $s: U \rightarrow E$ such that $\pi \circ s=i d_{U}$, i.e., $s(p) \in E_{p}$ for any $p \in U$. The set of holomorphic sections over U is usually denoted by $\Gamma(U, \mathscr{O}(E))$ or $\mathscr{O}(E)(U)$.

- A fundamental problem in the theory of holomorphic vector bundles: existence and construction of global holomorphic sections of a given bundle.

Holomorphic sections of a vector bundle

Definition (holomorphic section)

Let $\pi: E \rightarrow X$ be a holomorphic vector bundle over X. Let $U \subset X$ be an open set. A holomorphic section of E over U is a holomorphic map $s: U \rightarrow E$ such that $\pi \circ s=i d_{U}$, i.e., $s(p) \in E_{p}$ for any $p \in U$. The set of holomorphic sections over U is usually denoted by $\Gamma(U, \mathscr{O}(E))$ or $\mathscr{O}(E)(U)$.

- A fundamental problem in the theory of holomorphic vector bundles: existence and construction of global holomorphic sections of a given bundle.
- Main difficulty: no "holomorphic partition of unity".

Holomorphic sections of a vector bundle

Definition (holomorphic section)

Let $\pi: E \rightarrow X$ be a holomorphic vector bundle over X. Let $U \subset X$ be an open set. A holomorphic section of E over U is a holomorphic map $s: U \rightarrow E$ such that $\pi \circ s=i d_{U}$, i.e., $s(p) \in E_{p}$ for any $p \in U$. The set of holomorphic sections over U is usually denoted by $\Gamma(U, \mathscr{O}(E))$ or $\mathscr{O}(E)(U)$.

- A fundamental problem in the theory of holomorphic vector bundles: existence and construction of global holomorphic sections of a given bundle.
- Main difficulty: no "holomorphic partition of unity".
- An important tool is the L^{2}-method for the $\bar{\partial}$-equation. It is interesting that whether or not we can solve the equation depends on the geometry, in particular, the curvature of the bundle.

Classification of vector bundles

Definition (bundle map)

Let $\pi^{E}: E \rightarrow X$ and $\pi^{F}: F \rightarrow X$ are holomorphic vector bundles of ranks r and s respectively. A bundle map from E to F is a holomorphic map $f: E \rightarrow F$ such that f maps E_{p} to F_{p} for any $p \in X$ and $\left.f\right|_{E_{p}}: E_{p} \rightarrow F_{p}$ is linear. When a bundle map has an inverse bundle map, we will say that these two bundles are isomorphic.

- Another fundamental problem is the classification problem.

Classification of vector bundles

Definition (bundle map)

Let $\pi^{E}: E \rightarrow X$ and $\pi^{F}: F \rightarrow X$ are holomorphic vector bundles of ranks r and s respectively. A bundle map from E to F is a holomorphic map $f: E \rightarrow F$ such that f maps E_{p} to F_{p} for any $p \in X$ and $\left.f\right|_{E_{p}}: E_{p} \rightarrow F_{p}$ is linear. When a bundle map has an inverse bundle map, we will say that these two bundles are isomorphic.

- Another fundamental problem is the classification problem.
- One important tool is the theory of characteristic classes that we shall discuss later.

Classification of vector bundles

Definition (bundle map)

Let $\pi^{E}: E \rightarrow X$ and $\pi^{F}: F \rightarrow X$ are holomorphic vector bundles of ranks r and s respectively. A bundle map from E to F is a holomorphic map $f: E \rightarrow F$ such that f maps E_{p} to F_{p} for any $p \in X$ and $\left.f\right|_{E_{p}}: E_{p} \rightarrow F_{p}$ is linear. When a bundle map has an inverse bundle map, we will say that these two bundles are isomorphic.

- Another fundamental problem is the classification problem.
- One important tool is the theory of characteristic classes that we shall discuss later.
- Also the set of isomorphic classes of holomorphic vector bundles over a given complex manifold has rich structures and is an important invariant for the complex manifold.

Examples of holomorphic vector bundles

Example (trivial bundle)

$X \times \mathbb{C}^{r}$ with $\pi_{1}: X \times \mathbb{C}^{r} \rightarrow X$ is a holomorphic vector bundle over X, called the "trivial bundle" over X, denoted by $\underline{\mathbb{C}}^{r}$.

Example (holomorphic tangent bundle)

Let X be a complex manifold of dimension n. We shall now construct its "holomorphic tangent bundle" $T X$ as follows:
Let $p \in X$, we first define the ring $\mathscr{O}_{X, p}:=\lim _{\rightarrow} \mathscr{O}_{X}(U)$,where the direct limit is taken with respect to open sets $p \in U$. For persons not familiar with direct limit, this is $山_{u_{\ni} p} \mathscr{O}_{X}(U) / \sim$, with $f \in \mathscr{O}_{X}(U)$ equivalent to $g \in \mathscr{O}_{X}(V)$ iff we can find another open set $p \in W \subset U \cap V$ such that $\left.f\right|_{w}=\left.g\right|_{w}$. As an exercise, we can see that $\mathscr{O}_{X, p}$ is isomorphic to the ring of convergent power series $\mathbb{C}\left\{z_{1}, \ldots, z_{n}\right\}$. An element of $\mathscr{O}_{X, p}$ is called a "germ of holomorphic function" at p.

Example (holomorphic tangent bundle (continued))

A tangent vector at p is a derivation $v: \mathscr{O}_{X, p} \rightarrow \mathbb{C}$, i.e., a \mathbb{C}-linear map satisfying the Leibniz rule $v(f g)=v(f) g(p)+f(p) v(g)$. The set of tangent vectors at p is easily seen to be a \mathbb{C}-vector space. We call it the (holomorphic) tangent space of X at p, denoted by $T_{p} X$. If $\varphi: U_{i} \rightarrow \mathbb{C}^{n}$ is a holomorphic coordinate chart with $\varphi_{i}=\left(z_{1}, \ldots, z_{n}\right)$. Then we can define $\left.\frac{\partial}{\partial z_{i}}\right|_{p} \in T_{p} X$ to be $\frac{\partial}{\partial z_{i}} l_{p}(f):=\frac{\partial\left(f \circ \varphi_{i}^{-1}\right)}{\partial z_{i}}\left(\varphi_{i}(p)\right)$. Then one can show that $\left\{\left.\frac{\partial}{\partial z_{i}}\right|_{p}\right\}_{i=1}^{n}$ is a basis of $T_{p} X$. Let $T X:=\coprod_{p \in X} T_{p} X$, and define $\pi: T X \rightarrow X$ in the obvious way. We can make it a holomorphic vector bundle of rank n over X as follows: Let $\left(U_{i}, \varphi_{i}\right)$ be a holomorphic chart. Then we can define the local trivialization $\tilde{\varphi}_{i}: \pi^{-1}\left(U_{i}\right) \rightarrow U_{i} \times \mathbb{C}^{n}$ to be $\tilde{\varphi}_{i}\left(q, \sum_{i} a_{i} \frac{\partial}{\partial z_{i}} l_{q}\right):=\left(q, a_{1}, \ldots, a_{n}\right)$. This gives a complex structure on $T X$ and at the same time gives a local trivialization of $T X$ over U_{i}.

A holomorphic section of $T X$ over U is called a "holomorphic vector field" on U.
To stress that $T X$ is a holomorphic vector bundle, we shall write $T^{h} X$ sometimes.

Example (holomorphic cotangent bundle)

Any $f \in \mathscr{O}_{X, p}$ defines a linear functional on $T_{p} X$ by $v \mapsto v(f)$. We call this $\left.d f\right|_{p} \in\left(T_{p} X\right)^{*}=: T_{p}^{*} X . T_{p}^{*} X$ is called the (holomorphic) cotangent space of X at p. It is easy to see that if $\left(U_{i}, \varphi_{i}\right)$ is a holomorphic chart, then $\left\{\left.d z_{i}\right|_{p}\right\}_{i=1}^{n}$ is the basis of $T_{p}^{*} X$ dual to $\left\{\left.\frac{\partial}{\partial z_{i}} \right\rvert\, p\right\}_{i=1}^{n}$.
We can similarly give $T^{*} X:=\coprod_{p \in X} T_{p}^{*} X$ a holomorphic bundle structure, called the "(holomorphic) cotangent bundle" of X. We leave this as an exercise.

A holomorphic section of $T^{*} X$ over U is called a "holomorphic 1-form" on U.

Line bundles

Let $\pi: L \rightarrow X$ be a holomorphic line bundle and $\left\{U_{i}\right\}_{\in \Lambda}$ an open cover by trivialization neighborhoods, and $\varphi_{i}: \pi^{-1}\left(U_{i}\right) \rightarrow U_{i} \times \mathbb{C}$ the trivialization map. Since $G L(1, \mathbb{C})=\mathbb{C}^{*}$, now the transition maps $\psi_{i j}$ become non-vanishing holomorphic functions on $U_{i} \cap U_{j}$. Let $s \in \Gamma(X, \mathscr{O}(L))$, then $\left.\varphi_{i} \circ s\right|_{U_{i}}: U_{i} \rightarrow U_{i} \times \mathbb{C}$ could be represented by a holomorphic function $f_{i} \in \mathscr{O}\left(U_{i}\right)$, such that $\varphi_{i} \circ S \mid u_{i}(p)=\left(p, f_{i}(p)\right)$. When $U_{i} \cap U_{j} \neq \emptyset$, since $s\left|U_{i}=s\right| u_{j}$ on $U_{i} \cap U_{j}$, we have for any $p \in U_{i} \cap U_{j}$:

$$
\begin{aligned}
\left(p, f_{i}(p)\right) & =\varphi_{i}(s(p)) \\
& =\left(\varphi_{i} \circ \varphi_{j}^{-1}\right) \circ \varphi_{j}(s(p)) \\
& =\left(\varphi_{i} \circ \varphi_{j}^{-1}\right)\left(p, f_{j}(p)\right) \\
& =\left(p, \psi_{i j}(p) f_{j}(p)\right)
\end{aligned}
$$

So we have $f_{i}=\psi_{i j} f_{j}$ on $U_{i} \cap U_{j}$. On the other hand, it is direct to check that given a family of holomorphic functions $f_{i} \in \mathscr{O}\left(U_{i}\right)$, satisfying $f_{i}=\psi_{i j} f_{j}$ on $U_{i} \cap U_{j}$, then there corresponds a unique $\boldsymbol{s} \in \Gamma(X, \mathscr{O}(L))$.

Example (Universal line bundle (or "tautological bundle") over $\mathbb{C} P^{n}$)

- We define a holomorphic line bundle $U \rightarrow \mathbb{C} P^{n}$ as follows: As a set, $U=\left\{([z], v) \in \mathbb{C} P^{n} \times \mathbb{C}^{n+1} \mid v \in[z]\right\}=\left\{([z], v) \in \mathbb{C} P^{n} \times \mathbb{C}^{n+1} \mid v_{i} z_{j}-v_{j} z_{i}=\right.$ $0, \forall i, j=0, \ldots, n\}$.

Example (Universal line bundle (or "tautological bundle") over $\mathbb{C} P^{n}$)

- We define a holomorphic line bundle $U \rightarrow \mathbb{C} P^{n}$ as follows: As a set, $U=\left\{([z], v) \in \mathbb{C} P^{n} \times \mathbb{C}^{n+1} \mid v \in[z]\right\}=\left\{([z], v) \in \mathbb{C} P^{n} \times \mathbb{C}^{n+1} \mid v_{i} z_{j}-v_{j} z_{i}=\right.$ $0, \forall i, j=0, \ldots, n\}$.
- Easy to see that U is a complex submanifold of $\mathbb{C} P^{n} \times \mathbb{C}^{n+1}$. The projection onto $\mathbb{C} P^{n}$ is clearly holomorphic, with fiber the 1 -dimensional linear subspace of \mathbb{C}^{n+1} generated by $\left(z_{0}, \ldots, z_{n}\right)$.

Example (Universal line bundle (or "tautological bundle") over $\mathbb{C} P^{n}$)

- We define a holomorphic line bundle $U \rightarrow \mathbb{C} P^{n}$ as follows: As a set, $U=\left\{([z], v) \in \mathbb{C} P^{n} \times \mathbb{C}^{n+1} \mid v \in[z]\right\}=\left\{([z], v) \in \mathbb{C} P^{n} \times \mathbb{C}^{n+1} \mid v_{i} z_{j}-v_{j} z_{i}=\right.$ $0, \forall i, j=0, \ldots, n\}$.
- Easy to see that U is a complex submanifold of $\mathbb{C} P^{n} \times \mathbb{C}^{n+1}$. The projection onto $\mathbb{C} P^{n}$ is clearly holomorphic, with fiber the 1-dimensional linear subspace of \mathbb{C}^{n+1} generated by $\left(z_{0}, \ldots, z_{n}\right)$.
- For local triviality, we use the holomorphic charts $\left\{\left(U_{i}, \varphi_{i}\right)\right\}_{i=0}^{n}$ defined before. On $\pi^{-1}\left(U_{i}\right)$, each $v \in U_{[z]}$ can be uniquely write as $t \cdot\left(\frac{z_{0}}{z_{i}}, \ldots, 1, \ldots, \frac{z_{n}}{z_{i}}\right)$, so we define $\tilde{\varphi}_{i}\left(\left[z_{0}, \ldots, z_{n}\right], t \cdot\left(\frac{z_{0}}{z_{i}}, \ldots, 1, \ldots, \frac{z_{n}}{z_{i}}\right)\right)=\left(\left[z_{0}, \ldots, z_{n}\right], t\right) \in U_{i} \times \mathbb{C}$. This is easily seen to be a biholomorphic map. And the transition functions are: $\psi_{i j}([z])=\frac{z_{i}}{z_{j}}$. What are the global holomorphic sections of U ? (exercise)

Construct new bundles from old ones

The usual constructions in linear algebra all have counterparts in the category of vector bundles over X. Let E, F be vector bundles over X of rank r and s respectively.

- Direct sum

The direct sum of E and F is a vector bundle of rank $r+s$ with fiber $E_{p} \oplus F_{p}$. To describe it, it suffices to write down the transition maps: if $\left\{U_{i}\right\}_{i \in \Lambda}$ is a common trivializing covering of X for E and F. The transition maps are $\psi_{i j}$ and $\eta_{i j}$ respectively, then the transition maps for $E \oplus F$ are precisely $\operatorname{diag}\left(\psi_{i j}, \eta_{i j}\right)$.

Construct new bundles from old ones

The usual constructions in linear algebra all have counterparts in the category of vector bundles over X. Let E, F be vector bundles over X of rank r and s respectively.

- Direct sum

The direct sum of E and F is a vector bundle of rank $r+s$ with fiber $E_{p} \oplus F_{p}$. To describe it, it suffices to write down the transition maps: if $\left\{U_{i}\right\}_{i \in \Lambda}$ is a common trivializing covering of X for E and F. The transition maps are $\psi_{i j}$ and $\eta_{i j}$ respectively, then the transition maps for $E \oplus F$ are precisely $\operatorname{diag}\left(\psi_{i j}, \eta_{i j}\right)$.

- Tensor product

The tensor product of E and F is a vector bundle of rank $r s$ with fiber $E_{p} \otimes F_{p}$. In this short course, we only use the tensor product of a line bundle L with a general vector bundle E. In this case, if the transition maps for E and L with respect to a common trivializing covering are $\psi_{i j}$ and $\eta_{i j}$, then the transition maps of $E \otimes L$ are $\eta_{i j} \psi_{i j}$.
 $\overline{\text { linear maps }}$ from E_{p} to F_{p}. In particular, we define the dual of E to be $E^{*}:=\underline{\operatorname{Hom}}(E, \underline{\mathbb{C}})$, whose fiber over p is exactly the dual space of $E_{p},\left(E_{p}\right)^{*}$. When $L \rightarrow X$ is a holomorphic line bundle, we can easily describe L^{*} in terms of transition functions: if the transition functions of L are $\psi_{i j}$, then the transition functions of L^{*} are $\psi_{i j}^{-1}$. For this reason, we usually also write L^{-1} for L^{*}.Exercise: (1), What's the transition function of E^{*} in general? (2), Prove that $E^{*} \otimes F \cong \underline{\operatorname{Hom}}(E, F)$.
 linear maps from E_{p} to F_{p}. In particular, we define the dual of E to be $E^{*}:=\underline{\operatorname{Hom}}(E, \mathbb{\mathbb { C }})$, whose fiber over p is exactly the dual space of $E_{p},\left(E_{p}\right)^{*}$. When $L \rightarrow X$ is a holomorphic line bundle, we can easily describe L^{*} in terms of transition functions: if the transition functions of L are $\psi_{i j}$, then the transition functions of L^{*} are $\psi_{i j}^{-1}$. For this reason, we usually also write L^{-1} for L^{*}.Exercise: (1), What's the transition function of E^{*} in general? (2), Prove that $E^{*} \otimes F \cong \underline{\operatorname{Hom}}(E, F)$.

- Wedge product For $k \in \mathbb{N}$ and $k \leq r$, the degree k wedge product of E is a vector bundle $\Lambda^{k} E$ with fiber $\Lambda^{k} E_{p}$ at p. The highest degree wedge product $\Lambda^{r} E$ is also called the "determinant line bundle" of E, since its transition functions are precisely $\operatorname{det} \psi_{i j} . \Omega^{p}(X):=\Lambda^{p} T^{*} X$ is the bundle of holomorphic p-forms. The determinant line bundle of the holomorphic cotangent bundle $T^{*} X$ of a complex manifold X is called the "canonical line bundle" of X, denoted by K_{X}.
- Pull back via holomorphic map Let $E \rightarrow X$ be a holomorphic vector bundle of rank $r, f: Y \rightarrow X$ be a holomorphic map between complex manifolds, then we can define a "pull back" holomorphic vector $f^{*} E$ over Y. As a set, we define $f^{*} E:=\{(y,(x, v)) \in Y \times E \mid x=f(y)\}$, and $p: f^{*} E \rightarrow Y$ is just the projection to its first component.
We can also describe $f^{*} E$ via transition maps: if $\left\{U_{i}\right\}_{i \in \Lambda}$ is a trivializing covering of X for E with transition maps $\psi_{i j}: U_{i} \cap U_{j} \rightarrow G L(r, \mathbb{C})$, and we choose an open covering $\left\{V_{\alpha}\right\}_{\alpha \in \mid}$ such that $f\left(V_{\alpha}\right) \subset U_{i}$ for some $i \in \Lambda$. We fix a map $\tau: I \rightarrow \Lambda$ such that $f\left(V_{\alpha}\right) \subset U_{\tau(\alpha)}$. Then the transition maps for $f^{*} E$ with respect to $\left\{V_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ are just $f^{*} \psi_{\tau(\alpha) \tau(\beta)}=\psi_{\tau(\alpha) \tau(\beta)} \circ f: V_{\alpha} \cap V_{\beta} \rightarrow G L(r, \mathbb{C})$.

Example (The hyperplane bundle)

Let $U \rightarrow \mathbb{C} P^{n}$ be the universal bundle, its dual is usually denoted by H, we call it the "hyperplane line bundle". (Reason for this name will be explained later.) Another common notation for H is $\mathscr{O}(1)$. We also write the H^{k}, or $\mathscr{O}(k)$, short for the k-times tensor product of $H, H^{k}:=H^{\otimes k}=H \otimes \cdots \otimes H$, and $\mathscr{O}(-k):=H^{-k}:=U^{\otimes k}$.

We now study the holomorphic sections of H^{k} for $k>0$. Let $s \in \Gamma\left(\mathbb{C} P^{n}, \mathscr{O}\left(H^{k}\right)\right)$, s can be represented by $f_{\alpha} \in \mathscr{O}\left(U_{\alpha}\right)$, where $U_{\alpha}=\left\{[z] \in \mathbb{C} P^{n} \mid z_{\alpha} \neq 0\right\}$. These f_{α} 's satisfy: $f_{\alpha}([z])=\left(\frac{z_{\beta}}{z_{\alpha}}\right)^{k} f_{\beta}([z])$ on $U_{\alpha} \cap U_{\beta}$. Pulling back to $\mathbb{C}^{n+1} \backslash\{0\}$, we can view $z_{\alpha}^{k} f_{\alpha}([z])$ as a homogeneous function of degree k on $\mathbb{C}^{n+1} \backslash\left\{\boldsymbol{Z}_{\alpha}=0\right\}$, which is also holomorphic. Now the above compatibility condition means that these $z_{\alpha} f_{\alpha}([z])$'s could be "glued" together to form a holomorphic function F on $\mathbb{C}^{n+1} \backslash\{0\}$, homogeneous of degree k.

Example (The hyperplane bundle (continued))

By Hartogs extension theorem, it extends to a holomorphic function $F \in \mathscr{O}\left(\mathbb{C}^{n+1}\right)$. We necessarily have $F(0)=0$ by homogeneity and continuity. From this we easily conclude that F is a homogeneous polynomial of degree k.

On the other hand, it is easy to see that any homogeneous polynomial of degree k in $\mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$ determines uniquely a holomorphic section of H^{k}. So we have

$$
\operatorname{dim}_{\mathbb{C}} \Gamma\left(\mathbb{C} P^{n}, \mathscr{O}\left(H^{k}\right)\right)=\binom{n+k}{n}
$$

Exercise: Prove that when $k<0, \Gamma\left(\mathbb{C} P^{n}, \mathscr{O}\left(H^{k}\right)\right)=\{0\}$.

The Picard group

Definition

The isomorphic classes of holomorphic line bundles over X is called the "Picard group" of X, denoted by $\operatorname{Pic}(X)$.
$\operatorname{Pic}(X)$ is indeed a group: we define $\left[L_{i}\right] \cdot\left[L_{2}\right]:=\left[L_{1} \otimes L_{2}\right]$, then \mathbb{C} is the identity element and $[L]^{-1}$ is just $\left[L^{*}\right]$.

For $\mathbb{C} P^{n}$, we have $\operatorname{Pic}\left(\mathbb{C} P^{n}\right) \cong \mathbb{Z}$, and any holomorphic line bundle is isomorphic to $\mathscr{O}(k)$ for some $k \in \mathbb{Z}$. We shall prove this next week.
§1.3 Almost complex structure and $\bar{\partial}$-operator

From real tangent bundle to holomorphic tangent bundle

Recall: a n-dimensional complex manifold X is also a $2 n$-dimensional orientable differential manifold. For $p \in X$, we can define a real tangent vector at p and the corresponding real tangent space at $p, T_{p}^{\mathbb{R}} X$. In terms of coordinate chart $\varphi=\left(z_{1}, \ldots, z_{n}\right)$, we have

$$
T_{p}^{\mathbb{R}} X=\operatorname{Span}_{\mathbb{R}}\left\{\left.\frac{\partial}{\partial x_{i}}\right|_{p},\left.\frac{\partial}{\partial y_{i}}\right|_{p}\right\}_{i=1}^{n} .
$$

We can give $\amalg_{p \in X} T_{p}^{\mathbb{R}} X$ a structure of \mathbb{R}-vector bundle of rank $2 n$, called the "real tangent bundle" of X, and denoted by $T^{\mathbb{R}} X$. Similarly, we can define the real cotangent bundle $T^{* \mathbb{R}} \boldsymbol{X}$.

There are two equivalent ways to get from this real tangent bundle to our previous holomorphic tangent and cotangent bundles.- Cause of most of the troubles for beginners!

The "intrinsic" way

Recall that any real vector space V of dimension $2 n$ can be regarded as \mathbb{C}-vector space of dimension n once we know what does it mean to multiply $\sqrt{-1}$ to an element of V. This is equivalent to giving a \mathbb{R}-linear map $J: V \rightarrow V$ such that $J^{2}:=J \circ J=-i d$. We call such a J a "complex structure" on V. In this case, V can be regarded as a \mathbb{C}-vector space by defining $(\alpha+\sqrt{-1} \beta) v:=\alpha v+\beta J v$, $\forall \alpha, \beta \in \mathbb{R}, \forall v \in V$.

Definition

Let M be a real orientable differential manifold of dimension $2 n$. An almost complex structure on M is a bundle map $J: T M \rightarrow T M$ satisfying $J^{2}=-i d$.

A complex manifold X has a natural almost complex structure: just define $J \frac{\partial}{\partial x_{i}}=\frac{\partial}{\partial y_{i}}, \quad J \frac{\partial}{\partial y_{i}}=-\frac{\partial}{\partial x_{i}}$. Then $\left(T_{p}^{\mathbb{R}} X, J_{p}\right)$ can be viewed as a \mathbb{C}-vector space, isomorphic to the holomorphic tangent space $T_{p}^{h} X$, identifying $\frac{\partial}{\partial x_{i}}$ with $\frac{\partial}{\partial z_{i}}$.

Examples

If an almost complex structure is induced from a complex structure as above, we will call it "integrable".

Example

For S^{2}, we can define $J: T S^{2} \rightarrow T S^{2}$ as follows: we identify $T_{x} S^{2}$ with the subspace of \mathbb{R}^{3} :

$$
T_{x} S^{2} \cong\left\{y \in R^{3} \mid x \cdot y=0\right\} .
$$

Then we define $J_{x}: T_{x} S^{2} \rightarrow T_{x} S^{2}$ by

$$
J_{x}(y):=x \times y
$$

On can check that this is an integrable almost complex structure, induced by the complex structure of $S^{2} \cong \mathbb{C} P^{1}$.

An almost complex structure on S^{6}

Example

For S^{6}, we have a similar almost complex structure given by "wedge product" in \mathbb{R}^{7}. Note that the wedge product in \mathbb{R}^{3} can be defined as the product of purely imaginary quaternions. To define this wedge product in \mathbb{R}^{7}, we shall use Cayley's octonions.

We write $\mathbb{H} \cong \mathbb{R}^{4}$ the space of quaternions $q=a+b i+c j+d k$ with $a, b, c, d \in \mathbb{R}$, satisfying $i^{2}=j^{2}=k^{2}=-1$ and $i j=-j i=k, j k=-k j=i$, and $k i=-i k=j$.
Then this multiplication is still associative but not commutative. For $q \in \mathbb{H}$, we define $\bar{q}:=a-b i-c j-d k$, then $|q|^{2}=q \bar{q}$.
Now we define the space of octonians, $\mathbb{O} \cong \mathbb{R}^{8}$, as $\mathbb{O}:=\left\{x=\left(q_{1}, q_{2}\right) \mid q_{1}, q_{2} \in \mathbb{H}\right\}$. The multiplication is defined by

$$
\left(q_{1}, q_{2}\right)\left(q_{1}^{\prime}, q_{2}^{\prime}\right):=\left(q_{1} q_{1}^{\prime}-\bar{q}_{2}^{\prime} q_{2}, q_{2}^{\prime} q_{1}+q_{2} \bar{q}_{1}^{\prime}\right) .
$$

Example (S^{6} continued)

We also define $\bar{x}:=\left(\bar{q}_{1},-q_{2}\right)$. Then we still have $x \bar{x}=x \cdot x=|x|^{2}$, here the \cdot means the usual inner product in \mathbb{R}^{8}. Note that this multiplication is even not associative. We identify \mathbb{R}^{7} as the space of purely imaginary octonians. If $x, x^{\prime} \in \mathbb{R}^{7}$, we define $x \times x^{\prime}$ as the imaginary part of $x x^{\prime}$. Then one can check that $x x=-|x|^{2}$, $x \times x^{\prime}=-x^{\prime} \times x$, and $\left(x \times x^{\prime}\right) \cdot x^{\prime \prime}=x \cdot\left(x^{\prime} \times x^{\prime \prime}\right)$.

From this, one can define an almost complex structure on $S^{6} \subset \mathbb{R}^{7}$ in a similar way as S^{2} : identify $T_{x} S^{6}$ with $\left\{y \in \mathbb{R}^{7} \mid x \cdot y=0\right\}$, then define

$$
J_{x}(y):=x \times y
$$

One can prove that this almost complex structure is not integrable. (Ref: Calabi: Construction and properties of some 6-dimensional almost complex manifolds)

A famous open problem

Remark

For $S^{2 n}$, it is known (Borel-Serre, Ehresmann, Wu) that there are no almost complex structures unless $n=1,3$. (Ref.: P. May's Concise course in algebraic topology). It is generally believed that there are no integrable almost complex structures on S^{6}, however S.T. Yau has a different conjecture saying that one can make S^{6} into a complex manifold. This is still open.

Interested readers can visit the journal Differential Geometry and its Applications Vol. 57,2018 for a set of survey papers on this problem.

The "extrinsic" way

The second approach also uses J. Let again V be a real vector space with complex structure J. But now we simply complexify V to get $V_{\mathbb{C}}:=V \otimes_{\mathbb{R}} \mathbb{C}$. We also extend $J \mathbb{C}$-linearly to $V_{\mathbb{C}}$, again $J^{2}=-i d$. There is a direct sum decomposition of $V_{\mathrm{C}}=V^{1,0} \oplus V^{0,1}$, which are $\sqrt{-1}$ and $-\sqrt{-1}$ eigenspaces of J respectively. In fact we have a very precise description of $V^{1,0}$ and $V^{0,1}$:

$$
V^{1,0}=\{v-\sqrt{-1} J v \mid v \in V\}, \quad V^{0,1}=\{v+\sqrt{-1} J v \mid v \in V\} .
$$

It is direct to check that they are both \mathbb{C}-linear subspaces of $V_{\mathbb{C}}$ and $V^{0,1}=\overline{V^{1,0}}$.
Now apply this to $\left(T^{\mathbb{R}} X, J\right)$ for a manifold with an almost complex structure: define the complexified tangent bundle to be $T^{\mathbb{C}} X:=T^{\mathbb{R}} X \otimes_{\mathbb{R}} \mathbb{C}$ and we have the decomposition $T^{\mathrm{C}} X=T^{1,0} X \oplus T^{0,1} X$, which are the $\sqrt{-1}$ and $-\sqrt{-1}$ eigenspaces of J, respectively. When J is integrable, $T^{1,0} X$ is locally generated by $\left\{\frac{\partial}{\partial z}\right\}_{i=1}^{n}$, so we can again identify it with $T^{h} X$.

Complex differential forms

We define $T^{* 1,0} X$ to be the subspace of $T^{* \mathbb{C}} X:=T^{* \mathbb{R}} X \otimes_{\mathbb{R}} \mathbb{C}$ that annihilates $T^{0,1} X$. And similarly define $T^{* 0,1} X$. Then

$$
T^{* \mathbb{C}} X=T^{* 1,0} X \oplus T^{* 0,1} X
$$

(When J is integrable, $T^{* 1,0} X$ is locally generated by $\left\{d z_{i}\right\}_{1 \leq i \leq n}$ and $T^{* 0,1} X$ is generated by $\left\{d \bar{z}_{i}\right\}_{1 \leq i \leq n .}$. We define $\Lambda^{p, q} T^{*} X$, the C^{∞} bundle of (p, q)-forms to be the sub-bundle of $\Lambda^{p+q} T^{* \mathbb{C}} X$, generated by $\Lambda^{p} T^{* 1,0} X$ and $\Lambda^{q} T^{* 0,1} X$. Then we have

$$
\Lambda^{k} T^{* \mathbb{C}} X=\bigoplus_{p=0}^{k} \Lambda^{p, k-p} T^{*} X
$$

and we denote the projection map of $\Lambda^{p+q} T^{* \mathbb{C}} X$ onto $\Lambda^{p, q} T^{*} X$ by $\Pi_{p, q}$. The set of smooth sections of $\Lambda^{p, q} T^{*} X\left(\right.$ or $\left.\Lambda^{k} T^{* \mathbb{C}} X\right)$ over an open set U is denoted by $A^{p, q}(U)$ (or $A^{k}(U)$).

The operators ∂ and $\bar{\partial}$

The exterior differential operator d extends \mathbb{C}-linearly to $d: A^{k}(U) \rightarrow A^{k+1}(U)$. We define the operators

$$
\partial:=\Pi_{p+1, q} \circ d: A^{p, q}(U) \rightarrow A^{p+1, q}(U)
$$

and

$$
\bar{\partial}:=\Pi_{p, q+1} \circ d: A^{p, q}(U) \rightarrow A^{p, q+1}(U) .
$$

Integrable case

When J is integrable, a smooth section of $\Lambda^{p, q} T^{*} X$ over a coordinate open set U is of the forms

$$
\eta=\sum_{1 \leq i_{1}<\cdots<i_{p} \leq n, 1 \leq j_{1}<\cdots<j_{q} \leq n} a_{i_{1} \ldots i_{p}, \bar{j}_{1} \ldots \bar{j}_{q}} d z_{i_{1}} \wedge \cdots \wedge d z_{i_{p}} \wedge d \bar{z}_{j_{1}} \wedge \cdots \wedge d \bar{z}_{j_{q}}
$$

where $a_{i_{1} \ldots i_{p}, \bar{j}_{1} \ldots \bar{j}_{q}} \in C^{\infty}(U ; \mathbb{C})$. We write $\eta=\sum_{|||=p,|J|=q} a_{\mid \bar{J}} d z_{I} \wedge d \bar{z}_{J} \in A^{p, q}(U)$ for short.
In this case, we have

$$
\begin{aligned}
d \eta & =\sum_{l, J} d a_{\bar{l}} \wedge d z_{I} \wedge d \bar{z}_{J} \\
& =\sum_{l, J} \partial a_{\bar{l}} \wedge d z_{I} \wedge d \bar{z}_{J}+\sum_{l, J} \bar{\partial} a_{I \bar{J}} \wedge d z_{l} \wedge d \bar{z}_{J} \in A^{p+1, q}(U) \oplus A^{p, q+1}(U) .
\end{aligned}
$$

So we always have $d=\partial+\bar{\partial}$ in the integrable case.

The Newlander-Nirenberg Theorem

Theorem (Newlander-Nirenberg)

An almost complex structure is integrable if and only if $d=\partial+\bar{\partial}$ for any $A^{p, q}(U)$ (equivalently, $\left[T^{1,0} X, T^{1,0} X\right] \subset T^{1,0} X$).

- Note that on 0 -forms (smooth functions) $d=\partial+\bar{\partial}$ always holds. The first non-trivial situation is on 1 -forms. Since a k-forms are linear combinations of wedge products of 1 -forms, it also suffices to check $d=\partial+\bar{\partial}$ on 1 -forms.
- Besides the original proof of Newlander-Nirenberg, there is another proof by J.J. Kohn based on techniques for solving the " $\bar{\partial}$-equation", which can be found in Hörmander's book.

Dolbeault cohomology

In the following, we always assume X is a complex manifold. Now $d=\partial+\bar{\partial}$. Since we always have $d^{2}=0$, we have $0=\partial^{2}+\bar{\partial}^{2}+(\partial \bar{\partial}+\bar{\partial} \partial)$, acting on $A^{p, q}(X)$.
Comparing types, we get $\partial^{2}=0, \quad \bar{\partial}^{2}=0, \quad \partial \bar{\partial}+\bar{\partial} \partial=0$.
We can define from these identities several differential cochain complexes:

- The de Rham complex $0 \rightarrow A^{0}(X) \xrightarrow{d} A^{1}(X) \xrightarrow{d} \ldots \xrightarrow{d} A^{2 n}(X) \rightarrow 0$. From this we can define the de Rham cohomology (with coefficient \mathbb{C}) $H_{d R}^{k}(X, \mathbb{C}):=\left.\operatorname{Ker} d\right|_{A^{k}(X)} / d A^{k-1}(X)$. Its dimension b_{k} is called the " k-th Betti number" of X.

Dolbeault cohomology

In the following, we always assume X is a complex manifold. Now $d=\partial+\bar{\partial}$. Since we always have $d^{2}=0$, we have $0=\partial^{2}+\bar{\partial}^{2}+(\partial \bar{\partial}+\bar{\partial} \partial)$, acting on $A^{p, q}(X)$.
Comparing types, we get $\partial^{2}=0, \quad \bar{\partial}^{2}=0, \quad \partial \bar{\partial}+\bar{\partial} \partial=0$.
We can define from these identities several differential cochain complexes:

- The de Rham complex $0 \rightarrow A^{0}(X) \xrightarrow{d} A^{1}(X) \xrightarrow{d} \ldots \xrightarrow{d} A^{2 n}(X) \rightarrow 0$. From this we can define the de Rham cohomology (with coefficient \mathbb{C}) $H_{d R}^{k}(X, \mathbb{C}):=\left.\operatorname{Ker} d\right|_{A^{k}(X)} / d A^{k-1}(X)$. Its dimension b_{k} is called the "k-th Betti number" of X.
- The Dolbeault complex $0 \rightarrow A^{p, 0}(X) \xrightarrow{\bar{d}} A^{p, 1}(X) \xrightarrow{\bar{d}} \ldots \xrightarrow{\bar{d}} A^{p, n}(X) \rightarrow 0$. We define the Dolbeault cohomology $H_{\bar{\partial}}^{p, q}(X):=\left.\operatorname{Ker} \bar{\partial}\right|_{\not A^{p, q}(X)} / \bar{\partial} A^{p, q-1}(X)$. Its dimension is denoted by $h^{p, q}$. They are important invariants of the complex manifold.

