Introduction to Complex Geometry

Chapter 1 Complex Manifolds and Vector Bundles

SHI, Yalong (Nanjing University)

BICMR Summer School 2022

1 Complex manifolds

2 Vector bundles

3 Almost complex structure and $\bar{\partial}$ -operator

SHI, Yalong (Nanjing University) BICMR Complex Geometry

§1.1 Complex manifolds

Defining a complex manifold: the 1st condition

Roughly speaking, a complex manifold is a topological space X on which we can talk about "holomorphic" functions. Since we know what does a holomorphic function means in Euclidean spaces, the first condition we impose on X is:

Condition 1:(existence of coordinate charts) X is locally homeomorphic to open sets of \mathbb{C}^n . To be precise, we require that there is an open covering $\mathcal{U} = \{U_i\}_{i \in \Lambda}$ of X such that for each U_i we have a homeomorphism $\varphi_i : U_i \to \varphi_i(U_i) \subset \mathbb{C}^n$ onto an open set $\varphi_i(U_i)$ of \mathbb{C}^n .

Defining a complex manifold: the 2nd condition

Given these coordinates, we should define a function $f: \Omega \to \mathbb{C}$ to be holomorphic if all its coordinate-representations $f \circ \varphi_i^{-1} \in \mathcal{O}(\varphi_i(U_i \cap \Omega))$. But is this a well-defined notion? For example if $\Omega \subset U_i \cap U_j \neq \emptyset$, then on Ω we have two sets of coordinates. Is it possible that $f \circ \varphi_i^{-1} \in \mathcal{O}(\varphi_i(U_i \cap \Omega))$ but $f \circ \varphi_j^{-1} \notin \mathcal{O}(\varphi_j(U_j \cap \Omega))$? To avoid this, note that $f \circ \varphi_j^{-1} = (f \circ \varphi_i^{-1}) \circ (\varphi_i \circ \varphi_j^{-1})$, so we require:

Condition 2:(compatibility) Coordinate changes of Condition 1 should be holomorphic. To be precise, we require that whenever $U_i \cap U_j \neq \emptyset$, we have $\varphi_i \circ \varphi_j^{-1}$ is a biholomorphic map from $\varphi_j(U_i \cap U_j)$ to $\varphi_i(U_i \cap U_j)$.

Defining a complex manifold: the 3rd condition

Given these 2 conditions, one can check easily that the notion of "holomorphic function" makes perfect sense. However, to avoid pathology and use more analytic tools such as metrics and integration, we also require a complex manifold to be a nice topological space:

Condition 3: X satisfies T_2 and C_2 axioms, i.e. X is a Hausdorff space, and has a countable topological basis.

The definition

Definition

• A complex (analytic) manifold of dimension n is a topological space X satisfying Conditions 1,2,3 above. A 1-dimensional complex manifold is also known as a "Riemann surface". A map $f : X \to \mathbb{C}$ from a complex manifold X is called a "holomorphic function", if $f \circ \varphi_i^{-1} \in \mathcal{O}(\varphi_i(U_i))$ for all $i \in \Lambda$. In this case, we write $f \in \mathcal{O}(X)$.

The definition

Definition

- A complex (analytic) manifold of dimension n is a topological space X satisfying Conditions 1,2,3 above. A 1-dimensional complex manifold is also known as a "Riemann surface". A map $f : X \to \mathbb{C}$ from a complex manifold X is called a "holomorphic function", if $f \circ \varphi_i^{-1} \in \mathcal{O}(\varphi_i(U_i))$ for all $i \in \Lambda$. In this case, we write $f \in \mathcal{O}(X)$.
- If X, Y are both complex manifolds of dimensions n and m respectively, a map $F: X \to Y$ is called "holomorphic", if for all coordinate charts (U, φ) of X and (V, ψ) of Y, the map $\psi \circ F \circ \varphi^{-1}$ is a holomorphic map on $\varphi(U \cap F^{-1}(V)) \subset \mathbb{C}^n$ whenever $U \cap F^{-1}(V) \neq \emptyset$. A holomorphic map with a holomorphic inverse is called "biholomorphic".

A technical remark

Remark

In standard textbooks, the set of coordinate charts $\{(U_i, \varphi_i)\}_{i \in \Lambda}$ is assumed to be maximal, i.e., whenever a homeomorphism from an open set $V, \psi : V \to \psi(V) \subset \mathbb{C}^n$ is compatible with (U_i, φ_i) for all $U_i \cap V \neq \emptyset$, we have $(V, \psi) \in \{(U_i, \varphi_i)\}_{i \in \Lambda}$. It is easy to check that from the coordinate charts in our definition, one can always enlarge it to a unique maximal one satisfying the compatibility condition.

1. Open subsets of \mathbb{C}^n are complex manifolds.

Example

- 1. Open subsets of \mathbb{C}^n are complex manifolds.
- 2. Let $\{e_1, \ldots, e_{2n}\}$ be any fixed \mathbb{R} -basis of \mathbb{C}^n , and let

 $\Lambda := \{m_1 e_1 + \dots + m_{2n} e_{2n} | m_i \in \mathbb{Z}\}$ be a lattice of rank 2n. Then we can define the quotient space \mathbb{C}^n / Λ , it is a compact Hausdorff space equipped with quotient topology. There is a natural complex manifold structure on \mathbb{C}^n / Λ , we call this complex manifold a "complex torus".

Example

- 1. Open subsets of \mathbb{C}^n are complex manifolds.
- 2. Let $\{e_1, \ldots, e_{2n}\}$ be any fixed \mathbb{R} -basis of \mathbb{C}^n , and let

 $\Lambda := \{m_1 e_1 + \dots + m_{2n} e_{2n} | m_i \in \mathbb{Z}\}$ be a lattice of rank 2n. Then we can define the quotient space \mathbb{C}^n / Λ , it is a compact Hausdorff space equipped with quotient topology. There is a natural complex manifold structure on \mathbb{C}^n / Λ , we call this complex manifold a "complex torus".

3. Let $P \in \mathbb{C}[z, w]$ be a polynomial of degree d. Define

 $C := \{(z, w) | P(z, w) = 0\}.$

We call it an "affine plane algebraic curve". Assume P is irreducible and $\frac{\partial P}{\partial z}, \frac{\partial P}{\partial w}$ have no common zeroes on C. Then C is a natural complex manifold.

More about example 3

The coordinates can be chosen in the following way: if $\frac{\partial P}{\partial w}(z_0, w_0) \neq 0$, then we can apply the (holomorphic version of) implicit function theorem to find a neighborhood $\Delta(z_0, \epsilon) \times \Delta(w_0, \delta)$ and a holomorphic function g(z) such that $U := C \cap (\Delta(z_0, \epsilon) \times \Delta(w_0, \delta)) = \{(z, w) | z \in \Delta(z_0, \epsilon), w = g(z)\}$. We choose $\varphi : U \to \mathbb{C}$ to be $\varphi(z, w) = z$. If $\frac{\partial P}{\partial z}(z_0, w_0) \neq 0$, we use w as local coordinate. Exercise: what's the coordinates transformation function?

Complex (analytic) submanifolds

Definition

A closed subset Y of a *n*-dimensional complex manifold X is called a (closed) "complex (analytic) submanifold" of dimension k, if for any $p \in Y$, we can find a compatible chart (U, φ) of X such that $p \in U$ and

$$\varphi(U \cap Y) = \{(z_1, \ldots, z_n) \in \varphi(U) | z_{k+1} = \cdots = z_n = 0\}$$

One can check that the restriction of such charts (we call them "adapted charts") to Y makes Y a complex manifold and the inclusion $Y \subset X$ is a holomorphic map.

Complex submanifolds of \mathbb{C}^n

A direct application of the maximum principle gives:

Lemma

Any holomorphic function on a compact connected complex manifold should be a constant.

Let M be a complex submanifolds of \mathbb{C}^n . Since the restriction of complex coordinate functions of \mathbb{C}^n to M are holomorphic functions on M, we get:

Corollary

There are no compact complex submanifolds of \mathbb{C}^n of positive dimension.

Remark

Those non-compact complex manifolds which admit proper holomorphic embeddings into \mathbb{C}^N for some large N are precisely "Stein manifolds" in complex analysis.

The complex projective space

Example

Define an equivalence relation on $\mathbb{C}^{n+1} \setminus \{0\}$: $(z_0, \ldots, z_n) \sim (w_0, \ldots, w_n)$ iff $\exists \lambda \in \mathbb{C}^*$ such that $w_i = \lambda z_i, \forall i = 0, \ldots, n$. The equivalent class of (z_0, \ldots, z_n) is denoted by $[z_0, \ldots, z_n]$. The n-dimensional complex projective space $\mathbb{C}P^n$ is defined to be the space of all equivalent classes, endowed with quotient topology. It is compact, Hausdorff. Choose holomorphic coordinate charts as follows: Define $U_i := \{[z_0, \ldots, z_n] \in \mathbb{C}P^n | z_i \neq 0\}, \quad i = 0, \ldots, n$. and define

$$\varphi_i: U_i \to \mathbb{C}^n, \quad \varphi_i([z_0, \ldots, z_n]) := (\frac{z_0}{z_i}, \ldots, \frac{\hat{z}_i}{z_i}, \ldots, \frac{z_n}{z_i}).$$

The checking of compatibility is left as an exercise. Also it is easy to check that $\mathbb{C}P^1$ is diffeomorphic to our familiar S^2 .

Projective algebraic manifolds

Let $F_1, \ldots, F_k \in \mathbb{C}[z_0, \ldots, z_n]$ be a set of irreducible homogeneous polynomials of degrees d_1, \ldots, d_k respectively. Then the set

$$V(F_1, \ldots, F_k) := \{ [z_0, \ldots, z_n] | F_1(z_0, \ldots, z_n) = \cdots = F_k(z_0, \ldots, z_n) = 0 \}$$

is well-defined and is called a (complex) projective algebraic variety. If we assume that $V(F_1, \ldots, F_k)$ is a complex submanifold of $\mathbb{C}P^n$, then it will be called a "projective algebraic manifold" (or "Hodge manifold").

Example

Let $F \in \mathbb{C}[z_0, \ldots, z_n]$ be irreducible and homogeneous of degree d. If the only common zero of $\frac{\partial F}{\partial z_0}, \ldots, \frac{\partial F}{\partial z_n}$ in \mathbb{C}^{n+1} is $(0, \ldots, 0)$. Then V(F) is a complex submanifold of dimension n-1. E.g., the "Fermat hypersurface" $V(z_0^d + \cdots + z_n^d)$.

Proof

We check this on U_0 . $V(F) \cap U_0$ is the zero locus of $F(1, z_1, \ldots, z_n) \in \mathcal{O}(U_0)$. Need to show that $\frac{\partial F}{\partial z_1}(1, z_1, \ldots, z_n), \ldots, \frac{\partial F}{\partial z_n}(1, z_1, \ldots, z_n)$ have no common zeroes on $V(F) \cap U_0$. Suppose $F(1, z_1^0, \ldots, z_n^0) = \frac{\partial F}{\partial z_1}(1, z_1^0, \ldots, z_n^0) = \cdots = \frac{\partial F}{\partial z_n}(1, z_1^0, \ldots, z_n^0) = 0$. By Euler:

$$\frac{\partial F}{\partial z_0}(1,z_1^0,\ldots,z_n^0)+z_1^0\frac{\partial F}{\partial z_1}(1,z_1^0,\ldots,z_n^0)+\cdots+z_n^0\frac{\partial F}{\partial z_n}(1,z_1^0,\ldots,z_n^0)=dF=0.$$

This implies $\frac{\partial F}{\partial z_0}(1, z_1^0, \dots, z_n^0) = 0$, so $(1, z_1^0, \dots, z_n^0)$ is a common zero of $\frac{\partial F}{\partial z_0}, \dots, \frac{\partial F}{\partial z_n}$ in $\mathbb{C}_{\text{Yalong (Nanjing University)}}^{n+1}$ ($0, \dots, 0$).

Analytic subvarieties

A generalization of submanifold is the following:

Definition

A closed subset A of a complex manifold X is called an "analytic subvariety", if it is locally the common zeroes of finitely many holomorphic functions, i.e. $\forall p \in A$, there is an open set $U \subset X$ and $f_1, \ldots, f_k \in \mathcal{O}(U)$ such that

$$A\cap U=\{z\in U|\ f_1(z)=\cdots=f_k(z)=0\}.$$

An analytic subvariety \boldsymbol{A} is called a "hypersurface" if it is locally the zero locus of a holomorphic function.

• A complex submanifold is an analytic subvariety, we just choose U to be the domain of the adapted chart and f_i to be z_{k+1}, \ldots, z_n .

- A complex submanifold is an analytic subvariety, we just choose U to be the domain of the adapted chart and f_i to be z_{k+1}, \ldots, z_n .
- Let $A \subset X$ be an analytic subvariety. $p \in A$ is called a "regular point", if we can find open $U \subset X$ and $f_1, \ldots, f_k \in \mathcal{O}(U)$ s.t. $A \cap U = \{z \in U | f_1(z) = \cdots = f_k(z) = 0\}$ and $rank \frac{\partial(f_1, \ldots, f_k)}{\partial(z_1, \ldots, z_n)}(p) = k$. In this case, A is locally near p a complex submanifold of dimension n - k.

- A complex submanifold is an analytic subvariety, we just choose U to be the domain of the adapted chart and f_i to be z_{k+1}, \ldots, z_n .
- Let $A \subset X$ be an analytic subvariety. $p \in A$ is called a "regular point", if we can find open $U \subset X$ and $f_1, \ldots, f_k \in \mathcal{O}(U)$ s.t. $A \cap U = \{z \in U | f_1(z) = \cdots = f_k(z) = 0\}$ and $rank \frac{\partial(f_1, \ldots, f_k)}{\partial(z_1, \ldots, z_n)}(p) = k$. In this case, A is locally near p a complex submanifold of dimension n - k.
- The locus of regular points of A is denoted by A_{reg} . Its complement in A is called the "singular locus", and its elements are called "singular points of A".

- A complex submanifold is an analytic subvariety, we just choose U to be the domain of the adapted chart and f_i to be z_{k+1}, \ldots, z_n .
- Let $A \subset X$ be an analytic subvariety. $p \in A$ is called a "regular point", if we can find open $U \subset X$ and $f_1, \ldots, f_k \in \mathcal{O}(U)$ s.t. $A \cap U = \{z \in U | f_1(z) = \cdots = f_k(z) = 0\}$ and $rank \frac{\partial(f_1, \ldots, f_k)}{\partial(z_1, \ldots, z_n)}(p) = k$. In this case, A is locally near p a complex submanifold of dimension n - k.
- The locus of regular points of A is denoted by A_{reg} . Its complement in A is called the "singular locus", and its elements are called "singular points of A".
- Chow's theorem: complex analytic subvarieties of $\mathbb{C}P^n$ are algebraic, i.e., the common zeroes of finitely many homogeneous polynomials.

• A complex manifold is an even dimensional orientable differential manifold. (Exercise)

- A complex manifold is an even dimensional orientable differential manifold. (Exercise)
- However, for a given even dimensional oriented manifold, it is not always clear whether or not we can make it a complex manifold.

- A complex manifold is an even dimensional orientable differential manifold. (Exercise)
- However, for a given even dimensional oriented manifold, it is not always clear whether or not we can make it a complex manifold.
- There are topological obstructions to "almost complex structure", this can rule out all even dimensional spheres except S^2 and S^6 . We already knew S^2 is a complex manifold. But the S^6 case is still open.

- A complex manifold is an even dimensional orientable differential manifold. (Exercise)
- However, for a given even dimensional oriented manifold, it is not always clear whether or not we can make it a complex manifold.
- There are topological obstructions to "almost complex structure", this can rule out all even dimensional spheres except S^2 and S^6 . We already knew S^2 is a complex manifold. But the S^6 case is still open.
- In this view, we give an example of complex structures on product of odd dimensional spheres:

Example (Calabi-Eckmann manifolds)

We can make $S^{2p+1} \times S^{2q+1}$ into a complex manifold. The idea is that we can write

$$S^{2p+1} = \{z \in \mathbb{C}^{p+1} | \sum_{i=0}^{p} |z_i|^2 = 1\}, \quad S^{2q+1} = \{z \in \mathbb{C}^{q+1} | \sum_{j=0}^{q} |z_j|^2 = 1\},$$

and we have the Hopf fibration maps:

$$\pi_p: S^{2p+1} \to \mathbb{C}P^p, \quad \pi_q: S^{2q+1} \to \mathbb{C}P^q,$$

each with fiber S^1 . So if we consider the map $\pi = (\pi_p, \pi_q) : S^{2p+1} \times S^{2q+1} \to \mathbb{C}P^p \times \mathbb{C}P^q$, then we can view $S^{2p+1} \times S^{2q+1}$ as a fiber bundle on $\mathbb{C}P^p \times \mathbb{C}P^q$, which is a complex manifold, with fiber $S^1 \times S^1 = T^2$, which can also be made a complex manifold.

Example (Calabi-Eckmann manifolds (continued))

To be precise, fix a $\tau \in \mathbb{C}$ with $Im\tau > 0$. We donote by T_{τ} the complex torus $\mathbb{C}/<1, \tau >$. Consider the open sets:

$$U_{kj} := \{ (z, z') \in S^{2p+1} \times S^{2q+1} | \ z_k z'_j \neq 0 \},\$$

and the map $h_{kj}:\,U_{kj}\to \mathbb{C}^{p+q}\times T_\tau$ given by

$$h_{kj}(z,z')=(\frac{z_0}{z_k},\ldots,\frac{\hat{z_k}}{z_k},\ldots,\frac{z_p}{z_k},\frac{z'_0}{z'_j},\ldots,\frac{\hat{z'_j}}{z'_j},\ldots,\frac{z'_q}{z'_j},t_{kj}),$$

where $t_{kj} := \frac{1}{2\pi \sqrt{-1}} (\log z_k + \tau \log z'_j) \mod <1, \tau >.$

Exercise: check that these charts makes $S^{2p+1} \times S^{2q+1}$ a complex manifold.

SHI, Yalong (Nanjing University) BICMR Complex Geometry

§1.2 Vector bundles

Holomorphic vector bundle

Roughly speaking, a holomorphic vector bundle over a complex manifold is a family of vector spaces, varying holomorphically.

Definition

A holomorphic vector bundle of rank r over a n-dimensional complex manifold X is a complex manifold E of dimension n + r, together with a holomorphic surjective map $\pi : E \to X$ satisfying:

1. (Fiberwise linear) Each fiber $E_{\rho} := \pi^{-1}(\rho)$ has the structure of *r*-dimensional vector space over \mathbb{C} ;

A vector bundle of rank 1 is usually called a "line bundle".

Holomorphic vector bundle

Roughly speaking, a holomorphic vector bundle over a complex manifold is a family of vector spaces, varying holomorphically.

Definition

A holomorphic vector bundle of rank r over a n-dimensional complex manifold X is a complex manifold E of dimension n + r, together with a holomorphic surjective map $\pi : E \to X$ satisfying:

- 1. (Fiberwise linear) Each fiber $E_{\rho} := \pi^{-1}(\rho)$ has the structure of *r*-dimensional vector space over \mathbb{C} ;
- 2. (Locally trivial) There is an open cover of X, $\mathcal{U} = \{U_i\}_{i \in \Lambda}$ such that each $\pi^{-1}(U_i)$ is biholomorphic to $U_i \times \mathbb{C}^r$ via $\varphi_i : \pi^{-1}(U_i) \to U_i \times \mathbb{C}^r$, and $E_p \hookrightarrow \pi^{-1}(U_i) \to U_i \times \mathbb{C}^r$ is a linear isomorphism onto $\{p\} \times \mathbb{C}^r$ for any $p \in U_i$. φ_i is called a "local trivialization".

A vector bundle of rank 1 is usually called a "line bundle".

Cocycles of a vector bundle

In this case, whenever $U_i \cap U_j \neq \emptyset$, we have a holomorphic map, called the "transition map", $\psi_{ij} : U_i \cap U_j \to GL(r, \mathbb{C})$ (viewed as an open subset of \mathbb{C}^{r^2}) such that $\varphi_i \circ \varphi_j^{-1}(z, v) = (z, \psi_{ij}(z)v)$. These families of transition maps satisfies the "cocycle condition":

- (1) $\psi_{ij}\psi_{ji} = I_r$ on $U_i \cap U_j$;
- (2) Whenever $U_i \cap U_j \cap U_k \neq \emptyset$, we have $\psi_{ij}\psi_{jk}\psi_{ki} = I_r$ on $U_i \cap U_j \cap U_k$.

The name "cocycle" is no coincidence. In fact we will see later that $\{\psi_{ij}\}$ above is indeed a cocycle in Čech's approach to sheaf cohomology theory.

From cocycles to vector bundles

Remark

On the other hand, if we are given a set of holomorphic transition maps $\psi_{ij} : U_i \cap U_j \to GL(r, \mathbb{C})$ satisfying the cocycle condition, we can construct a holomorphic vector bundle by setting $E = \coprod_{i \in \Lambda} (U_i \times \mathbb{C}^r) / \sim$, where $(z, v) \sim (z', w)$ for $(z, v) \in U_i \times \mathbb{C}^r$ and $(z', w) \in U_j \times \mathbb{C}^r$ if and only if z = z' and $v = \psi_{ij}(z)w$. We leave the detail as an exercise.

C^{∞} and continuous vector bundles

Remark

We can similarly define C^{∞} (real or complex) vector bundles over a smooth manifold, and more generally continuous vector bundles over a topological space. There are similar characterizations using C^{∞} or continuous cocycles.

We leave all these details as exercises.

Holomorphic sections of a vector bundle

Definition (holomorphic section)

Let $\pi : E \to X$ be a holomorphic vector bundle over X. Let $U \subset X$ be an open set. A holomorphic section of E over U is a holomorphic map $s : U \to E$ such that $\pi \circ s = id_U$, i.e., $s(p) \in E_p$ for any $p \in U$. The set of holomorphic sections over U is usually denoted by $\Gamma(U, \mathcal{O}(E))$ or $\mathcal{O}(E)(U)$.

• A fundamental problem in the theory of holomorphic vector bundles: existence and construction of global holomorphic sections of a given bundle.

Holomorphic sections of a vector bundle

Definition (holomorphic section)

Let $\pi : E \to X$ be a holomorphic vector bundle over X. Let $U \subset X$ be an open set. A holomorphic section of E over U is a holomorphic map $s : U \to E$ such that $\pi \circ s = id_U$, i.e., $s(p) \in E_p$ for any $p \in U$. The set of holomorphic sections over U is usually denoted by $\Gamma(U, \mathcal{O}(E))$ or $\mathcal{O}(E)(U)$.

- A fundamental problem in the theory of holomorphic vector bundles: existence and construction of global holomorphic sections of a given bundle.
- Main difficulty: no "holomorphic partition of unity".

Holomorphic sections of a vector bundle

Definition (holomorphic section)

Let $\pi : E \to X$ be a holomorphic vector bundle over X. Let $U \subset X$ be an open set. A holomorphic section of E over U is a holomorphic map $s : U \to E$ such that $\pi \circ s = id_U$, i.e., $s(p) \in E_p$ for any $p \in U$. The set of holomorphic sections over U is usually denoted by $\Gamma(U, \mathcal{O}(E))$ or $\mathcal{O}(E)(U)$.

- A fundamental problem in the theory of holomorphic vector bundles: existence and construction of global holomorphic sections of a given bundle.
- Main difficulty: no "holomorphic partition of unity".
- An important tool is the L^2 -method for the $\bar{\partial}$ -equation. It is interesting that whether or not we can solve the equation depends on the geometry, in particular, the curvature of the bundle.

Classification of vector bundles

Definition (bundle map)

Let $\pi^{E} : E \to X$ and $\pi^{F} : F \to X$ are holomorphic vector bundles of ranks r and s respectively. A bundle map from E to F is a holomorphic map $f : E \to F$ such that f maps E_{ρ} to F_{ρ} for any $\rho \in X$ and $f|_{E_{\rho}} : E_{\rho} \to F_{\rho}$ is linear. When a bundle map has an inverse bundle map, we will say that these two bundles are isomorphic.

• Another fundamental problem is the classification problem.

Classification of vector bundles

Definition (bundle map)

Let $\pi^{E} : E \to X$ and $\pi^{F} : F \to X$ are holomorphic vector bundles of ranks r and s respectively. A bundle map from E to F is a holomorphic map $f : E \to F$ such that f maps E_{ρ} to F_{ρ} for any $\rho \in X$ and $f|_{E_{\rho}} : E_{\rho} \to F_{\rho}$ is linear. When a bundle map has an inverse bundle map, we will say that these two bundles are isomorphic.

- Another fundamental problem is the classification problem.
- One important tool is the theory of characteristic classes that we shall discuss later.

Classification of vector bundles

Definition (bundle map)

Let $\pi^{E} : E \to X$ and $\pi^{F} : F \to X$ are holomorphic vector bundles of ranks r and s respectively. A bundle map from E to F is a holomorphic map $f : E \to F$ such that f maps E_{p} to F_{p} for any $p \in X$ and $f|_{E_{p}} : E_{p} \to F_{p}$ is linear. When a bundle map has an inverse bundle map, we will say that these two bundles are isomorphic.

- Another fundamental problem is the classification problem.
- One important tool is the theory of characteristic classes that we shall discuss later.
- Also the set of isomorphic classes of holomorphic vector bundles over a given complex manifold has rich structures and is an important invariant for the complex manifold.

Examples of holomorphic vector bundles

Example (trivial bundle)

 $X \times \mathbb{C}^r$ with $\pi_1 : X \times \mathbb{C}^r \to X$ is a holomorphic vector bundle over X, called the "trivial bundle" over X, denoted by $\underline{\mathbb{C}^r}$.

Example (holomorphic tangent bundle)

Let X be a complex manifold of dimension n. We shall now construct its "holomorphic tangent bundle" TX as follows:

Let $p \in X$, we first define the ring $\mathcal{O}_{X,p} := \lim_{\to} \mathcal{O}_X(U)$, where the direct limit is taken with respect to open sets $p \in U$. For persons not familiar with direct limit, this is $\prod_{U \ni p} \mathcal{O}_X(U) / \sim$, with $f \in \mathcal{O}_X(U)$ equivalent to $g \in \mathcal{O}_X(V)$ iff we can find another open set $p \in W \subset U \cap V$ such that $f|_W = g|_W$. As an exercise, we can see that $\mathcal{O}_{X,p}$ is isomorphic to the ring of convergent power series $\mathbb{C}\{z_1, \ldots, z_n\}$. An element of $\mathcal{O}_{X,p}$ is called a "germ of holomorphic function" at p.

SHI, Yalong (Nanjing University) BICMR Complex Geometry

Example (holomorphic tangent bundle (continued))

A tangent vector at $\boldsymbol{\rho}$ is a derivation $\boldsymbol{\nu}: \mathcal{O}_{\boldsymbol{\chi},\boldsymbol{\rho}} \to \mathbb{C}$, i.e., a \mathbb{C} -linear map satisfying the Leibniz rule v(fg) = v(f)g(p) + f(p)v(g). The set of tangent vectors at p is easily seen to be a \mathbb{C} -vector space. We call it the (holomorphic) tangent space of X at $\boldsymbol{\rho}$, denoted by $T_{\boldsymbol{\rho}} X$. If $\boldsymbol{\varphi} : U_i \to \mathbb{C}^n$ is a holomorphic coordinate chart with $\varphi_i = (z_1, \ldots, z_n)$. Then we can define $\frac{\partial}{\partial z_i}|_{\rho} \in T_{\rho}X$ to be $\frac{\partial}{\partial z_i}|_{\rho}(f) := \frac{\partial(f \circ \varphi_i^{-1})}{\partial z_i}(\varphi_i(\rho))$. Then one can show that $\{\frac{\partial}{\partial z}|_p\}_{i=1}^n$ is a basis of T_pX . Let $TX := \prod_{p \in X} T_pX$, and define $\pi: TX \to X$ in the obvious way. We can make it a holomorphic vector bundle of rank **n** over **X** as follows: Let (U_i, φ_i) be a holomorphic chart. Then we can define the local trivialization $\tilde{\varphi}_i : \pi^{-1}(U_i) \to U_i \times \mathbb{C}^n$ to be $\tilde{\varphi}_i(q, \sum_i a_i \frac{\partial}{\partial z_i}|_q) := (q, a_1, \dots, a_n).$ This gives a complex structure on TX and at the same time gives a local trivialization of TX over U_i .

A holomorphic section of TX over U is called a "holomorphic vector field" on U.

To stress that TX is a holomorphic vector bundle, we shall write T^hX sometimes. SHI, Yalong (Nanjing University) BICMR Complex Geometry 29 / 51

Example (holomorphic cotangent bundle)

Any $f \in \mathcal{O}_{X,p}$ defines a linear functional on $\mathcal{T}_p X$ by $v \mapsto v(f)$. We call this $df|_p \in (\mathcal{T}_p X)^* =: \mathcal{T}_p^* X$. $\mathcal{T}_p^* X$ is called the (holomorphic) cotangent space of X at p. It is easy to see that if (U_i, φ_i) is a holomorphic chart, then $\{dz_i|_p\}_{i=1}^n$ is the basis of $\mathcal{T}_p^* X$ dual to $\{\frac{\partial}{\partial z_i}|_p\}_{i=1}^n$.

We can similarly give $T^*X := \coprod_{p \in X} T_p^*X$ a holomorphic bundle structure, called the "(holomorphic) cotangent bundle" of X. We leave this as an exercise.

A holomorphic section of T^*X over U is called a "holomorphic 1-form" on U.

Line bundles

Let $\pi : L \to X$ be a holomorphic line bundle and $\{U_i\}_{i \in \Lambda}$ an open cover by trivialization neighborhoods, and $\varphi_i : \pi^{-1}(U_i) \to U_i \times \mathbb{C}$ the trivialization map. Since $GL(1, \mathbb{C}) = \mathbb{C}^*$, now the transition maps ψ_{ij} become non-vanishing holomorphic functions on $U_i \cap U_j$. Let $s \in \Gamma(X, \mathcal{O}(L))$, then $\varphi_i \circ s|_{U_i} : U_i \to U_i \times \mathbb{C}$ could be represented by a holomorphic function $f_i \in \mathcal{O}(U_i)$, such that $\varphi_i \circ s|_{U_i}(p) = (p, f_i(p))$. When $U_i \cap U_j \neq \emptyset$, since $s|_{U_i} = s|_{U_i}$ on $U_i \cap U_j$, we have for any $p \in U_i \cap U_j$:

$$egin{aligned} (oldsymbol{p}, f_i(oldsymbol{p})) &= arphi_i(oldsymbol{s}(oldsymbol{p})) \ &= (arphi_i \circ arphi_j^{-1}) \circ arphi_j(oldsymbol{s}(oldsymbol{s}(oldsymbol{p})) \ &= (arphi, arphi_j(oldsymbol{p})). \end{aligned}$$

So we have $f_i = \psi_{ij}f_j$ on $U_i \cap U_j$. On the other hand, it is direct to check that given a family of holomorphic functions $f_i \in \mathcal{O}(U_i)$, satisfying $f_i = \psi_{ij}f_j$ on $U_i \cap U_j$, then there corresponds a unique $\mathbf{s} \in \Gamma(X, \mathcal{O}(L))$. SHI, Yalong (Nanjing University) BICMR Complex Geometry 31 / 51

Example (Universal line bundle (or "tautological bundle") over $\mathbb{C}P^n$)

• We define a holomorphic line bundle $U \to \mathbb{C}P^n$ as follows: As a set, $U = \{([z], v) \in \mathbb{C}P^n \times \mathbb{C}^{n+1} | v \in [z]\} = \{([z], v) \in \mathbb{C}P^n \times \mathbb{C}^{n+1} | v_i z_j - v_j z_i = 0, \forall i, j = 0, ..., n\}.$

Example (Universal line bundle (or "tautological bundle") over $\mathbb{C}P^n$)

- We define a holomorphic line bundle $U \to \mathbb{C}P^n$ as follows: As a set, $U = \{([z], v) \in \mathbb{C}P^n \times \mathbb{C}^{n+1} | v \in [z]\} = \{([z], v) \in \mathbb{C}P^n \times \mathbb{C}^{n+1} | v_i z_j - v_j z_i = 0, \forall i, j = 0, \dots, n\}.$
- Easy to see that U is a complex submanifold of $\mathbb{C}P^n \times \mathbb{C}^{n+1}$. The projection onto $\mathbb{C}P^n$ is clearly holomorphic, with fiber the 1-dimensional linear subspace of \mathbb{C}^{n+1} generated by (z_0, \ldots, z_n) .

Example (Universal line bundle (or "tautological bundle") over $\mathbb{C}P^n$)

- We define a holomorphic line bundle $U \to \mathbb{C}P^n$ as follows: As a set, $U = \{([z], v) \in \mathbb{C}P^n \times \mathbb{C}^{n+1} | v \in [z]\} = \{([z], v) \in \mathbb{C}P^n \times \mathbb{C}^{n+1} | v_i z_j - v_j z_i = 0, \forall i, j = 0, \dots, n\}.$
- Easy to see that U is a complex submanifold of $\mathbb{C}P^n \times \mathbb{C}^{n+1}$. The projection onto $\mathbb{C}P^n$ is clearly holomorphic, with fiber the 1-dimensional linear subspace of \mathbb{C}^{n+1} generated by (z_0, \ldots, z_n) .
- For local triviality, we use the holomorphic charts $\{(U_i, \varphi_i)\}_{i=0}^n$ defined before. On $\pi^{-1}(U_i)$, each $v \in U_{[z]}$ can be uniquely write as $t \cdot (\frac{z_0}{z_i}, \ldots, 1, \ldots, \frac{z_n}{z_i})$, so we define $\tilde{\varphi}_i([z_0, \ldots, z_n], t \cdot (\frac{z_0}{z_i}, \ldots, 1, \ldots, \frac{z_n}{z_i})) = ([z_0, \ldots, z_n], t) \in U_i \times \mathbb{C}$. This is easily seen to be a biholomorphic map. And the transition functions are: $\psi_{ij}([z]) = \frac{z_i}{z_j}$. What are the global holomorphic sections of U? (exercise)

Construct new bundles from old ones

The usual constructions in linear algebra all have counterparts in the category of vector bundles over X. Let E, F be vector bundles over X of rank r and s respectively.

• <u>Direct sum</u>

The direct sum of E and F is a vector bundle of rank r + s with fiber $E_p \oplus F_p$. To describe it, it suffices to write down the transition maps: if $\{U_i\}_{i \in \Lambda}$ is a common trivializing covering of X for E and F. The transition maps are ψ_{ij} and η_{ij} respectively, then the transition maps for $E \oplus F$ are precisely $diag(\psi_{ij}, \eta_{ij})$.

Construct new bundles from old ones

The usual constructions in linear algebra all have counterparts in the category of vector bundles over X. Let E, F be vector bundles over X of rank r and s respectively.

• <u>Direct sum</u>

The direct sum of E and F is a vector bundle of rank r + s with fiber $E_p \oplus F_p$. To describe it, it suffices to write down the transition maps: if $\{U_i\}_{i \in \Lambda}$ is a common trivializing covering of X for E and F. The transition maps are ψ_{ij} and η_{ij} respectively, then the transition maps for $E \oplus F$ are precisely $diag(\psi_{ij}, \eta_{ij})$. • Tensor product

The tensor product of E and F is a vector bundle of rank rs with fiber $E_p \otimes F_p$. In this short course, we only use the tensor product of a line bundle L with a general vector bundle E. In this case, if the transition maps for E and L with respect to a common trivializing covering are ψ_{ij} and η_{ij} , then the transition maps of $E \otimes L$ are $\eta_{ij}\psi_{ij}$. • <u>Hom(E, F)</u> is a vector bundle of rank *rs* with fiber $Hom(E_p, F_p)$, the space of linear maps from E_p to F_p . In particular, we define the dual of E to be $E^* := \underline{Hom}(E, \underline{\mathbb{C}})$, whose fiber over p is exactly the dual space of E_p , $(E_p)^*$. When $L \to X$ is a holomorphic line bundle, we can easily describe L^* in terms of transition functions: if the transition functions of L are ψ_{ij} , then the transition functions of L^* are ψ_{ij}^{-1} . For this reason, we usually also write L^{-1} for L^* .Exercise: (1), What's the transition function of E^* in general? (2), Prove that $E^* \otimes F \cong \underline{Hom}(E, F)$.

- <u>Hom(E, F)</u> is a vector bundle of rank *rs* with fiber $Hom(E_p, F_p)$, the space of linear maps from E_p to F_p . In particular, we define the dual of E to be $E^* := \underline{Hom}(E, \underline{\mathbb{C}})$, whose fiber over p is exactly the dual space of E_p , $(E_p)^*$. When $L \to X$ is a holomorphic line bundle, we can easily describe L^* in terms of transition functions: if the transition functions of L are ψ_{ij} , then the transition functions of L^* are ψ_{ij}^{-1} . For this reason, we usually also write L^{-1} for L^* .Exercise: (1), What's the transition function of E^* in general? (2), Prove that $E^* \otimes F \cong \underline{Hom}(E, F)$.
- Wedge product For $k \in \mathbb{N}$ and $k \leq r$, the degree k wedge product of E is a vector bundle $\Lambda^k E$ with fiber $\Lambda^k E_p$ at p. The highest degree wedge product $\Lambda^r E$ is also called the "determinant line bundle" of E, since its transition functions are precisely $\det \psi_{ij}$. $\Omega^p(X) := \Lambda^p T^* X$ is the bundle of holomorphic p-forms. The determinant line bundle of the holomorphic cotangent bundle $T^* X$ of a complex manifold X is called the "canonical line bundle" of X, denoted by K_X .

• Pull back via holomorphic map Let $E \to X$ be a holomorphic vector bundle of rank $r, f: Y \to X$ be a holomorphic map between complex manifolds, then we can define a "pull back" holomorphic vector f^*E over Y. As a set, we define $f^*E := \{(y, (x, v)) \in Y \times E | x = f(y)\}$, and $p: f^*E \to Y$ is just the projection to its first component.

We can also describe f^*E via transition maps: if $\{U_i\}_{i\in\Lambda}$ is a trivializing covering of X for E with transition maps $\psi_{ij}: U_i \cap U_j \to GL(r, \mathbb{C})$, and we choose an open covering $\{V_\alpha\}_{\alpha\in I}$ such that $f(V_\alpha) \subset U_i$ for some $i \in \Lambda$. We fix a map $\tau: I \to \Lambda$ such that $f(V_\alpha) \subset U_{\tau(\alpha)}$. Then the transition maps for f^*E with respect to $\{V_\alpha\}_{\alpha\in I}$ are just $f^*\psi_{\tau(\alpha)\tau(\beta)} = \psi_{\tau(\alpha)\tau(\beta)} \circ f: V_\alpha \cap V_\beta \to GL(r, \mathbb{C})$.

Example (The hyperplane bundle)

Let $U \to \mathbb{C}P^n$ be the universal bundle, its dual is usually denoted by H, we call it the "hyperplane line bundle". (Reason for this name will be explained later.) Another common notation for H is $\mathcal{O}(1)$. We also write the H^k , or $\mathcal{O}(k)$, short for the k-times tensor product of H, $H^k := H^{\otimes k} = H \otimes \cdots \otimes H$, and $\mathcal{O}(-k) := H^{-k} := U^{\otimes k}$.

We now study the holomorphic sections of H^k for k > 0. Let $s \in \Gamma(\mathbb{C}P^n, \mathcal{O}(H^k))$, s can be represented by $f_{\alpha} \in \mathcal{O}(U_{\alpha})$, where $U_{\alpha} = \{[Z] \in \mathbb{C}P^n | Z_{\alpha} \neq 0\}$. These f_{α} 's satisfy: $f_{\alpha}([Z]) = \left(\frac{z_{\beta}}{z_{\alpha}}\right)^k f_{\beta}([Z])$ on $U_{\alpha} \cap U_{\beta}$. Pulling back to $\mathbb{C}^{n+1} \setminus \{0\}$, we can view $Z_{\alpha}^k f_{\alpha}([Z])$ as a homogeneous function of degree k on $\mathbb{C}^{n+1} \setminus \{Z_{\alpha} = 0\}$, which is also holomorphic. Now the above compatibility condition means that these $z_{\alpha}f_{\alpha}([Z])$'s could be "glued" together to form a holomorphic function F on $\mathbb{C}^{n+1} \setminus \{0\}$, homogeneous of degree k.

Example (The hyperplane bundle (continued))

By Hartogs extension theorem , it extends to a holomorphic function $F \in \mathcal{O}(\mathbb{C}^{n+1})$. We necessarily have F(0) = 0 by homogeneity and continuity. From this we easily conclude that F is a homogeneous polynomial of degree k.

On the other hand, it is easy to see that any homogeneous polynomial of degree k in $\mathbb{C}[z_0, \ldots, z_n]$ determines uniquely a holomorphic section of H^k . So we have

$$\dim_{\mathbb{C}} \Gamma(\mathbb{C}P^n, \mathscr{O}(H^k)) = \binom{n+k}{n}.$$

Exercise: Prove that when k < 0, $\Gamma(\mathbb{C}P^n, \mathcal{O}(H^k)) = \{0\}$.

The Picard group

Definition

The isomorphic classes of holomorphic line bundles over X is called the "Picard group" of X, denoted by Pic(X).

Pic(X) is indeed a group: we define $[L_i] \cdot [L_2] := [L_1 \otimes L_2]$, then $\underline{\mathbb{C}}$ is the identity element and $[L]^{-1}$ is just $[L^*]$.

For $\mathbb{C}P^n$, we have $Pic(\mathbb{C}P^n) \cong \mathbb{Z}$, and any holomorphic line bundle is isomorphic to $\mathcal{O}(k)$ for some $k \in \mathbb{Z}$. We shall prove this next week.

§1.3 Almost complex structure and $\bar{\partial}$ -operator

From real tangent bundle to holomorphic tangent bundle Recall: a *n*-dimensional complex manifold X is also a 2n-dimensional orientable differential manifold. For $p \in X$, we can define a real tangent vector at p and the corresponding real tangent space at p, $T_p^{\mathbb{R}}X$. In terms of coordinate chart $\varphi = (z_1, \ldots, z_n)$, we have

$$\mathcal{T}_{
ho}^{\mathbb{R}} X = Span_{\mathbb{R}} \Big\{ rac{\partial}{\partial x_i} \Big|_{
ho}, rac{\partial}{\partial y_i} \Big|_{
ho} \Big\}_{i=1}^n.$$

We can give $\coprod_{p \in X} T_p^{\mathbb{R}} X$ a structure of \mathbb{R} -vector bundle of rank 2n, called the "real tangent bundle" of X, and denoted by $T^{\mathbb{R}} X$. Similarly, we can define the real cotangent bundle $T^{*\mathbb{R}} X$.

There are two equivalent ways to get from this real tangent bundle to our previous holomorphic tangent and cotangent bundles.——Cause of most of the troubles for beginners !

The "intrinsic" way

Recall that any real vector space V of dimension 2n can be regarded as \mathbb{C} -vector space of dimension n once we know what does it mean to multiply $\sqrt{-1}$ to an element of V. This is equivalent to giving a \mathbb{R} -linear map $J: V \to V$ such that $J^2 := J \circ J = -id$. We call such a J a "complex structure" on V. In this case, V can be regarded as a \mathbb{C} -vector space by defining $(\alpha + \sqrt{-1}\beta)v := \alpha v + \beta J v$, $\forall \alpha, \beta \in \mathbb{R}, \forall v \in V$.

Definition

Let M be a real orientable differential manifold of dimension 2n. An almost complex structure on M is a bundle map $J: TM \to TM$ satisfying $J^2 = -id$.

A complex manifold X has a natural almost complex structure: just define $J_{\partial x_i}^{\partial} = \frac{\partial}{\partial y_i}$, $J_{\partial y_i}^{\partial} = -\frac{\partial}{\partial x_i}$. Then $(T_p^{\mathbb{R}}X, J_p)$ can be viewed as a \mathbb{C} -vector space, isomorphic to the holomorphic tangent space $T_p^h X$, identifying $\frac{\partial}{\partial x_i}$ with $\frac{\partial}{\partial z_i}$.

Examples

If an almost complex structure is induced from a complex structure as above, we will call it "integrable".

Example

For S^2 , we can define $J: TS^2 \to TS^2$ as follows: we identify $T_x S^2$ with the subspace of \mathbb{R}^3 :

$$T_x S^2 \cong \{y \in R^3 | x \cdot y = 0\}.$$

Then we define $J_x:\,T_xS^2\to\,T_xS^2$ by

$$J_x(y) := x \times y.$$

On can check that this is an integrable almost complex structure, induced by the complex structure of $S^2 \cong \mathbb{C}P^1$.

An almost complex structure on S^6

Example

For S^6 , we have a similar almost complex structure given by "wedge product" in \mathbb{R}^7 . Note that the wedge product in \mathbb{R}^3 can be defined as the product of purely imaginary quaternions. To define this wedge product in \mathbb{R}^7 , we shall use Cayley's octonions.

We write $\mathbb{H} \cong \mathbb{R}^4$ the space of quaternions q = a + bi + cj + dk with $a, b, c, d \in \mathbb{R}$, satisfying $i^2 = j^2 = k^2 = -1$ and ij = -ji = k, jk = -kj = i, and ki = -ik = j. Then this multiplication is still associative but not commutative. For $q \in \mathbb{H}$, we define $\bar{q} := a - bi - cj - dk$, then $|q|^2 = q\bar{q}$.

Now we define the space of octonians, $\mathbb{O} \cong \mathbb{R}^8$, as $\mathbb{O} := \{x = (q_1, q_2) | q_1, q_2 \in \mathbb{H}\}$. The multiplication is defined by

$$(q_1,q_2)(q_1',q_2'):=(q_1q_1'-\bar{q}_2'q_2,q_2'q_1+q_2\bar{q}_1').$$

SHI, Yalong (Nanjing University) BICMR Complex Geometry

Example (S^6 continued)

We also define $\bar{x} := (\bar{q}_1, -q_2)$. Then we still have $x\bar{x} = x \cdot x = |x|^2$, here the \cdot means the usual inner product in \mathbb{R}^8 . Note that this multiplication is even not associative.

We identify \mathbb{R}^7 as the space of purely imaginary octonians. If $x, x' \in \mathbb{R}^7$, we define $x \times x'$ as the imaginary part of xx'. Then one can check that $xx = -|x|^2$, $x \times x' = -x' \times x$, and $(x \times x') \cdot x'' = x \cdot (x' \times x'')$.

From this, one can define an almost complex structure on $S^6 \subset \mathbb{R}^7$ in a similar way as S^2 : identify $T_x S^6$ with $\{y \in \mathbb{R}^7 | x \cdot y = 0\}$, then define

$$J_x(y) := x \times y.$$

One can prove that this almost complex structure is not integrable. (Ref: Calabi: Construction and properties of some 6-dimensional almost complex manifolds)

A famous open problem

Remark

For S^{2n} , it is known (Borel-Serre, Ehresmann, Wu) that there are no almost complex structures unless n = 1, 3. (Ref.: P. May's Concise course in algebraic topology). It is generally believed that there are no integrable almost complex structures on S^6 , however S.T. Yau has a different conjecture saying that one can make S^6 into a complex manifold. This is still open.

Interested readers can visit the journal Differential Geometry and its Applications Vol. 57, 2018 for a set of survey papers on this problem.

The "extrinsic" way

The second approach also uses J. Let again V be a real vector space with complex structure J. But now we simply complexify V to get $V_{\mathbb{C}} := V \otimes_{\mathbb{R}} \mathbb{C}$. We also extend $J \mathbb{C}$ -linearly to $V_{\mathbb{C}}$, again $J^2 = -id$. There is a direct sum decomposition of $V_{\mathbb{C}} = V^{1,0} \oplus V^{0,1}$, which are $\sqrt{-1}$ and $-\sqrt{-1}$ eigenspaces of J respectively. In fact we have a very precise description of $V^{1,0}$ and $V^{0,1}$:

$$V^{1,0} = \{ v - \sqrt{-1} J v | v \in V \}, \quad V^{0,1} = \{ v + \sqrt{-1} J v | v \in V \}.$$

It is direct to check that they are both \mathbb{C} -linear subspaces of $V_{\mathbb{C}}$ and $V^{0,1} = \overline{V^{1,0}}$.

Now apply this to $(T^{\mathbb{R}}X, J)$ for a manifold with an almost complex structure: define the complexified tangent bundle to be $T^{\mathbb{C}}X := T^{\mathbb{R}}X \otimes_{\mathbb{R}} \mathbb{C}$ and we have the decomposition $T^{\mathbb{C}}X = T^{1,0}X \oplus T^{0,1}X$, which are the $\sqrt{-1}$ and $-\sqrt{-1}$ eigenspaces of J, respectively. When J is integrable, $T^{1,0}X$ is locally generated by $\{\frac{\partial}{\partial z_i}\}_{i=1}^n$, so we can again identify it with T^hX .

SHI, Yalong (Nanjing University) BICMR Complex Geometry

Complex differential forms

We define $T^{*1,0}X$ to be the subspace of $T^{*\mathbb{C}}X := T^{*\mathbb{R}}X \otimes_{\mathbb{R}} \mathbb{C}$ that annihilates $T^{0,1}X$. And similarly define $T^{*0,1}X$. Then

$$T^{*\mathbb{C}}X=T^{*1,0}X\oplus T^{*0,1}X.$$

(When J is integrable, $T^{*1,0}X$ is locally generated by $\{dz_i\}_{1 \le i \le n}$ and $T^{*0,1}X$ is generated by $\{d\bar{z}_i\}_{1 \le i \le n}$.) We define $\Lambda^{p,q}T^*X$, the C^{∞} bundle of (p, q)-forms to be the sub-bundle of $\Lambda^{p+q}T^{*\mathbb{C}}X$, generated by $\Lambda^pT^{*1,0}X$ and $\Lambda^qT^{*0,1}X$. Then we have

$$\Lambda^k T^{*\mathbb{C}} X = igoplus_{p=0}^k \Lambda^{p,k-p} T^* X,$$

and we denote the projection map of $\Lambda^{p+q}T^{*\mathbb{C}}X$ onto $\Lambda^{p,q}T^*X$ by $\Pi_{p,q}$. The set of smooth sections of $\Lambda^{p,q}T^*X$ (or $\Lambda^kT^{*\mathbb{C}}X$) over an open set U is denoted by $A^{p,q}(U)$ (or $A^k(U)$).

SHI, Yalong (Nanjing University) BICMR Complex Geometry

The operators ∂ and $\overline{\partial}$

The exterior differential operator d extends \mathbb{C} -linearly to $d : A^k(U) \to A^{k+1}(U)$. We define the operators

$$\partial := \Pi_{
ho+1,q} \circ d : \mathcal{A}^{
ho,q}(U)
ightarrow \mathcal{A}^{
ho+1,q}(U),$$

and

$$\bar{\partial} := \Pi_{\rho,q+1} \circ d : A^{\rho,q}(U) \to A^{\rho,q+1}(U).$$

Integrable case

When J is integrable, a smooth section of $\Lambda^{p,q}T^*X$ over a coordinate open set U is of the forms

$$\eta = \sum_{1 \leq i_1 < \cdots < i_p \leq n, 1 \leq j_1 < \cdots < j_q \leq n} a_{i_1 \dots i_p, \overline{j}_1 \dots \overline{j}_q} dz_{i_1} \wedge \cdots \wedge dz_{i_p} \wedge d\overline{z}_{j_1} \wedge \cdots \wedge d\overline{z}_{j_q},$$

where $a_{i_1...i_p,\overline{j_1}...\overline{j_q}} \in C^{\infty}(U;\mathbb{C})$. We write $\eta = \sum_{|I|=p,|J|=q} a_{I\overline{J}} dz_I \wedge d\overline{z}_J \in A^{p,q}(U)$ for short.

In this case, we have

$$egin{aligned} d\eta &= \sum_{l,J} da_{lar{J}} \wedge dz_l \wedge dar{z}_J \ &= \sum_{l,J} \partial a_{lar{J}} \wedge dz_l \wedge dar{z}_J + \sum_{l,J} ar{\partial} a_{lar{J}} \wedge dz_l \wedge dar{z}_J \in \mathcal{A}^{p+1,q}(U) \oplus \mathcal{A}^{p,q+1}(U). \end{aligned}$$

So we always have $d = \partial + \overline{\partial}$ in the integrable case.

SHI, Yalong (Nanjing University) BICMR Complex Geometry

The Newlander-Nirenberg Theorem

Theorem (Newlander-Nirenberg)

An almost complex structure is integrable if and only if $d = \partial + \overline{\partial}$ for any $A^{p,q}(U)$ (equivalently, $[T^{1,0}X, T^{1,0}X] \subset T^{1,0}X$).

- Note that on 0-forms (smooth functions) $\mathbf{d} = \partial + \overline{\partial}$ always holds. The first non-trivial situation is on 1-forms. Since a \mathbf{k} -forms are linear combinations of wedge products of 1-forms, it also suffices to check $\mathbf{d} = \partial + \overline{\partial}$ on 1-forms.
- Besides the original proof of Newlander-Nirenberg, there is another proof by J.J. Kohn based on techniques for solving the "ō-equation", which can be found in Hörmander's book.

Dolbeault cohomology

In the following, we always assume X is a complex manifold. Now $d = \partial + \bar{\partial}$. Since we always have $d^2 = 0$, we have $0 = \partial^2 + \bar{\partial}^2 + (\partial \bar{\partial} + \bar{\partial} \partial)$, acting on $A^{p,q}(X)$. Comparing types, we get $\partial^2 = 0$, $\bar{\partial}^2 = 0$, $\partial \bar{\partial} + \bar{\partial} \partial = 0$. We can define from these identities several differential cochain complexes:

• The de Rham complex $0 \to A^0(X) \xrightarrow{d} A^1(X) \xrightarrow{d} \dots \xrightarrow{d} A^{2n}(X) \to 0$. From this we can define the de Rham cohomology (with coefficient \mathbb{C}) $H^k_{dR}(X,\mathbb{C}) := Ker \ d|_{A^k(X)}/dA^{k-1}(X)$. Its dimension b_k is called the "k-th Betti number" of X.

Dolbeault cohomology

In the following, we always assume X is a complex manifold. Now $d = \partial + \bar{\partial}$. Since we always have $d^2 = 0$, we have $0 = \partial^2 + \bar{\partial}^2 + (\partial \bar{\partial} + \bar{\partial} \partial)$, acting on $A^{p,q}(X)$. Comparing types, we get $\partial^2 = 0$, $\bar{\partial}^2 = 0$, $\partial \bar{\partial} + \bar{\partial} \partial = 0$. We can define from these identities several differential cochain complexes:

- The de Rham complex $0 \to A^0(X) \xrightarrow{d} A^1(X) \xrightarrow{d} \dots \xrightarrow{d} A^{2n}(X) \to 0$. From this we can define the de Rham cohomology (with coefficient \mathbb{C}) $H^k_{dR}(X,\mathbb{C}) := Ker \ d|_{A^k(X)}/dA^{k-1}(X)$. Its dimension b_k is called the "k-th Betti number" of X.
- The Dolbeault complex $0 \to A^{p,0}(X) \xrightarrow{\bar{\partial}} A^{p,1}(X) \xrightarrow{\bar{\partial}} \dots \xrightarrow{\bar{\partial}} A^{p,n}(X) \to 0$. We define the Dolbeault cohomology $H^{p,q}_{\bar{\partial}}(X) := Ker \ \bar{\partial}|_{A^{p,q}(X)} / \bar{\partial} A^{p,q-1}(X)$. Its dimension is denoted by $h^{p,q}$. They are important invariants of the complex manifold.