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§1.1 Complex manifolds
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Defining a complex manifold: the 1st condition

Roughly speaking, a complex manifold is a topological space X on which we can
talk about “holomorphic” functions. Since we know what does a holomorphic
function means in Euclidean spaces, the first condition we impose on X is:

Condition 1:(existence of coordinate charts) X is locally homeomorphic to open sets
of Cn. To be precise, we require that there is an open covering U = {Ui }i∈Λ of X such
that for each Ui we have a homeomorphism ϕi : Ui → ϕi(Ui) ⊂ C

n onto an open set
ϕi(Ui) of Cn.
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Defining a complex manifold: the 2nd condition

Given these coordinates, we should define a function f : Ω→ C to be holomorphic if
all its coordinate-representations f ◦ ϕ−1

i ∈ O(ϕi(Ui ∩ Ω)). But is this a well-defined
notion? For example if Ω ⊂ Ui ∩ Uj , ∅, then on Ω we have two sets of coordinates.
Is it possible that f ◦ ϕ−1

i ∈ O(ϕi(Ui ∩Ω)) but f ◦ ϕ−1
j < O(ϕj(Uj ∩Ω))? To avoid this,

note that f ◦ ϕ−1
j =

(
f ◦ ϕ−1

i

)
◦
(
ϕi ◦ ϕ

−1
j

)
, so we require:

Condition 2:(compatibility) Coordinate changes of Condition 1 should be
holomorphic. To be precise, we require that whenever Ui ∩ Uj , ∅, we have ϕi ◦ ϕ

−1
j

is a biholomorphic map from ϕj(Ui ∩ Uj) to ϕi(Ui ∩ Uj).
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Defining a complex manifold: the 3rd condition

Given these 2 conditions, one can check easily that the notion of “holomorphic
function” makes perfect sense. However, to avoid pathology and use more analytic
tools such as metrics and integration, we also require a complex manifold to be a
nice topological space:

Condition 3: X satisfies T2 and C2 axioms, i.e. X is a Hausdorff space, and has a
countable topological basis.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 6 / 51



The definition
Definition

• A complex (analytic) manifold of dimension n is a topological space X
satisfying Conditions 1,2,3 above. A 1-dimensional complex manifold is also
known as a “Riemann surface”. A map f : X → C from a complex manifold X is
called a “holomorphic function”, if f ◦ ϕ−1

i ∈ O(ϕi(Ui)) for all i ∈ Λ. In this case,
we write f ∈ O(X ).

• If X ,Y are both complex manifolds of dimensions n and m respectively, a map
F : X → Y is called “holomorphic”, if for all coordinate charts (U, ϕ) of X and
(V , ψ) of Y , the map ψ ◦ F ◦ ϕ−1 is a holomorphic map on ϕ

(
U ∩ F−1(V )

)
⊂ Cn

whenever U ∩ F−1(V ) , ∅. A holomorphic map with a holomorphic inverse is
called “biholomorphic”.
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A technical remark

Remark
In standard textbooks, the set of coordinate charts {(Ui , ϕi)}i∈Λ is assumed to be
maximal, i.e., whenever a homeomorphism from an open set V , ψ : V → ψ(V ) ⊂ Cn

is compatible with (Ui , ϕi) for all Ui ∩ V , ∅, we have (V , ψ) ∈ {(Ui , ϕi)}i∈Λ. It is easy
to check that from the coordinate charts in our definition, one can always enlarge it
to a unique maximal one satisfying the compatibility condition.
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Example

1. Open subsets of Cn are complex manifolds.

2. Let {e1, . . . ,e2n} be any fixed R-basis of Cn, and let
Λ := {m1e1 + · · ·+ m2ne2n| mi ∈ Z} be a lattice of rank 2n. Then we can define
the quotient space Cn/Λ, it is a compact Hausdorff space equipped with
quotient topology. There is a natural complex manifold structure on Cn/Λ, we
call this complex manifold a “complex torus”.

3. Let P ∈ C[z,w ] be a polynomial of degree d . Define

C := {(z,w)| P(z,w) = 0}.

We call it an “affine plane algebraic curve”. Assume P is irreducible and ∂P
∂z ,

∂P
∂w

have no common zeroes on C. Then C is a natural complex manifold.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 9 / 51



Example

1. Open subsets of Cn are complex manifolds.
2. Let {e1, . . . ,e2n} be any fixed R-basis of Cn, and let

Λ := {m1e1 + · · ·+ m2ne2n| mi ∈ Z} be a lattice of rank 2n. Then we can define
the quotient space Cn/Λ, it is a compact Hausdorff space equipped with
quotient topology. There is a natural complex manifold structure on Cn/Λ, we
call this complex manifold a “complex torus”.

3. Let P ∈ C[z,w ] be a polynomial of degree d . Define

C := {(z,w)| P(z,w) = 0}.

We call it an “affine plane algebraic curve”. Assume P is irreducible and ∂P
∂z ,

∂P
∂w

have no common zeroes on C. Then C is a natural complex manifold.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 9 / 51



Example

1. Open subsets of Cn are complex manifolds.
2. Let {e1, . . . ,e2n} be any fixed R-basis of Cn, and let

Λ := {m1e1 + · · ·+ m2ne2n| mi ∈ Z} be a lattice of rank 2n. Then we can define
the quotient space Cn/Λ, it is a compact Hausdorff space equipped with
quotient topology. There is a natural complex manifold structure on Cn/Λ, we
call this complex manifold a “complex torus”.

3. Let P ∈ C[z,w ] be a polynomial of degree d . Define

C := {(z,w)| P(z,w) = 0}.

We call it an “affine plane algebraic curve”. Assume P is irreducible and ∂P
∂z ,

∂P
∂w

have no common zeroes on C. Then C is a natural complex manifold.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 9 / 51



More about example 3

The coordinates can be chosen in the following way: if ∂P
∂w (z0,w0) , 0, then we can

apply the (holomorphic version of) implicit function theorem to find a
neighborhood ∆(z0, ε) ×∆(w0, δ) and a holomorphic function g(z) such that
U := C ∩

(
∆(z0, ε) ×∆(w0, δ)

)
= {(z,w)| z ∈ ∆(z0, ε),w = g(z)}. We choose

ϕ : U → C to be ϕ(z,w) = z. If ∂P
∂z (z0,w0) , 0, we use w as local coordinate.

Exercise: what’s the coordinates transformation function?
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Complex (analytic) submanifolds

Definition
A closed subset Y of a n-dimensional complex manifold X is called a (closed)
“complex (analytic) submanifold” of dimension k , if for any p ∈ Y , we can find a
compatible chart (U, ϕ) of X such that p ∈ U and

ϕ(U ∩ Y ) = {(z1, . . . , zn) ∈ ϕ(U)| zk+1 = · · · = zn = 0}.

One can check that the restriction of such charts (we call them “adapted charts”) to
Y makes Y a complex manifold and the inclusion Y ⊂ X is a holomorphic map.
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Complex submanifolds of Cn

A direct application of the maximum principle gives:

Lemma
Any holomorphic function on a compact connected complex manifold should be a
constant.

Let M be a complex submanifolds of Cn. Since the restriction of complex coordinate
functions of Cn to M are holomorphic functions on M, we get:

Corollary
There are no compact complex submanifolds of Cn of positive dimension.

Remark
Those non-compact complex manifolds which admit proper holomorphic embeddings
into CN for some large N are precisely “Stein manifolds” in complex analysis.
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The complex projective space
Example
Define an equivalence relation on Cn+1 \ {0}: (z0, . . . , zn) ∼ (w0, . . . ,wn) iff ∃λ ∈ C∗
such that wi = λzi ,∀i = 0, . . . ,n. The equivalent class of (z0, . . . , zn) is denoted by
[z0, . . . , zn]. The n-dimensional complex projective space CPn is defined to be the
space of all equivalent classes, endowed with quotient topology. It is compact,
Hausdorff. Choose holomorphic coordinate charts as follows: Define
Ui := {[z0, . . . , zn] ∈ CPn| zi , 0}, i = 0, . . . ,n. and define

ϕi : Ui → C
n, ϕi([z0, . . . , zn]) := (

z0

zi
, . . . ,

ẑi

zi
, . . . ,

zn

zi
).

The checking of compatibility is left as an exercise. Also it is easy to check that CP1

is diffeomorphic to our familiar S2.
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Projective algebraic manifolds

Let F1, . . . ,Fk ∈ C[z0, . . . , zn] be a set of irreducible homogeneous polynomials of
degrees d1, . . . ,dk respectively. Then the set

V (F1, . . . ,Fk ) := {[z0, . . . , zn]| F1(z0, . . . , zn) = · · · = Fk (z0, . . . , zn) = 0}

is well-defined and is called a (complex) projective algebraic variety. If we assume
that V (F1, . . . ,Fk ) is a complex submanifold of CPn, then it will be called a
“projective algebraic manifold” (or “Hodge manifold”).
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Example
Let F ∈ C[z0, . . . , zn] be irreducible and homogeneous of degree d . If the only
common zero of ∂F

∂z0
, . . . , ∂F

∂zn
in Cn+1 is (0, . . . ,0). Then V (F ) is a complex

submanifold of dimension n − 1. E.g., the “Fermat hypersurface” V (zd
0 + · · ·+ zd

n ).

Proof
We check this on U0. V (F ) ∩ U0 is the zero locus of F (1, z1, . . . , zn) ∈ O(U0). Need
to show that ∂F

∂z1
(1, z1, . . . , zn), . . . ∂F

∂zn
(1, z1, . . . , zn) have no common zeroes on

V (F ) ∩ U0.
Suppose F (1, z0

1 , . . . z
0
n ) = ∂F

∂z1
(1, z0

1 , . . . , z
0
n ) = · · · = ∂F

∂zn
(1, z0

1 , . . . , z
0
n ) = 0. By Euler:

∂F
∂z0

(1, z0
1 , . . . , z

0
n ) + z0

1
∂F
∂z1

(1, z0
1 , . . . , z

0
n ) + · · ·+ z0

n
∂F
∂zn

(1, z0
1 , . . . , z

0
n ) = dF = 0.

This implies ∂F
∂z0

(1, z0
1 , . . . , z

0
n ) = 0, so (1, z0

1 , . . . , z
0
n ) is a common zero of ∂F

∂z0
, . . . , ∂F

∂zn

in Cn+1 different from (0, . . . ,0).SHI, Yalong (Nanjing University) BICMR Complex Geometry 15 / 51



Analytic subvarieties

A generalization of submanifold is the following:

Definition
A closed subset A of a complex manifold X is called an “analytic subvariety”, if it is
locally the common zeroes of finitely many holomorphic functions, i.e. ∀p ∈ A, there
is an open set U ⊂ X and f1, . . . , fk ∈ O(U) such that

A ∩ U = {z ∈ U | f1(z) = · · · = fk (z) = 0}.

An analytic subvariety A is called a “hypersurface” if it is locally the zero locus of a
holomorphic function.
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Relations between submanifolds and subvarieties

• A complex submanifold is an analytic subvariety, we just choose U to be the
domain of the adapted chart and fi to be zk+1, . . . , zn.

• Let A ⊂ X be an analytic subvariety. p ∈ A is called a “regular point”, if we can
find open U ⊂ X and f1, . . . , fk ∈ O(U) s.t.
A ∩ U = {z ∈ U | f1(z) = · · · = fk (z) = 0} and rank ∂(f1,...,fk )

∂(z1,...,zn)
(p) = k . In this case,

A is locally near p a complex submanifold of dimension n − k .
• The locus of regular points of A is denoted by Areg. Its complement in A is

called the “singular locus”, and its elements are called “singular points of A”.
• Chow’s theorem: complex analytic subvarieties of CPn are algebraic, i.e., the

common zeroes of finitely many homogeneous polynomials.
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Existence of complex structures on a given C∞ manifold

• A complex manifold is an even dimensional orientable differential manifold.
(Exercise)

• However, for a given even dimensional oriented manifold, it is not always clear
whether or not we can make it a complex manifold.

• There are topological obstructions to “almost complex structure”, this can rule
out all even dimensional spheres except S2 and S6. We already knew S2 is a
complex manifold. But the S6 case is still open.

• In this view, we give an example of complex structures on product of odd
dimensional spheres:
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Example (Calabi-Eckmann manifolds)
We can make S2p+1 × S2q+1 into a complex manifold. The idea is that we can write

S2p+1 = {z ∈ Cp+1|

p∑
i=0

|zi |
2 = 1}, S2q+1 = {z ∈ Cq+1|

q∑
j=0

|zj |
2 = 1},

and we have the Hopf fibration maps:

πp : S2p+1 → CPp, πq : S2q+1 → CPq,

each with fiber S1. So if we consider the map
π = (πp, πq) : S2p+1 × S2q+1 → CPp × CPq, then we can view S2p+1 × S2q+1 as a
fiber bundle on CPp × CPq, which is a complex manifold, with fiber S1 × S1 = T 2,
which can also be made a complex manifold.
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Example (Calabi-Eckmann manifolds (continued))
To be precise, fix a τ ∈ C with Imτ > 0. We donote by Tτ the complex torus
C/ < 1, τ >. Consider the open sets:

Ukj := {(z, z ′) ∈ S2p+1 × S2q+1| zkz ′j , 0},

and the map hkj : Ukj → C
p+q × Tτ given by

hkj(z, z ′) = (
z0

zk
, . . . ,

ẑk

zk
, . . . ,

zp

zk
,
z ′0
z ′j
, . . . ,

ẑ ′j
z ′j
, . . . ,

z ′q
z ′j
, tkj),

where tkj := 1
2π
√
−1

(log zk + τ log z ′j ) mod < 1, τ >.

Exercise: check that these charts makes S2p+1 × S2q+1 a complex manifold.
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§1.2 Vector bundles
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Holomorphic vector bundle
Roughly speaking, a holomorphic vector bundle over a complex manifold is a family
of vector spaces, varying holomorphically.

Definition
A holomorphic vector bundle of rank r over a n-dimensional complex manifold X is
a complex manifold E of dimension n + r , together with a holomorphic surjective
map π : E → X satisfying:
1. (Fiberwise linear) Each fiber Ep := π−1(p) has the structure of r -dimensional

vector space over C;

2. (Locally trivial) There is an open cover of X , U = {Ui }i∈Λ such that each
π−1(Ui) is biholomorphic to Ui × C

r via ϕi : π−1(Ui)→ Ui × C
r , and

Ep ↪→ π−1(Ui)→ Ui ×C
r is a linear isomorphism onto {p} ×Cr for any p ∈ Ui . ϕi

is called a “local trivialization”.

A vector bundle of rank 1 is usually called a “line bundle”.
SHI, Yalong (Nanjing University) BICMR Complex Geometry 22 / 51
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Cocycles of a vector bundle

In this case, whenever Ui ∩ Uj , ∅, we have a holomorphic map, called the
“transition map”, ψij : Ui ∩ Uj → GL(r ,C) (viewed as an open subset of Cr2) such
that ϕi ◦ ϕ

−1
j (z, v) = (z, ψij(z)v). These families of transition maps satisfies the

“cocycle condition”:
(1) ψijψji = Ir on Ui ∩ Uj ;
(2) Whenever Ui ∩ Uj ∩ Uk , ∅, we have ψijψjkψki = Ir on Ui ∩ Uj ∩ Uk .
The name “cocycle” is no coincidence. In fact we will see later that {ψij } above is
indeed a cocycle in Čech’s approach to sheaf cohomology theory.
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From cocycles to vector bundles

Remark
On the other hand, if we are given a set of holomorphic transition maps
ψij : Ui ∩ Uj → GL(r ,C) satisfying the cocycle condition, we can construct a
holomorphic vector bundle by setting E =

∐
i∈Λ(Ui × C

r )/ ∼, where (z, v) ∼ (z ′,w)
for (z, v) ∈ Ui × C

r and (z ′,w) ∈ Uj × C
r if and only if z = z ′ and v = ψij(z)w . We

leave the detail as an exercise.
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C∞ and continuous vector bundles

Remark
We can similarly define C∞ (real or complex) vector bundles over a smooth
manifold, and more generally continuous vector bundles over a topological space.
There are similar characterizations using C∞ or continuous cocycles.

We leave all these details as exercises.
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Holomorphic sections of a vector bundle
Definition (holomorphic section)
Let π : E → X be a holomorphic vector bundle over X . Let U ⊂ X be an open set.
A holomorphic section of E over U is a holomorphic map s : U → E such that
π ◦ s = idU , i.e., s(p) ∈ Ep for any p ∈ U. The set of holomorphic sections over U is
usually denoted by Γ(U,O(E)) or O(E)(U).

• A fundamental problem in the theory of holomorphic vector bundles: existence
and construction of global holomorphic sections of a given bundle.

• Main difficulty: no “holomorphic partition of unity”.
• An important tool is the L2-method for the ∂̄-equation. It is interesting that

whether or not we can solve the equation depends on the geometry, in
particular, the curvature of the bundle.
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Classification of vector bundles
Definition (bundle map)
Let πE : E → X and πF : F → X are holomorphic vector bundles of ranks r and s
respectively. A bundle map from E to F is a holomorphic map f : E → F such that
f maps Ep to Fp for any p ∈ X and f |Ep : Ep → Fp is linear. When a bundle map has
an inverse bundle map, we will say that these two bundles are isomorphic.

• Another fundamental problem is the classification problem.

• One important tool is the theory of characteristic classes that we shall discuss
later.

• Also the set of isomorphic classes of holomorphic vector bundles over a given
complex manifold has rich structures and is an important invariant for the
complex manifold.
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Examples of holomorphic vector bundles
Example (trivial bundle)
X × Cr with π1 : X × Cr → X is a holomorphic vector bundle over X , called the
“trivial bundle” over X , denoted by Cr .

Example (holomorphic tangent bundle)
Let X be a complex manifold of dimension n. We shall now construct its
“holomorphic tangent bundle” TX as follows:
Let p ∈ X , we first define the ring OX ,p := lim−→OX (U),where the direct limit is
taken with respect to open sets p ∈ U. For persons not familiar with direct limit,
this is

∐
U3p OX (U)/ ∼, with f ∈ OX (U) equivalent to g ∈ OX (V ) iff we can find

another open set p ∈W ⊂ U ∩ V such that f |W = g|W . As an exercise, we can see
that OX ,p is isomorphic to the ring of convergent power series C{z1, . . . , zn}. An
element of OX ,p is called a “germ of holomorphic function” at p.
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Example (holomorphic tangent bundle (continued))
A tangent vector at p is a derivation v : OX ,p → C, i.e., a C-linear map satisfying
the Leibniz rule v(fg) = v(f )g(p) + f (p)v(g). The set of tangent vectors at p is
easily seen to be a C-vector space. We call it the (holomorphic) tangent space of X
at p, denoted by TpX . If ϕ : Ui → C

n is a holomorphic coordinate chart with
ϕi = (z1, . . . , zn). Then we can define ∂

∂zi
|p ∈ TpX to be ∂

∂zi
|p(f ) :=

∂(f◦ϕ−1
i )

∂zi
(ϕi(p)).

Then one can show that { ∂
∂zi
|p}

n
i=1 is a basis of TpX . Let TX :=

∐
p∈X TpX , and define

π : TX → X in the obvious way. We can make it a holomorphic vector bundle of
rank n over X as follows: Let (Ui , ϕi) be a holomorphic chart. Then we can define
the local trivialization ϕ̃i : π−1(Ui)→ Ui × C

n to be ϕ̃i(q,
∑

i ai
∂
∂zi
|q) := (q,a1, . . . ,an).

This gives a complex structure on TX and at the same time gives a local
trivialization of TX over Ui .

A holomorphic section of TX over U is called a “holomorphic vector field” on U.

To stress that TX is a holomorphic vector bundle, we shall write T hX sometimes.
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Example (holomorphic cotangent bundle)
Any f ∈ OX ,p defines a linear functional on TpX by v 7→ v(f ). We call this
df |p ∈ (TpX )∗ =: T ∗p X . T ∗p X is called the (holomorphic) cotangent space of X at p. It
is easy to see that if (Ui , ϕi) is a holomorphic chart, then {dzi |p}

n
i=1 is the basis of

T ∗p X dual to { ∂
∂zi
|p}

n
i=1.

We can similarly give T ∗X :=
∐

p∈X T ∗p X a holomorphic bundle structure, called the
“(holomorphic) cotangent bundle” of X . We leave this as an exercise.

A holomorphic section of T ∗X over U is called a “holomorphic 1-form” on U.
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Line bundles
Let π : L→ X be a holomorphic line bundle and {Ui }i∈Λ an open cover by
trivialization neighborhoods, and ϕi : π−1(Ui)→ Ui × C the trivialization map. Since
GL(1,C) = C∗, now the transition maps ψij become non-vanishing holomorphic
functions on Ui ∩ Uj . Let s ∈ Γ(X ,O(L)), then ϕi ◦ s|Ui : Ui → Ui × C could be
represented by a holomorphic function fi ∈ O(Ui), such that ϕi ◦ s|Ui (p) = (p, fi(p)).
When Ui ∩ Uj , ∅, since s|Ui = s|Uj on Ui ∩ Uj , we have for any p ∈ Ui ∩ Uj :

(p, fi(p)) = ϕi(s(p))

= (ϕi ◦ ϕ
−1
j ) ◦ ϕj(s(p))

= (ϕi ◦ ϕ
−1
j )(p, fj(p))

= (p, ψij(p)fj(p)).

So we have fi = ψij fj on Ui ∩ Uj . On the other hand, it is direct to check that given a
family of holomorphic functions fi ∈ O(Ui), satisfying fi = ψij fj on Ui ∩Uj , then there
corresponds a unique s ∈ Γ(X ,O(L)).
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Example (Universal line bundle (or “tautological bundle”) over CPn)

• We define a holomorphic line bundle U → CPn as follows: As a set,
U = {([z], v) ∈ CPn × Cn+1| v ∈ [z]} = {([z], v) ∈ CPn × Cn+1| vizj − vjzi =
0,∀i , j = 0, . . . ,n}.

• Easy to see that U is a complex submanifold of CPn × Cn+1. The projection
onto CPn is clearly holomorphic, with fiber the 1-dimensional linear subspace
of Cn+1 generated by (z0, . . . , zn).

• For local triviality, we use the holomorphic charts {(Ui , ϕi)}
n
i=0 defined before.

On π−1(Ui), each v ∈ U[z] can be uniquely write as t · (z0
zi
, . . . ,1, . . . , zn

zi
), so we

define ϕ̃i([z0, . . . , zn], t · (z0
zi
, . . . ,1, . . . , zn

zi
)) = ([z0, . . . , zn], t) ∈ Ui × C. This is

easily seen to be a biholomorphic map. And the transition functions are:
ψij([z]) = zi

zj
. What are the global holomorphic sections of U? (exercise)
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Construct new bundles from old ones
The usual constructions in linear algebra all have counterparts in the category of
vector bundles over X . Let E ,F be vector bundles over X of rank r and s
respectively.
• Direct sum

The direct sum of E and F is a vector bundle of rank r + s with fiber Ep ⊕ Fp.
To describe it, it suffices to write down the transition maps: if {Ui }i∈Λ is a
common trivializing covering of X for E and F . The transition maps are ψij and
ηij respectively, then the transition maps for E ⊕ F are precisely diag(ψij , ηij).

• Tensor product
The tensor product of E and F is a vector bundle of rank rs with fiber Ep ⊗ Fp.
In this short course, we only use the tensor product of a line bundle L with a
general vector bundle E . In this case, if the transition maps for E and L with
respect to a common trivializing covering are ψij and ηij , then the transition
maps of E ⊗ L are ηijψij .
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• Hom(E ,F ) is a vector bundle of rank rs with fiber Hom(Ep,Fp), the space of
linear maps from Ep to Fp. In particular, we define the dual of E to be
E ∗ := Hom(E ,C), whose fiber over p is exactly the dual space of Ep, (Ep)∗.
When L→ X is a holomorphic line bundle, we can easily describe L∗ in terms
of transition functions: if the transition functions of L are ψij , then the
transition functions of L∗ are ψ−1

ij . For this reason, we usually also write L−1 for
L∗.Exercise: (1), What’s the transition function of E ∗ in general? (2), Prove
that E ∗ ⊗ F � Hom(E ,F ).

• Wedge product For k ∈ N and k ≤ r , the degree k wedge product of E is a
vector bundle ΛkE with fiber ΛkEp at p. The highest degree wedge product Λr E
is also called the “determinant line bundle” of E , since its transition functions
are precisely detψij . Ωp(X ) := ΛpT ∗X is the bundle of holomorphic p-forms.
The determinant line bundle of the holomorphic cotangent bundle T ∗X of a
complex manifold X is called the “canonical line bundle” of X , denoted by KX .
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• Pull back via holomorphic map Let E → X be a holomorphic vector bundle of
rank r , f : Y → X be a holomorphic map between complex manifolds, then we
can define a “pull back” holomorphic vector f ∗E over Y . As a set, we define
f ∗E := {(y , (x , v)) ∈ Y × E | x = f (y)}, and p : f ∗E → Y is just the projection to
its first component.

We can also describe f ∗E via transition maps: if {Ui }i∈Λ is a trivializing covering
of X for E with transition maps ψij : Ui ∩ Uj → GL(r ,C), and we choose an
open covering {Vα}α∈I such that f (Vα) ⊂ Ui for some i ∈ Λ. We fix a map
τ : I → Λ such that f (Vα) ⊂ Uτ(α). Then the transition maps for f ∗E with
respect to {Vα}α∈I are just f ∗ψτ(α)τ(β) = ψτ(α)τ(β) ◦ f : Vα ∩ Vβ → GL(r ,C).
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Example (The hyperplane bundle)
Let U → CPn be the universal bundle, its dual is usually denoted by H, we call it
the “hyperplane line bundle”. (Reason for this name will be explained later.) Another
common notation for H is O(1). We also write the Hk , or O(k), short for the
k -times tensor product of H, Hk := H⊗k = H ⊗ · · · ⊗ H, and O(−k) := H−k := U⊗k .

We now study the holomorphic sections of Hk for k > 0. Let s ∈ Γ(CPn,O(Hk )), s
can be represented by fα ∈ O(Uα), where Uα = {[z] ∈ CPn| zα , 0}. These fα’s satisfy:

fα([z]) =
(

zβ
zα

)k
fβ([z]) on Uα ∩ Uβ. Pulling back to Cn+1 \ {0}, we can view zk

α fα([z]) as

a homogeneous function of degree k on Cn+1 \ {zα = 0}, which is also holomorphic.
Now the above compatibility condition means that these zαfα([z])’s could be “glued”
together to form a holomorphic function F on Cn+1 \ {0}, homogeneous of degree k .
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Example (The hyperplane bundle (continued))
By Hartogs extension theorem , it extends to a holomorphic function F ∈ O(Cn+1).
We necessarily have F (0) = 0 by homogeneity and continuity. From this we easily
conclude that F is a homogeneous polynomial of degree k .

On the other hand, it is easy to see that any homogeneous polynomial of degree k
in C[z0, . . . , zn] determines uniquely a holomorphic section of Hk . So we have

dimC Γ(CPn,O(Hk )) =

(
n + k

n

)
.

Exercise: Prove that when k < 0, Γ(CPn,O(Hk )) = {0}.
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The Picard group

Definition
The isomorphic classes of holomorphic line bundles over X is called the “Picard
group” of X , denoted by Pic(X ).

Pic(X ) is indeed a group: we define [Li ] · [L2] := [L1 ⊗ L2], then C is the identity
element and [L]−1 is just [L∗].

For CPn, we have Pic(CPn) � Z, and any holomorphic line bundle is isomorphic to
O(k) for some k ∈ Z. We shall prove this next week.

SHI, Yalong (Nanjing University) BICMR Complex Geometry 38 / 51



§1.3 Almost complex structure and ∂̄-operator
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From real tangent bundle to holomorphic tangent bundle
Recall: a n-dimensional complex manifold X is also a 2n-dimensional orientable
differential manifold. For p ∈ X , we can define a real tangent vector at p and the
corresponding real tangent space at p, T Rp X . In terms of coordinate chart
ϕ = (z1, . . . , zn), we have

T Rp X = SpanR
{
∂

∂xi

∣∣∣∣
p
,
∂

∂yi

∣∣∣∣
p

}n

i=1
.

We can give
∐

p∈X T Rp X a structure of R-vector bundle of rank 2n, called the “real
tangent bundle” of X , and denoted by T RX . Similarly, we can define the real
cotangent bundle T ∗RX .

There are two equivalent ways to get from this real tangent bundle to our previous
holomorphic tangent and cotangent bundles.——Cause of most of the troubles for
beginners !
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The “intrinsic” way
Recall that any real vector space V of dimension 2n can be regarded as C-vector
space of dimension n once we know what does it mean to multiply

√
−1 to an

element of V . This is equivalent to giving a R-linear map J : V → V such that
J2 := J ◦ J = −id . We call such a J a “complex structure” on V . In this case, V can
be regarded as a C-vector space by defining (α +

√
−1β)v := αv + βJv ,

∀α, β ∈ R,∀v ∈ V .

Definition
Let M be a real orientable differential manifold of dimension 2n. An almost complex
structure on M is a bundle map J : TM → TM satisfying J2 = −id .

A complex manifold X has a natural almost complex structure: just define
J ∂
∂xi

= ∂
∂yi
, J ∂

∂yi
= − ∂

∂xi
. Then (T Rp X , Jp) can be viewed as a C-vector space,

isomorphic to the holomorphic tangent space T h
p X , identifying ∂

∂xi
with ∂

∂zi
.
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Examples
If an almost complex structure is induced from a complex structure as above, we
will call it “integrable”.

Example
For S2, we can define J : TS2 → TS2 as follows: we identify TxS2 with the subspace
of R3:

TxS2 � {y ∈ R3| x · y = 0}.

Then we define Jx : TxS2 → TxS2 by

Jx (y) := x × y .

On can check that this is an integrable almost complex structure, induced by the
complex structure of S2 � CP1.
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An almost complex structure on S6

Example
For S6, we have a similar almost complex structure given by “wedge product” in R7.
Note that the wedge product in R3 can be defined as the product of purely
imaginary quaternions. To define this wedge product in R7, we shall use Cayley’s
octonions.

We write H � R4 the space of quaternions q = a + bi + cj + dk with a,b, c,d ∈ R,
satisfying i2 = j2 = k2 = −1 and ij = −ji = k , jk = −kj = i , and ki = −ik = j .
Then this multiplication is still associative but not commutative. For q ∈ H, we
define q̄ := a − bi − cj − dk , then |q|2 = qq̄.

Now we define the space of octonians, O � R8, as O := {x = (q1,q2)| q1,q2 ∈ H}.
The multiplication is defined by

(q1,q2)(q′1,q
′

2) := (q1q′1 − q̄′2q2,q′2q1 + q2q̄′1).
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Example (S6 continued)
We also define x̄ := (q̄1,−q2). Then we still have xx̄ = x · x = |x |2, here the · means
the usual inner product in R8. Note that this multiplication is even not associative.

We identify R7 as the space of purely imaginary octonians. If x , x ′ ∈ R7, we define
x × x ′ as the imaginary part of xx ′. Then one can check that xx = −|x |2,
x × x ′ = −x ′ × x , and (x × x ′) · x ′′ = x · (x ′ × x ′′).

From this, one can define an almost complex structure on S6 ⊂ R7 in a similar way
as S2: identify TxS6 with {y ∈ R7| x · y = 0}, then define

Jx (y) := x × y .

One can prove that this almost complex structure is not integrable. (Ref: Calabi:
Construction and properties of some 6-dimensional almost complex manifolds )
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A famous open problem

Remark
For S2n, it is known (Borel-Serre, Ehresmann, Wu) that there are no almost
complex structures unless n = 1,3. (Ref.: P. May’s Concise course in algebraic
topology). It is generally believed that there are no integrable almost complex
structures on S6, however S.T. Yau has a different conjecture saying that one can
make S6 into a complex manifold. This is still open.

Interested readers can visit the journal Differential Geometry and its Applications
Vol. 57, 2018 for a set of survey papers on this problem.
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The “extrinsic” way
The second approach also uses J. Let again V be a real vector space with complex
structure J. But now we simply complexify V to get VC := V ⊗R C. We also extend
J C-linearly to VC, again J2 = −id . There is a direct sum decomposition of
VC = V 1,0 ⊕ V 0,1, which are

√
−1 and −

√
−1 eigenspaces of J respectively. In fact

we have a very precise description of V 1,0 and V 0,1:

V 1,0 = {v −
√
−1Jv | v ∈ V }, V 0,1 = {v +

√
−1Jv | v ∈ V }.

It is direct to check that they are both C-linear subspaces of VC and V 0,1 = V 1,0.

Now apply this to (T RX , J) for a manifold with an almost complex structure: define
the complexified tangent bundle to be T CX := T RX ⊗R C and we have the
decomposition T CX = T 1,0X ⊕ T 0,1X , which are the

√
−1 and −

√
−1 eigenspaces of

J, respectively. When J is integrable, T 1,0X is locally generated by { ∂
∂zi
}ni=1, so we

can again identify it with T hX .
SHI, Yalong (Nanjing University) BICMR Complex Geometry 46 / 51



Complex differential forms
We define T ∗1,0X to be the subspace of T ∗CX := T ∗RX ⊗R C that annihilates T 0,1X .
And similarly define T ∗0,1X . Then

T ∗CX = T ∗1,0X ⊕ T ∗0,1X .

(When J is integrable, T ∗1,0X is locally generated by {dzi }1≤i≤n and T ∗0,1X is
generated by {dz̄i }1≤i≤n. )We define Λp,qT ∗X , the C∞ bundle of (p,q)-forms to be
the sub-bundle of Λp+qT ∗CX , generated by ΛpT ∗1,0X and ΛqT ∗0,1X . Then we have

ΛkT ∗CX =
k⊕

p=0

Λp,k−pT ∗X ,

and we denote the projection map of Λp+qT ∗CX onto Λp,qT ∗X by Πp,q. The set of
smooth sections of Λp,qT ∗X (or ΛkT ∗CX ) over an open set U is denoted by Ap,q(U)
(or Ak (U)).
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The operators ∂ and ∂̄

The exterior differential operator d extends C-linearly to d : Ak (U)→ Ak+1(U). We
define the operators

∂ := Πp+1,q ◦ d : Ap,q(U)→ Ap+1,q(U),

and
∂̄ := Πp,q+1 ◦ d : Ap,q(U)→ Ap,q+1(U).
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Integrable case
When J is integrable, a smooth section of Λp,qT ∗X over a coordinate open set U is
of the forms

η =
∑

1≤i1<···<ip≤n,1≤j1<···<jq≤n

ai1...ip ,̄j1...̄jq dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq ,

where ai1...ip ,̄j1...̄jq ∈ C∞(U;C). We write η =
∑
|I |=p,|J |=q aIJ̄dzI ∧ dz̄J ∈ Ap,q(U) for short.

In this case, we have

dη =
∑
I,J

daIJ̄ ∧ dzI ∧ dz̄J

=
∑
I,J

∂aIJ̄ ∧ dzI ∧ dz̄J +
∑
I,J

∂̄aIJ̄ ∧ dzI ∧ dz̄J ∈ Ap+1,q(U) ⊕ Ap,q+1(U).

So we always have d = ∂ + ∂̄ in the integrable case.
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The Newlander-Nirenberg Theorem

Theorem (Newlander-Nirenberg)
An almost complex structure is integrable if and only if d = ∂ + ∂̄ for any Ap,q(U)
(equivalently, [T 1,0X ,T 1,0X ] ⊂ T 1,0X ).

• Note that on 0-forms (smooth functions) d = ∂ + ∂̄ always holds. The first
non-trivial situation is on 1-forms. Since a k -forms are linear combinations of
wedge products of 1-forms, it also suffices to check d = ∂ + ∂̄ on 1-forms.

• Besides the original proof of Newlander-Nirenberg, there is another proof by
J.J. Kohn based on techniques for solving the “ ∂̄-equation”, which can be found
in Hörmander’s book.
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Dolbeault cohomology

In the following, we always assume X is a complex manifold. Now d = ∂ + ∂̄. Since
we always have d2 = 0, we have 0 = ∂2 + ∂̄2 + (∂∂̄ + ∂̄∂), acting on Ap,q(X ).
Comparing types, we get ∂2 = 0, ∂̄2 = 0, ∂∂̄ + ∂̄∂ = 0.
We can define from these identities several differential cochain complexes:

• The de Rham complex 0→ A0(X )
d
−→ A1(X )

d
−→ . . .

d
−→ A2n(X )→ 0. From this

we can define the de Rham cohomology (with coefficient C)
Hk

dR(X ,C) := Ker d |Ak (X)/dAk−1(X ). Its dimension bk is called the “k-th Betti
number” of X .

• The Dolbeault complex 0→ Ap,0(X )
∂̄
−→ Ap,1(X )

∂̄
−→ . . .

∂̄
−→ Ap,n(X )→ 0. We define

the Dolbeault cohomology Hp,q
∂̄

(X ) := Ker ∂̄|Ap,q(X)/∂̄Ap,q−1(X ). Its dimension is
denoted by hp,q. They are important invariants of the complex manifold.
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