
Lecture 5

Complex VectorBundles

☒



Outline
• Definition of complex vector bundles
• Examples
• RPA as a bundle & Dolbeault cohomology .
• Hermitian connections & curvature not enough time
• Chern classes Move ito the next lecture !

• Defy ( Complex vector bundle) A apex vector bundle of
rank r over a differentiable mfd ✗ is a differentiable mfd
E together with a smooth surjective map =L Is ✗ st .
① Y PEX ,

*
*
(p ) has the structure of r-dim vector space overc

Write Ep := a-
'

Lp) , which is,
called the fiber over p .

② F open cover I Ui ) of ✗ sit. Ti
"

(u;) is diffeomorphic

say via fi , to Ui ✗er &
or each overlap 0ing.

the induced map ✗in Uj)✗Ñ¥ÑinUj)✗Rr
can be identified at a smooth map Uinuj → Gur,c)The pair (Ui , Yi ) is called a local trivialization

.

9- •9J
' is called transition matrix

• Beef . (Holomorphic vector bundled The definition is similar
ads above

. just replace every bone
"

differentiable/smooth "
with " complex/holomorphic

"

.
E* . Make the definition precise

.

• Example .

① E = s
'

✗Cr. ✗=s ! Then E is a (trivial)
complex vector bundle of rank rover so .

But this is not a holomorphic vector bundle as

s
' is not a aptx mtd .



② Consider [o , i ] ✗ It together with
an element A c- GL ( r, C)

.

Then we can
construct a non-trivial cplx vector bundle over s

'

by identifying fixer w/ { I} ✗er via A .

This is a generalization of the Mobius band .
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③ bet E be a real vector bundle over a diff. mfd✗
Then one can " complexity

"

it using the following construct:
let 4 Wi ie;) } be a local trivialization of E .

But then bet EC : = L °i¥ where ~ is

given as : (✗
,
v1 ~ (J , W) for , v7 c- Oi ✗Cr

l '2in) c- uj ✗
iff

D= y & V= fi 09J
'
( w )

.

erer

•-
-←÷ :&

Ui Oj

✗



④ Let ✗ be a apex mfd of dim n .

Then TX is a real vector bundle of rank 2h

ooex ✗ .
We may lookat TXC

.

Then it's a eptx
v. b. of rank on over ✗ .

In each coordinate chart
,

say ( U ,@ ,
- - -

, -27 ) , let 2-i = ✗
i
c-Fyi .

Then TX Iu = U ✗ Spanpf ¥ , Fyi >
{ TH lo = U ✗ Span@{Ii ,Fyi> .

But remember that we have a apex structuref- onX :

I¥ = Fyi & JFyi = -⇐ i .

So TxHu = TX"! TXT! , where

{
TX"1=0×9>and -11¥ - Fi Igi ) > Espana <¥. >

TX
" "

span@ < ±¥. +tidyit > span,d¥i >
.

These TX
" / u patch together to a holomorphic v. b.

of rank n over ✗
.

Indeed
,
choose another chart

, say

CVRW '

,
-. .

. WY)
,
then one has

¥÷°Yz÷ Iwi .

Note that the map Un V→ GLC n.cc)

p- (°¥÷) cpl
is holomorphic .

The resulting bundle -1×40 is

called the holomorphic tangent bundle .

Rmk_ . Tf
"
is called

"

anti- holomorphic
"

vector bundle
.



⑤ The dual bundle of TX
"° is also

holomorphic . In fact , in @ , (Z'i-i 2-
"

1) ,

✗
"Flu = U ✗ Span@< dzi,

- - -

, dt">
.

did = 32¥. dwi . So the transition function is hot . as well .

⑥
.

Given a apex/hobo .

v. b. E
,
one can construct new

9th/ hole . v. b. using duality : * or v
warning !

These areonly

{ tensor product : ④ defined upto
isomorphism.

See

wedge product : AP & detthe
end

.

µ direct sum : ①
So in particular, AP④✗

"7)=: rP× is also hole .

⑦ The tautological lime bundle of ep
"

.

Define Oct) : = ftp.z-sc-cp"✗C
"" / 2- c- p }

.

e.× . prove that Otl ) Is ip
"

is a hobo
.
v. b.

C P , Z) (→ Toof rank 1 over epn .

bet Ou ) be the dual of Oct ) .

More generally , put 0 (k ) : = Oct) ④ . . . ④ Oct)
I{

0th) : = 0C-1)④;× O '
-1) .

⑧ bet ✗ bea qlx mfd . then put
Kx : = A

"

KTX")* ) = rn✗
In local coordinate CI, . . . ,z") , K×|u=U ✗ C. démodé .

Then dta-xdzn-de.IE#j)dwia---ndw " .

e.× . show that Kepn = 0C- n - 1) .



⑨The bundle of cp , q ) -forms : APftp.qc-fi.is
Locally it is given by :

☒it / u
= U ✗ Spanof

deadzJ| he iii.rip
jic . .

.cjq ?
This is oplx v. b. but usually not holomorphic .

• Defy . A smooth/hole section of a cplxln.to .
v.b

E over u c-✗ is a smooth/hobo map
S : U → E sit. Tinos = id 1

u .

E

⇒ys
×

* We say Sep)= 0 if Scp) C- Ep ? is zero
.

• If E is trivialized over U , so that Tico)EUx
them H sections over U is given by an er- valued
smooth/nolo . function on U .

So a section is a generalization of multivalued

functions on U .

• If U = ✗ , then a section called
"

global section!
If ✗ is apt & E-= ✗✗C.Then it hob .global
section of E is a hobo . function on✗& hence has

to

be a const. So this case is not interesting .



This is because the v. b- . is trivial
.

However if
we look at non-trivial hole .

v. b. over ✗
,
it is

possible that there exist non-trivial
hobo

.global
sections of E .

e-× . show that ' there exist notrivial global hot sections
of Ou) . What are they ?
How about OCR)

,
k> 0 ?

• Each cplx/ hot . v.b.E over ✗ can be naturally
iced wt a sheaf by putting
E- ( v ) : = } smooth/holo . sections s : U→ E)

.

For this reason , the spare of global sections of =L
is usually denoted as TCX

,
E) or TT IX. E)

.

e.× . check that the above def . indeed gives a sheaf
• Let E be a cplx/ holo . v. b. over✗.

Let Us✗ be an open .

Say rk E-- r . We say smooth/wa. sections 5 , - . -

.Sr : U→ E

is a smooth/holo - frame if seeps, . . -

, srcp> is linearly iudpdin Ep
for t p c- U . Using this frame we can identify a-'lv1 IUxcr
So in particular a frame gives rise to a local trivialization .
Of course , conversely,t local trivialization gives a local frame ofE.
Using this frame ,t section S : U→ E can be written as

5 = If i s; where fi c- 0(Uac) or ① (b) .

B• Frames can help us do computations locally .



• We end this lecture by introducing the Dadbeaut
cohomology . Using the J - operator , one has a complex
0→ TEX

,
) E) TIX ,

•
) -9 . . . → TCX

, A
""
)→ o

.

where each T CX ,

*
) denotes the space of global smooth Cp forms.

Put HP, of (X) : =
Ker C J : Thx, #%) → Thx , APG"))

→ 3m ( J : Tex ,
Pitt) → Thx, APÑ)

(Pif)-Dolbeaut cohomology
.

Note that
☐→ sE×%AÉ% AP .

' I . . .

is a soft resolution of RP✗ so one has

titlx
,
RI 7 I 4"% (X)

Rmd
. HTX ,SI ) = Ker (J : Tex, 9→ FIX, A

" 't)
= 1 global hobo. section of RI Y

.

• In general , for a hobo .
v. b. E , one can naturally

think of it as a differentiable cplx v.b. (make it
"

soft
"

)
which we denote as E .

Then one has soft resolution ofE :

•→ E → { % A'④ E E> A
"

④ E → .
. .

* Here -2 operator is well-defined using locally the
hobo . frames

of =L ( Explain this )
Then by sheaf cohomology theory , one has

Hot (✗ , E) ±
Kerli :A""☒E → A

"P"④E)

JÉAEÉÉ) .

In particular tux,E) = § hobo . global sections of E f
.



:# EH
•Def . let Tie : E-→ ✗ & Tle : F-→✗ be two

qdx/ hobo . v.b. A vector bundle homomorphic from
E to F is a smooth/hobo . map f : E→ F S.t.
ME = theof & the induced map px : E-✗ → f-✗ is

linear

sit. nkliecxi ) is constant in ✗ .
Two vector bundles are isomorphic of 4 isie .

Bijection automatically implies that yt is also a bundle homo.
since in tahyfoeod trivialization 410 is of the form

common

Hu : Ux → Ux er

⇐ , v1 *→ tx
,
Aix> V)

sit . A : u → Gur . C)
✗ I→ Aix)

Then At : u- GLar
. e) is also holomorphic in ✗

✗ 1-7 At Cx)
So 4-1 is also holon

.

bundle morphism from F to E
.

* Given a hobo
.
v. b. let { Uinuj, gij} be its

transition functions . One can construct airmen
"

holo . v. b. E-by gluing Uixcr via gij .
Then
E E É .


