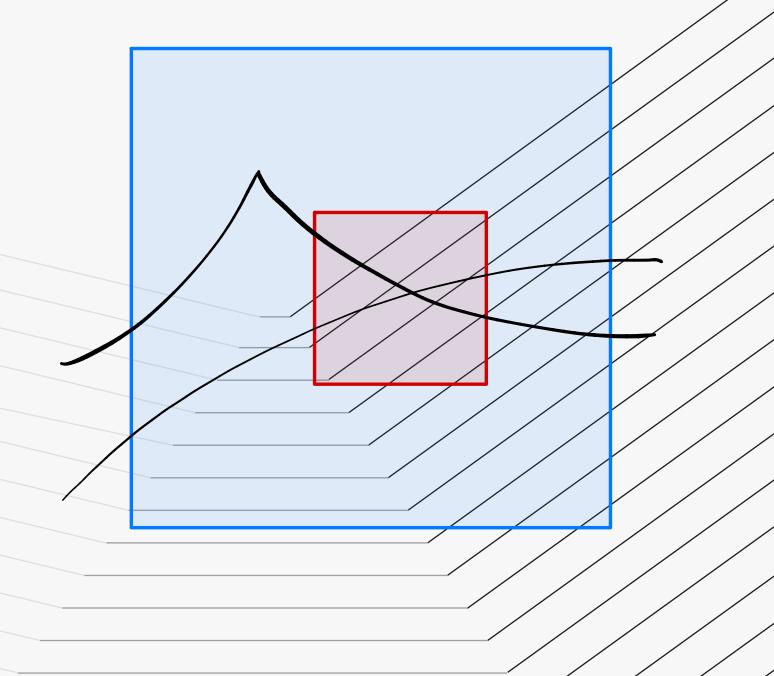
Lecture 2.
Presheaf & Sheaf.



Dutline · Presheaf, germ and stalk. · Sheafication. Sheaf homomorphism

Sheaf homomorphism

sunjective

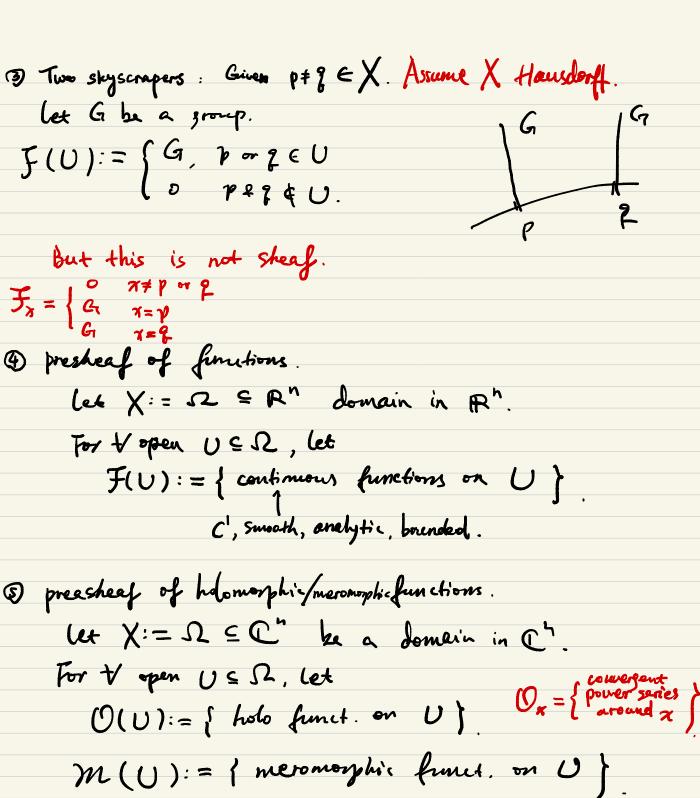
isomorphism

exact sequence · Examples. · Throughout, X will be a topological space. · Motivation: consider open sets UEVER". f smooth on V, then certainly
f is smooth on V.

J is not smooth on V but it is
smooth on 11 So the information of smooth functions on U is richer than on V · Def (Presheaf of abelian group/ring/module) A presheaf F over X essociates each open USX a group/ring/module F(U) s.t. the following holds: ¬ For ∀ VSU, ∃ a homomorphism $r_{v}^{o}: \mathcal{F}(v) \rightarrow \mathcal{F}(v)$ s.t. ru = id. 约定: 子(中) = 0. G For & WEVEU one has rv orv = rw. For $\forall \phi \neq V \subseteq U$, let $f_{v}^{u} = id$

 $\mathcal{F}(U) := \begin{cases} G, & p \in U \\ 0, & p \notin U \end{cases}$ $\mathcal{F}_{x} = \begin{cases} 0, & x \neq p \\ G, & x \neq p \end{cases}$

@ Skyscraper: let p & X. Assume X Housdooff. let G be a group.



$$\mathcal{M}(U):= \{ \text{ meromorphic funct. on } U \}$$

$$()^*(U) := [holomorphic funct. w/ no zero on U]$$
 $()^*(U) := [bounded holomorphic function on U]$

$$I(U) := \begin{cases} O(U), & 0 \neq U \\ \{f \in O(U) | f(0) = 0\}, & 0 \neq U \end{cases}$$

I(U) is an ideal of
$$O(U)$$
. $I_x = \{f \in O_x | f(0) \ge 0\}$

- · Def A sheef I is a presheaf which satisfies the following two additional axioms
 - (A) If for s, t ∈ f(U) I open cover U=UU; s.t. Slu; = tlu; for \ield tell then S=t.
 - (B) For open comer $U = U \cup U : & Si \in \mathcal{F}(U_i)$ 3 Se f(U) st. S/U; = 5: 4:
 - (A) means that I section is uniquely determined by its local information
 - (B) says that I compatible local Sections glues together to a global section.

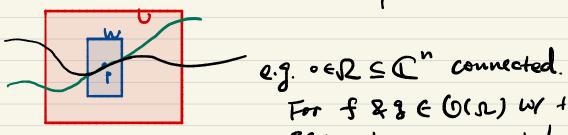
In the above examples, check that 3 two-dyscrapes is not a sheaf.

1 B is not a steef

· Gern & Stalk. Let J be a presheaf.

In other words, a germ et p is en equivalence class of sections: { sef(U) reU} where

SU~ SV => = = SWEUNV F.t. SUW = SV W.



For f & g & O(sc) W/ the same

Jerm at 0, one must have f = g on Ω . In general, $f \in O(U)$ & $g \in O(V)$ have the same serm at $O \in U \cap V$ iff f = g have the same power series expansion at o.

 $F_p := \{germ at p\}$ This is called the stalk of F at p.

- Note that for \forall open \cup containing p, there is a natural map $f(\cup) \longrightarrow f_p$ $f(\cup) \longrightarrow f_p$ f(
- · Exp () = { convergent power series around o }.

 @Compute the stack of all the previous examples.
- Sheafication

 Let Jo be a presheaf. Then the sheafication of Jo, denoted by Jot is given by $J^{+}(U) := \left\{ \begin{array}{c} \bigcup_{S(p)} \left| \text{ for } \forall \gamma \in U \text{ } \ni \gamma \in V \in U \right| \\ \text{Res}(y) \mid \text{Res}(y)$

Tron two skyscraper

(U.2) (V.3) cannot

be glued in $f_1(U \cup V)$ (U.2) & (V.3) give rise

to a section in $f_1(U \cup V)$

- In what follows, whenever we meet a presheaf, we will replace it by its sheefication, i.e., we will only deal w/ shewes in the rest of this course.
- Sheaf morphisms. Let Ji & G be two showes

 We say & is a sheaf morphism from J to G

 if for & open U, I morphism

 $4u: \mathcal{J}(U) \rightarrow G_1(U)$ Sit. the following diagram commutes for $\forall V \subseteq U$

$$\begin{array}{cccc}
\mathcal{F}(V) & \xrightarrow{\varphi_0} & \mathcal{G}(V) \\
\uparrow & \downarrow & \uparrow & \downarrow \\
\mathcal{F}(V) & \xrightarrow{\varphi_V} & \mathcal{G}(V)
\end{array}$$

We cell Ji is a subsheaf of G if his inclusion for all

- · Griven a sheaf morphism $\varphi: \mathcal{J}_1 \longrightarrow \mathcal{G}_1$
 - D Kery is given by Kery (U):= Ker Yu.
 - e.x. kery is indeed a subsheef of J.
 - 1) Imy is the sheafication of the presheaf given by [Im Pu]
- · Def 1) We say v: f -> G injective if Kery = 0.
 - ② We say 4: J→G sujective if G/Imp =0.

TFAE
TFAE Prop: Dy: Ji - G is injective
⊕ q _U : J ₁ (U) → G(U) is injective for U
B $y_{\times}: \mathcal{F}_{\times} \longrightarrow \mathcal{G}_{\times}$ is injective for $\forall x \in X$.
· Prop: TFAE
D φ. Jr -7 G is somjective
3 For & TEG(U),] open cover U=UUi & sie & (Ui) st. Tui = Pui(si).
& sie & (Ui) st. t Ui = Pui(si).
(3) $\varphi: F_{\times} \to G_{\times}$ is surjective.
· We end this becture by defining exactness.
let Jr, G, Q be sheaves.
Then $0 \rightarrow J_1 \stackrel{\sim}{\rightarrow} G \stackrel{\beta}{\rightarrow} Q \rightarrow 0$ is called
ar short exact sequence if
D & is injective
@ p is surjective
3 Kerb = Imd (as sheaves)
Prop. 0 -> I => G -> Q -> 0 is exact iff
$0 \to \mathcal{F}_{\chi} \xrightarrow{d_{\chi}} G_{\chi} \xrightarrow{\beta_{\chi}} Q \to 0$ is exact for \forall_{χ} .

* ***	th: coherent sheaves.
	1