FROM MODULAR FORMS TO SHIMURA VARIETIES: AN INTRODUCTION

The purpose of this week-long program is to discuss basics of Shimura varieties, starting from more familiar concepts such as modular forms and modular curves, passing through their automorphic interpretations, to the concept of Shimura varieties. The program will consist of ten lectures, each accompanied with a set of exercises for discussion and for the students to better absorb the new material.

Dates: July 26–30, 2021.

Place: BICMR, Peking University; room to be decided

A typical day of the program is as follows:

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30–11:00</td>
<td>Lecture</td>
</tr>
<tr>
<td>11:15–12:15</td>
<td>Problem Session</td>
</tr>
<tr>
<td>12:30–13:45</td>
<td>Lunch</td>
</tr>
<tr>
<td>14:00–15:30</td>
<td>Lecture</td>
</tr>
<tr>
<td>15:45–16:45</td>
<td>Problem Session</td>
</tr>
</tbody>
</table>

A tentative plan for the ten lectures is as follows:

Lecture 1 Adelic interpretation modular forms and modular curves
Lecture 2 Automorphic forms and automorphic representations
Lecture 3 \((g, K)\)-modules and Matsushima formula for locally symmetric spaces
Lecture 4 Geometric modular forms, Kodaira–Spencer isomorphism, Eichler–Shimura isomorphism
Lecture 5 Compactification of modular curves
Lecture 6 Galois representations associated to modular forms
Lecture 7 Siegel modular varieties, Shimura varieties of PEL type
Lecture 8 General theory of Shimura varieties
Lecture 9 Dual BGG complex and Hodge theory
Lecture 10 Cohomology of automorphic vector bundles and étale cohomology of Shimura varieties

Prerequisite: Modular forms, Algebraic Number Theory, and Algebraic Geometry. (For étale cohomology, it does not hurt to view it as usual topological cohomology together with a Galois action.)