Classical \rightarrow spectral representability theorem: Thm SAG 18.10.2: Let X: CAlg^{Cn} \rightarrow S be a functor. Then X is representable by a spectral DM stack if and only if it is nilcomplete, infinitesimally cohosive, admits a cotangent complex, and the functor $X|_{CAlg^{O}}$ is representable by a classical DM stack.

Heuristic principle: Spectral/Derived algebraic geometry = classical algebraic geometry + deformation theory.

Def: A morphism $f: X \to Y$ of formal spectral DM stacks is a formal thickening if (1) The induced map $X^{red} \to Y^{red}$ is an equivalence (2) It is representable by closed immersions which are latp. Representability of the de Rham space by tormal thickenings: SAG18.2.3.1: X, Y: CAlg^{on} \rightarrow S functors, $f: X \rightarrow Y$. Assume (o) X is representable by a formal spectral DM stack H. (i) Y is nilcomplete, infinitesimally cohesive and admits a cotangent complex. (i) L_{X/Y} $\in QGh(X)$ is 1-connective and almost perfect (i) Y is a sheaf for the étale topology. Then the relative de Rham space $(X/Y)_{dR}$ is representable by a formal thickening of X.

cg field K, Spec
$$K \rightarrow Y$$

Here the theorem applies only if this is a closed point.
We need a more technical version in order to drop the 1-connectivity assump.
Existence of formal charts (SAG 18.2.5.1). Assume
(0) $X = Sp \in t B$, $B \in CAlg^{Cn}$
(1) Same as before
(2) Y is formally complete along f, i.e. $\forall R \in CAlg^{Cn}$
 $\operatorname{colim} X(R/I) \xrightarrow{\sim} \operatorname{colim} Y(R/I)$
 $\operatorname{all}^{I}_{nilpotent iduals of To(R)}$
(3) We are given a morphism $\alpha: F \rightarrow LX/Y$ in QCoh(X) where F is perfect
of tor-amplitude ≤ 0 , cofib(α) is 1-connective and almost perfect.

Then f factors as
$$X \xrightarrow{f'} \bigcup \xrightarrow{f''} Y$$
 where

•
$$U \simeq Spf(A)$$
, A adic E_{∞} - ring
• f' is a formal thickening
• $\alpha \simeq (f'^*L_{U/Y} \rightarrow L_{X/Y})$

5. Artin-Lurie representability theorem
Thm SAG18.3.0.1: X: CAlg^{cn} S functor, f: X
$$\rightarrow$$
 Spec R, where R is a
noethurian Experiment and $\pi_0 R$ is a Grothendieck ring. Let $n \ge 0$.
 $e.g. f.g.$ rings
Then X is representable by a spectral DM n-stack locally of finite
presentation over R if and only if the following hold:
(1) V discrete comm ring A, the space $\chi(A)$ is n-truncated.
(2) X is a sheaf for the étale topology
(3) X is nilcomplete, infinitesimally cohesive and integrable.
(4) X admits a connective cotangent complex Lx
(5) f is locally almost of finite presentation.

Main technical tool: Popescu's smoothing theorem in commutative algebra. Recall: A map $\phi: A \rightarrow B$ of noethanian comm rings is called geometrically regular if it is flat, and V prime ideal $p \in A$, V finite extension K of the residue field K(p), the comm ring $K \otimes B$ is regular. A comm ring A is a Grothandieck ring if it is noethanian, and V prime ideal $p \in A$, the map $A_p \rightarrow \widehat{A}_p$ is geometrically regular.

Popescu's smoothing theorem:
$$\Phi: A \rightarrow B$$
 map of noetherian rings. TFAE:
(1) Φ is geometrically regular
(2) B can be realized as a filter colimit of smooth A-algebras.
Four major steps in the proof of Artin-Lurie representability theorem:
Step 1: Existence of formal charts (Schlessinger's criterion)
Step 2: Formal charts \longrightarrow approximately étale charts
Step 3: Approximately étale charts \longrightarrow étale charts
Step 4: Conclude by induction on n.
Step 2: SAG 16.3.1.1: X, Y: CAlg^{CR} \rightarrow S functors, $g: X \rightarrow Y$, $Y =$ Spec R
Assume: (1) X is infinitesimally coluive, nilcomplete, integrable
(2) g is locally almost of finite presentation
(3) q admits a cotangent complex $L_{X/Y}$.
Let f: Spec K \rightarrow X, K finitely generated field extension of some residue field
of R. Then f factors as Spec K \rightarrow Spec B \rightarrow X where B is aff over R,
and π , (K § Lspec B/X) = 0.
Idea of proof: Let $\hat{X} := (Spec K/X)_{dR}$
Choole fiber seq $\mathcal{F} \stackrel{\sim}{\longrightarrow} L_{Spec K/X} \stackrel{\sim}{\longrightarrow} G$ in Mod_K.
where \mathcal{F} is perfect of Ter-amplitude ≤ 0 , and G is 1-connective.
Thm of \exists of formal charts \Rightarrow factorization Spec K $\stackrel{\sim}{\longrightarrow} (J = Spec A) \stackrel{\sim}{\longrightarrow} ($

X is integrable and nilcomplete \longrightarrow Spec $K \longrightarrow$ Spec $A \longrightarrow X$ Then we use Popescu's smoothing theorem to approximate A by an afp \mathbb{E}_{∞} -ring B.

Step 3: SAG 18:3.2.1: Same assumptions as in Step 2 + assume
$$L_{X/Y}$$
 connective.
Given f: Spec $A \rightarrow X$ $A \in CAlg^{cn}$, p prime ideal of $\pi_0 A$, K res field.
Then $\exists \in tale A$ -algebra A' , prime ideal p' of A' lying over p st.
Spec $A' \longrightarrow X$ factors as Spec $A' \longrightarrow$ Spec $B \longrightarrow X$ where B is alp over R,
and $L_{Spoc B/X}$ vanishus.
Idea of proof: Apply Step 2 to Spec $K \longrightarrow$ Spec $A \longrightarrow X$

where B is a tp over R, and
$$\pi_1(K \otimes L_{Spec}, B/X) = 0$$
.
modify B $L_{Spec}B/X$ 2-connective
modify B $L_{Spec}B/X \simeq 0$

Using Popescu's smoothing theorem, we find Etale A-algebra A' with $K \overset{\otimes}{A} A' \neq 0$, s.t. Spec $A' \longrightarrow X$ factors through B.

Now for n=-2: (1'): I discrete comm ring A, X(A) ~ Map (Algen (R,A). Use the classical -> spectral representability theorem. $n \ge -1$: Let $X_0 = \coprod$ all Spec $B_a \longrightarrow X$ st. B_a atp/R $L_{Spec B_a/X} = 0$. X. Eech nerve of $X_0 \rightarrow X_1$. Induction hypothesis => Each Xm is representable by a spectral DM stack. $L_{X_0/X} \simeq 0 \Rightarrow all \ L_{X_m/X_m} \simeq 0 \Rightarrow all \ X_m \rightarrow X_{m'}$ étale \Rightarrow colimit $|X_0|$ is a spectral DM stack. To show $|X_{\bullet}| \simeq X$, it suffices to show that $X_{0} \rightarrow X$ is an effective epi of étale sheaves, which follows from Step 3. 6. Generalization of the representability theorem to Artin stacks. Spectral representability theorem for Artin stacks: $X: CAlg \longrightarrow S$ functor, $f: X \longrightarrow Spec R$, where R is a noetherian E_{00} -ring and $\pi_0 R$ is a Grothendieck ring. Let $n \ge 0$. Then X is representable by a spectral Artin N-stack locally of finite presentation over R if and only if the following hold: (1) V discrete comm ring A, the space X(A) is n-truncated. (2) X is a sheaf for the Etale topology (3) X is nilcomplete, infinitesimally cohesive and integrable. (4) X admits a (almost-connective) cotangent complex Lx (5) f is locally almost of finite presentation.

6. Applications of the representability theorem 6.1 Mapping stack $X, Y, Z: CAlg^{cn} \rightarrow S$ functors $X \xrightarrow{Y}_{Z}$

We have a functor $\underline{Map}_{/2}(X, Y) \in Fan(CAlg^{cn}, S)_{/2}$ equipped with an evaluation map $e: X_{\mathcal{Z}} \underbrace{Map}_{/2}(X, Y) \rightarrow Y$ with the following universal property: $\forall W \in Fan(CAlg^{cn}, S)_{\mathcal{Z}}$, composition with e induces a homot equiv $Map(W, \underbrace{Map}_{/2}(X, Y)) \longrightarrow Map(Wx_{\mathcal{Z}}X, Y)$ SAG 19.1.6.1: Assume f is representable, proper, flat, latp, g is representable, quasi-compact, quasi-separated, then $\underbrace{Map}_{/2}(X, Y) \longrightarrow Z$ is representable.

6.2: QCoh Perf Vect Pic