Rem: Every spectral DM-stack X determines a functor of points $h_X: CAl_{\alpha}^{cn} \longrightarrow S$

 $h_X: CAlg^{cn} \longrightarrow S$ $R \longmapsto Map_{SpDM} (Spét R, M).$

It makes sense to consider QCoh(X) for any functor $X: CAlg^{cn} \rightarrow S$. An object $F \in QCoh(X)$ can be viewed as a rule which assigns to each point $\eta \in X(R)$ an R-module $F(\eta)$, which depends functorially an R in the following sense:

if $\phi: R \to R'$ is a map in $(Alg^{(n)}, and \eta' denote the image of <math>\eta$ in X(R'), then we have a canonical equivalence $R' \otimes \mathcal{F}(\eta) \cong \mathcal{F}(\eta')$.

See SAG 6.2 for the precise categorical formulation.

VI. Representability theorems

Idea: Derived stacks arise naturally in moduli problems via the representability theorem.

1. Global cotangent complexes

 $X \infty$ -topos. Applying the abstract cotangent complex formalism in HA, we obtain an absolute cotangent complex functor $L: Shv_{CAlg}(X) \longrightarrow Mod(Shv_s(X))$. $X = (X, O_X)$ spectrally ringed ∞ -topos

The absolute cotangent complex of X is $L_X := L_{\mathcal{O}_X} \in Mod_{\mathcal{O}_X}$.

 $\phi: X = (X, \mathcal{O}_X) \longrightarrow Y = (Y, \mathcal{O}_Y)$ morphism of spectrally ringed ∞ -topoi. The relative cotangent complex of ϕ is $L_{X/Y} := \text{cofib} (\phi^* L_Y \to L_X)$.

SAG17.1.2: $\phi: X \to Y$ morphism of non-connective spectral DM stacks. Then $L_{X/Y}$ is a quasi-coherent sheaf on X.

Cotangent complexes make sense also for general functors from CAIgcn to 5: Let X: CAIgcn \rightarrow 5 be a functor. Let Modern denote the operation of triples (A, η, M) , where $A \in CAIgcn$, $\eta \in X(A)$, $M \in Mod_A^{cn}$.

Given a natural transformation $\alpha: X \to Y$ between functors $X.Y: CAlg^{cn} \to S$. Consider the functor $F: Mod_{cn}^X \to S$

 $(A, \eta, M) \mapsto fib \left(X(A \oplus M) \longrightarrow X(A) \times Y(A \oplus M) \right)$ Cover the point determined by η

We say that α admits a cotangent complex if there is $L_{X/Y} \in Q(oh(X)) \approx t$. $\forall A \in CAlg^{cn}$, $\eta \in X(A)$, the induced functor $F_{\eta} : Mod_A^{cn} \to \Im$ is corepresented by $M_{\eta} := \eta^* L_{X/Y}$, which is almost connective (i.e. n-connective for n < 0).

- 2. Necessary conditions for the representability theorem
- 2.1 Cohesive functor

Def: X: CAlgon - I functor. X is cohesive if V pullback diagram

$$A' \longrightarrow A$$

$$\downarrow \qquad \qquad \downarrow$$

$$B' \longrightarrow B$$

in (Algen for which the maps $\pi_0 A \to \pi_0 B$ and $\pi_0 B' \to \pi_0 B$ are surjective, the induced diagram $\chi(A') \to \chi(A)$

$$X(B') \longrightarrow X(B)$$

is a pullback in S.

SAG 16.1.3.1: Locally spectrally ringed topos --- cohesive functor In particular, spectral DM stack --- cohesive functor.

Def: A functor $X: CAlg^{Cn} \rightarrow S$ is infinitesimally cohesive if in the above definition, we further assume that the surjections $\pi_*A \rightarrow \pi_*B$ and $\pi_*B' \rightarrow \pi_*B$ have nilpotent ideals.

Remark: $X: CAlg^{cn} \rightarrow S$, $R \in CAlg^{cn}$, \widetilde{R} square-zero extension of R by a connection R-module M given by a derivation $d: L_R \rightarrow M[1]$. We have a commutative diag of spaces $X(\widetilde{R}) \longrightarrow X(R)$

 $\eta \in X(R) \longrightarrow X(R \oplus M[1])$

Suppose X is infinitesimally cohesive and admits a cotangent complex.

let & denote the composite map n*Lx -> LR -> M[1].

Then y can be lifted to a point of $X(\hat{R})$ if and only if $\nu=0$ in $Ext^1_R(\gamma^*L_X, M)$.

2.2 Nilcomplete functors

Def: A functor X: CAlgon -> S is nil complete if $\forall R \in CAlg^{cn}$,

 $X(R) \longrightarrow \lim X(T \le n R)$ is a homotopy equivalence.

SAG17.3.2.3: Connective locally spectrally ringed ex-topos --> nilcomplete functor
In particular, spectral DM stacks ---> nilcomplete functor.

2.3 Integrable functor

Def: A functor X: CAIg^{CN} \rightarrow S is integrable if for any local noetherian E_{∞} -ring A which is complete wrt its maximal ideal $m \in \pi_{\infty}A$, the inclusion $Spf A \longrightarrow Sp\acute{e}t A$ induces a homotopy equivalence $X(A) \supseteq Map(Sp\acute{e}t A, X) \xrightarrow{\sim} Map(Spf A, X)$.

Def: Let $n \ge 0$. A spectral DM n-stack is a spectral DM stack s.t. \forall comm ring R, the mapping space Mapspom (Spét R, X) is n-truncated. A spectral algebraic space is a spectral DM 0-stack.

SAG17.3.4.2: Spectral DM n-stack mas integrable functor.

24 finiteness conditions on morphisms

Recall: A morphism $\phi: A \rightarrow B$ of connective E_{∞} -rings is locally of finite presentation if the functor $C \mapsto Map_{CAlga}(B,C)$ commutes with filtered colimits. It is almost of finite presentation if $C \mapsto Map_{CAlga}(B,C)$ preserves filtered colimits when restricted to n-truncated connective A-algebras for each $n \ge 0$.

Def: A morphism $f: X \to Y$ of spectral DM stacks is locally (resp. locally almost) of finite presentation if for every commutative diagram.

Spet B $\stackrel{\text{Et}}{=}$ X

the Enring B is locally (resp. almost) of finite presentation over A.

For the representability theorem, we need to generalize the above definition to functors.

Def: X, Y: (Alg cn → S functors, f: X → Y

It is locally of finite presentation if for any filtered colimit $A = colim A_a$ of connective E_{∞} -rings, the canonical map $colim \times (A_a) \rightarrow \times (A) \times \omega \lim_{\gamma \mid A \rangle} (A_a)$ is a homotopy equiv.

It is locally almost of finite presentation if in the above definition, we restrict to filtered colimit of m-truncated connective E_{-} rings for every $m \ge 0$.

SAG 17.4.2: $X, Y: CAlg^{cn} \rightarrow \mathcal{S}$. $f: X \rightarrow Y$. Assume f has a cotangent complex. If f is locally (resp. locally almost) of finite presentation, then $L_{X/Y}$ is perfect (almost perfect). The converse holds with an additional assumption on π_0

3. Representability theorem: from classical to spectral algebraic geometry.

Thm SAG 18.10.2: Let $X: CAlg^{Cn} \rightarrow S$ be a functor. Then X is representable by a spectral DM stack if and only if it is nilcomplete, infinitesimally cohosive, admits a cotangent complex, and the functor $X|_{CAlg}$ is representable by a classical DM stack.

Heuristic principle:

Spectral/Derived algebraic geometry = classical algebraic geometry + deformation throny.

Idea of proof:

Step 1: We prove that X is a sheaf not the Etale topology Induction on $X/_{CAlg} \le n$.

Step 2: Approximation to étale morphisms:

Suppose we have a spectral DM stack $Y_0 = (Y_0, U_0)$ and a map $f_0: Y_0 \to X$ for which the relative cotangent complex $L_{Y_0/X}$ is 2-connective. Then

fo factors as a composition

Yo & Y x

where f is étale, Y = (Y, O) is a spectral DM stock, and g is induced by a 1-connective map $O \rightarrow O_0$.

Construct O as a limit of a tower of CAlg-valued sheaves on Y ... $\rightarrow O_2 \rightarrow O_1 \rightarrow O_0$

where each $Y_k := (Y, \mathcal{O}_k)$ has a map $f_k : Y_k \to X$ such that the relative cotangent complex $L_{Y_i/X}$ is (2^k+1) -connective.

Step 3: Establish the assumption of Step 2 via a left Kan extension.