2.2 Geometries

- Idea: In order to make sense of "Locally ringed", we need an extra structure on the oo-category C.
- Def: S ∞-category, an admissibility structure on G consists of the following data:
- (1) A subcategory S^{ad} ⊂ G spanned by all the objects, and admissible morphisms satisfying the following conditions:
 (i) Pullback of admissible morphism always exists, and is again admissible ⁽ⁱⁱ⁾ x + y y g g, h admissible ⇒ f admissible
 (iii) Retract of admissible morphism is admissible.
 (2) A Grothendieck topology on G, which is generated by admissible morphisms in the following sense: any covering sieve G^(o) ⊂ G/X contains a covering.
- sieve which is generated by a collection of admissible morphisms $\{U_{\alpha} \rightarrow X\}$.
- Def: A geometry consists of the following data: (1) An 00-Category G which admits finite limits and is idempotent complete. (2) An admissibility structure on G.
- G, G'geometries. A functor $f: G \rightarrow G'$ is a transformation of geometries if it preserves finite limits, admissible morphisms and admissible coverings.

Def: G geometry, χ on-topos. A G-structure on χ is a left exact functor $O: G \rightarrow \chi$ s.t. for every admissible covering $\{U_a \rightarrow U\}$ in G, the induced map $\coprod_{\alpha} \mathcal{O}(U_{\alpha}) \longrightarrow \mathcal{O}(X)$ is an effective epimorphism in \mathcal{X} . the Čech nerve is a colimit diagram We call the pair (X, O) a G-structured topos. Denote $Str_{g}(\chi) \subset Fun(G, \chi)$ spanned by G-structures on χ . Given $U, U: G \rightarrow X$ G-structures, a natural transformation $\alpha: U \rightarrow U'$ is a local transformation of G-structures if for every admissible morphism

Denote $\operatorname{Str}_{S}^{\operatorname{loc}}(X) \subset \operatorname{Str}_{G}(X)$ spanned by local transformations of G-structure A morphism $(X, \mathcal{O}_X) \rightarrow (Y, \mathcal{O}_Y)$ of G-structured topoi consists of a geometric morphism $f^*: Y \rightarrow X$ of ∞ -topoi and a morphism $\alpha: f^* \mathcal{O}_Y \rightarrow \mathcal{O}_X$ in $\operatorname{Str}_{S}^{\operatorname{loc}}(X)$. We have an ∞ -category of G-structured topoi, denoted by $\operatorname{Lop}(G)^{\operatorname{op}}$. A geometry G is discrete if the admissible morphisms are precisely the equivalences, and the Grothendieck topology on G is trivial, i.e. a sieve $G_{IX}^{\circ} \subset G_{IX}$ on an object $X \in G$ is a covering sieve if and only if $S_{IX}^{\circ} = G_{IX}$.

Example: Let
$$G_{2ar} := \{affine schumy of finite type over Z\}$$

 $= \{finitely generated commutative rings\}^{op}$
We endow it with a structure of geometry as follows:
(1) A morphism Spec A \rightarrow Spec B is admissible if and only if it induces
an isomorphism $B[\frac{1}{b}] \xrightarrow{\sim} A$ for some $b \in B$.
(2) A collection of admissible morphisms $\{Spec A[\frac{1}{d_i}] \rightarrow Spec A\}$ is a
covering if and only if $\{a_i\} \subset A$ generates the unit ideal in A.
X topological space, $\chi := Sh_V(X) \propto$ -category of sheaves of spaces on X
Then G_{2ar} structures on X are exactly sheaves of commutative rings O
on the topological space X which are local.

2.3 Spectrum functor Recall: A comm ring, the affine scheme Spec A is characterized by the following universal property: For every locally ringed space (X, O_X) , we have a canonical bijection Hom Locally Ringed Space $((X, O_X), Spec A) \xrightarrow{\sim}$ Hom CommRing $(A, \Gamma(X, O_X))$ \cong Hom Ringed Space $((X, O_X), Spec A) \xrightarrow{\sim}$ Hom Ringed Space $((X, O_X), (*, A))$ Note that Locally Ringed Space \subseteq ¹ Top $(G_{Zar})^{op}$ Ringed Space full ¹ Top $(G_{Zar}, o)^{op}$ $\stackrel{\leftarrow}{}$ the underlying discrete geometry.

Theorem V2.1.1: Let $f: \mathcal{G} \to \mathcal{G}'$ be a transformation of geometries. Then the induced functor $L_{Top}(\mathcal{G}') \longrightarrow L_{Top}(\mathcal{G})$ admits a left adjoint. We denote the left adjoint by $Spec_{\mathcal{G}}^{\mathcal{G}'}$, and call it the relative spectrum functor associated to f.

Let G be a geometry, and G_o the associated discrete geometry.
Let Spec^G denote the composition
Ind (G^{op})
$$\simeq$$
 Str_G(S) $\longrightarrow L^{T}$ Top(G_o) $\xrightarrow{Spec_{G_o}^S} L^{T}$ Top(G)

We call Spec^G the absolute spectrum functor associated to G. Remark: 1) The analytication functor from algebraic geometry to analytic geometry is an example of the relative spectrum functor. 2) Consider the functor ${}^{L}Top(G) \times G \longrightarrow S$

$$((\chi, \mathcal{O}), \mathcal{O}) \mapsto Mag_{\chi}(1_{\chi}, \mathcal{O}(\mathcal{O}))$$

It induces a functor ${}^{L}Top(G) \longrightarrow Fun(G, S)$, which factors through $Fun^{lex}(G, S) \cong Ind(G^{op})$. We let $\Gamma_{G}: {}^{L}Top(G) \longrightarrow Ind(G^{op})$, and call it the G-structured global sections functor. By construction, $Spec^{G}: Ind(G^{op}) \longrightarrow {}^{L}Top(G)$ is left adjoint to Γ_{G} . Rem: We also have an explicite description of $Spec^{G}X$ for any $X \in Pro(G)$ 2.4 Structured schemes

Def: G geometry. A morphism $(\chi, U_{\chi}) \rightarrow (Y, U_{Y})$ in $L^{T}op(G)$ is étale if 1) The underlying geometric morphism $f^*: X \rightarrow Y$ of ∞ - topoi is étale 2) The induced map $f^*\mathcal{O}_X \longrightarrow \mathcal{O}_Y$ is an equivalence in $Str_g(Y)$. Example: If U is an object of X, let $O_X|_U$ denote the G-structure on $\chi_{\prime \cup}$ given by $G \xrightarrow{\cup_{\chi}} \chi \xrightarrow{\pi^*} \chi_{\prime \cup}$. Then $(X, O_X) \longrightarrow (X/U, O_X|U)$ is an Etale morphism in $L_{Top}(G)$. Def: S geometry. A G-structured topos (X, O_X) is an affine G-scheme if it is equiv to Spec A for some A E Pro (G). It is a G-scheme if there is a collection of objects $\{U_{\alpha}\}$ of χ st 1) $\{U_{\alpha}\}$ covers \mathcal{X} , i.e. $\coprod_{\alpha} U_{\alpha} \longrightarrow 1_{\mathcal{X}}$ is an effective epimorphism. 2) $\forall \alpha$, $(\chi_{/U_{\alpha}}, U_{\chi} | U_{\alpha})$ is an affine G-scheme. Denote $Sch(G) \subset LTop(G)^{op}$ spanned by G-schemes. Proposition: 1) Sch (G) admits colimits along étale morphisms. 2) If the Grothandieck topology on Pro(G) is precanonical, then Sch(G) admits finite limits.

Example: 1) Geometry $G_{Zar} := \{affine schemes of finite type over \mathbb{Z}\}$ Admissible morphisms are inclusions of principle open subsets.

Admissible coverings are coverings by principle open subsets. Then we have a fully faithful embedding Scheme - Sch(Gzar) The essential image consists of Gzar-schemes with O-localic underlying 2) Geometry $G_{\text{ét}} := \{ affine schemes of finite type over \mathbb{Z} \}$ Admissible morphisms are étale morphisms, and admissible coverings are étale coverings. Then we have a fully faithful embedding Deligne-Mumford stacks ← Sch(Gét) The essential image consists of G_{Et} -schemes with 1-localic underlying ∞ -topos. 2.5 Pregeometries Idea: generate geometries with simpler data. Def: A pregeometry is an oo-category T admitting products, equipped with an admissibility structure. an admissibility structure. Def: T pregeometry, X on-topos. A T-structure on X is a functor $\mathcal{O}: \mathcal{T} \rightarrow \mathcal{X}$ st. 1) () preserves finite products. 2) O preserves pullbacks along admissible morphisms 3) \forall admissible covering $\{U_a \rightarrow X\}$ in T, the induced map $\coprod \mathcal{U}(\mathcal{V}_{\mathcal{X}}) \longrightarrow \mathcal{V}(\mathcal{X}) \text{ is an effective epimorphism in } \mathcal{X}.$ Denote $Str_{T}(X) \subset Fun(T, X)$, $Str_{T}^{loc}(X) \subset Str_{T}(X)$

A transformation of pregeometries $f: T \rightarrow T'$ is a fanctor which preserves finite products, adm morphisms, adm coverings, and pullbacks along adm morphisms.

A transformation of pregeometries f: T→ G exhibits G as a geometric envelope of T if
1) G is a geometry with the coarsest structure s.t. f is a transformation of pregeometries.

2) $\forall \infty$ -category C idempotent complete and admitting finite limits, Composition with f induces an equiv preserves finite products, pullbacks Funlex $(G, C) \longrightarrow$ Fun $^{ad}(T, C)$ along odm morphisms.