V. Structured spaces Goal: generalize the notion of locally ringed space to the derived setting 1. os-Topoi Idea: generalization of topological spaces 1.1 Giraud's axioms Def: An oo-category X is an oo-topos it there exists a small on-category C and an accessible left exact localization functor $\mathcal{P}(\mathcal{C}) \longrightarrow \mathcal{X}$. More intrinsic characterization: HTT 6.1.0.6: X co-category. X is an co-topos if and only if it satisfies the following analogue of Girand's axioms: (i) The co-category X is presentable (ii) Colimits in X are universal: For any morphism $f: T \rightarrow S$ in X, the associated pullback functor $f^*: \chi_{1S} \longrightarrow \chi_{1T}$ preserves columits (\iff 3 a right adjoint f_* by the adjoint functor theorem).

(iii) Coproducts in X are disjoint

Every cocartesian diagram
$$\phi \longrightarrow Y$$
 is also cartesian.

$$X \longrightarrow X \cup Y$$
(iv) Every groupoid object of X is effective:
Rough idea: equivalence relations $\stackrel{2-1}{\longrightarrow}$ quotients
Precise formulation:
Def: $\Delta = \{[n], n \ge 0\}$ the category of combinatorial simplices
 $\Delta_{+} = \Delta \cup \{[-1] := \phi\}$ $\Delta_{+}^{\le n} \subset \Delta_{+}$ spanned by $\{[k]\}_{k \le n}$.
C exo-category
A simplicial object of C is a functor \bigcup : $\Delta^{\circ p} \longrightarrow C$.
Denote $\bigcup_{n} := \bigcup[[n]]$.
An augmented simplicial object of C is functor $\bigcup^{\dagger} : \Delta_{+}^{\circ p} \longrightarrow C$.
A simplicial object of C is a groupoid object if for every $n \ge 0$, and
every partition $[n] = S \cup S'$ st. $S \cap S' = \{s\}$ is a singluton, the
diagram $\bigcup([n]) \longrightarrow \bigcup(S)$ is a pullback square in C.
 \downarrow
 $\bigcup(S') \longrightarrow \bigcup(\{s\})$
HTT6, 1.2.11: C ∞ -category, $\bigcup^{\dagger} : \Delta_{+}^{\circ p} \longrightarrow C$ an augmented simplicial object

of C, TFAE; (1) U^+ is a right Kan extension of $U^+ (\Delta_{+}^{\leq 0})^{op}$. (2) the underlying simplicial object U is a groupoid object of C, and the diagram $U^+|_{(\Delta_{\mp}^{\leq 1})^{\text{op}}}$ is a pullback square $U_1 \longrightarrow U_0$ in C. $\int_{U_0} \int_{U_0} \int_{U_1} \int_{U_0} \int_{U_1} \int_{U_0} \int_{U_1} \int_{U_0} \int_{U_1} \int_{U_0} \int_{U_1} \int_{$

In this case, U^{\dagger} is called the Cech nerve of $u: U_0 \longrightarrow U_{-1}$.

Def: A simplicial object U of an oo-category C is an effective groupoid if it can be extended to a colimit diagram U^+ : $\Delta_{+}^{op} \rightarrow C$ such that U^+ is a Čech nerve.

Def: $C \infty$ -category. A sieve on C is a full subcategory $C^{(0)} \subset C$, s.t. for any $D \in C^{(0)}$, f: $C \rightarrow D$ in C, we have $C \in C^{(0)}$. For any object $C \in C$, a sieve on C is a sieve on the ∞ -category $C_{/C}$. A Grothendieck topology on C consists of, for every object C of C, a collection of sieves on C, called covering sieves, satisfying the following properties:

(1)
$$\forall$$
 object $C \in C$, the sieve $C_{/C} \subset C_{/C}$ on C is a covering sieve.

(2) \forall morphism $f: (\longrightarrow D \text{ in } C, f^* \text{ of a covering sieve is a covering sieve.}$ (3) \forall object $C \in C$, covering sieve $C_{/C}^{(o)}$ on $C, C_{/C}^{(1)}$ an arbitrary sieve on C. If for each $f: D \longrightarrow C$ belonging to $C_{/C}^{(o)}$, the pullback

$$f^{\Lambda} C_{/C}^{(1)}$$
 is a covering sieve on D, then $C_{/C}^{(1)}$ is a covering sieve on C.
Rem: Grothendieck topology on C \iff Grothendieck topology on hC.
Prop: C &-category, $C \in C$, $j: C \rightarrow P(C)$ the Yoneda embedding.
We have a bijection {subobjects of $j(C)$ } \longrightarrow {sieves on C}
monomorphism $i: U \rightarrow j(C) \longmapsto C_{/C}(U)$
 $C_{/C}(U) \subset C_{/C}$ spanned by $f: D \rightarrow C$ s.t. \exists a commutative triangle

$$j(D) \xrightarrow{\beta(T)} j(C)$$

Def: C ∞ -category, S a collection of morphisms of C. An object Z of C is S-local if for every morphism s: $X \rightarrow Y$ belonging to S, composition with s induces a homotopy equivalence Mape $(Y, Z) \rightarrow Mape (X, Z)$.

Def: C to-category equipped with a Grothandieck topology, $j: C \rightarrow P(C)$ Yoneda embedding. S the collection of all monomorphisms $U \rightarrow j(C)$ corresponding to the covering sieves $C_{C}^{(o)} \subset C_{C}$. A presheaf $F \in P(C)$ is a sheaf if it is S-local. Denote Shr(C) $\subset P(C)$ full subcategory spanned by sheaves. HTT 6.2.2.7: Shr(C) is an co-topos.

1.3 The os-category of os-topoi Def: X, Y w-topoi. A geometric morphism between X and Y is a pair of adjoint functors $X \xrightarrow{f^*}_{+} Y$ where f^* is left exact. We usually only write one of the or f. Define subcategories L Top, R Top C Catoo as follows: (1) The objects of LTop and RTop are 00-topoi (2) A functor $f^*: X \longrightarrow Y$ between ∞ -topoi belongs to L Top if and only if it preserves small colimits and finite limits. (3) A functor $f_{\star}: X \longrightarrow Y$ between ∞ -topoi belongs to RTop if and only if f_{\star} has a left adjoint which is left exact. Rem: L Top $\simeq R$ Top. HTT 6.3.2-4: L Top and R Top admit limits and colimits. 1.4 Étale morphisms of 00-topoi Proposition: $\chi \propto -topos$, $U \in \chi$, then (1) X/U is an co-topos (2) π_1 : $\chi_{U} \longrightarrow \chi$ has a right adjoint π^{*} which commutes with columits. Consequently, π^* has a right adjoint $\pi_* : \chi_{\ell \cup} \to \chi$, and (π^*, π_*) gives rise a geometric morphism of 20-topoi.

Def: Such geometric morphisms are called Etale morphisms HTT 6.3.5, 13: Let $R.Top_{\text{Et}} \subset R.Top_{\text{Et}}$ spanned by all ∞ -topo; and étale geometric morphisms. Then $R.Top_{\text{Et}}$ admits small colimits, i.e. we can glue ∞ -topoi along étale open subsets.

- 2. Structured sheaves
- 2.1 Sheaves with values in a on-category Recall: Goal: generalize the notion of locally ringed space to the derived setting.

Def: C arbitrary
$$\infty$$
-category. $\chi \infty$ -topos. A C-valued sheaf on χ is
a functor $\chi^{\circ p} \longrightarrow C$ which preserves small limits.
Denote Shv_e(χ) \subset Fun($\chi^{\circ p}$, C)

Def: Too-category equipped with a Grothandieck topology. Coo-category
A functor
$$U: T^{op} \rightarrow C$$
 is a C-valued sheaf on T if for every
object $X \in T$ and every covering sieve $T_{/X}^{o} \subset T_{/X}$, the composite
map $(T_{/X}^{o})^{\triangleleft} \subset (T_{/X})^{\triangleleft} \longrightarrow T \xrightarrow{O^{op}} C^{op}$
is a columit diagram in C^{op} .
Denote $Shv_{e}(T) \subset Fun(T^{op}, C)$
Example: $Shv(T) \simeq Shv_{s}(T)$

Proposition: T as above. $j: T \rightarrow \mathcal{P}(T)$ Yoneda embedding. L: $\mathcal{P}(T) \rightarrow Shv(T)$ (aff adjoint to the inclusion C arbitrary ∞ -category admitting small limits. Then the composition with $L \circ j$ induces an equiv of ∞ -categories Shv_e (Shv(T)) \longrightarrow Shv_e (T).

2.2 Geometries

Idea: In order to make sense of "locally ringed", we need an extra structure on the ∞ -category C.

Def: S ∞-category, an admissibility structure on G consists of the following Lata:

- (1) A subcategory S^{ad} ⊂ G spanned by all the objects, and admissible morphisms satisfying the following conditions:
 (i) Pullback of admissible morphism always exists, and is again admissible
 (ii) t^{AY} g = a h admissible ⇒ t admissible
 - (ii) $\begin{array}{c} f & Y \\ X & \\ h \end{array} \xrightarrow{f} Z \\ g, h admissible \Rightarrow f admissible$

(iii) Retract of admissible morphism is admissible.

(2) A Grothendieck topology on G, which is generated by admissible morphisms in the following sense: any covering sieve $G_{/X}^{(o)} \subset G_{/X}$ contains a covering sieve which is generated by a collection of admissible morphisms { $U_{\alpha} \rightarrow X$ }. Def: A geometry consists of the following data: (1) An 00-category G which admits finite limits and is idempotent complete. (2) An admissibility structure on G.