Def: C presentable ∞ -cat. For every derivation $\gamma: A \to M$ in C, form a pullback diagram $A^{\eta} \longrightarrow A$ in the ∞ -category $M^{T}(C)$. $\int \int \int 1^{\eta}$ $0 \longrightarrow M$

A morphism $f: \widetilde{A} \rightarrow A$ in C is a square-zero extension if \exists a derivation $\eta: A \rightarrow M$ in C and an equivalence $\widetilde{A} \simeq A^{\eta}$ in the ∞ -cat C_{A} . We say that \widetilde{A} is a square-zero extension of A by MC-1].

Rem: By HTT4.3.1.9, the above pullback diagram in MT(C) is equivalent to the following pullback diagram in C

$$\begin{array}{ccc} A^{7} & \longrightarrow & A \\ \downarrow & & \downarrow^{d_{y}} \\ A & & & \downarrow^{d_{y}} \\ A & & & A \oplus M \end{array}$$

where $A \oplus M$ denotes the image of M under the functor Ω^{∞} : $Sp(C_{A}) \rightarrow C$ do is the section associated to the D derivation.

The main source of square-zero extensions in the setting of E_{∞} -rings is n-small extensions.

Def: For $n \ge 0$, a morphism $f: A \longrightarrow B$ in CAlg is an *n*-small extension if $A \in CAlg^{cn}$, $fib(f) \in CAlg_{[n, 2n]}$, and the multiplication map $fib(f) \bigotimes fib(f) \longrightarrow fib(f)$ is nullhomotopic. Denote Fun_{n-sm} (Δ^{1} , CAlg) \subset Fun (Δ^{1} , CAlg)

An object
$$(A, \gamma: L_A \rightarrow M[1]) \in Der(CAlg)$$
 is n-small if A is connective
and $M \in Sp_{[n,2n]}$.
Denote $Der_{n-sm} \subset Der(CAlg)$.
Theorem: The functor $\Phi: Der(CAlg) \longrightarrow Fin(\Delta', (Alg))$
 $(A, \gamma: L_A \rightarrow M[1]) \longmapsto (A^{1} \rightarrow A)$
indulus for each $n \ge 0$, an equivalence of ∞ -cats
 $Der_{n-sm} \xrightarrow{\sim} Fin_{n-sm} (\Delta', (Alg))$.

Corollary: 1) Every n-small extension in (Alg is a square-zero extension.
2) For any
$$A \in CAlg^{cn}$$
, every map in the Postnikov tower
 $\cdots \longrightarrow T_{\leq 3} A \longrightarrow T_{\leq 2} A \longrightarrow T_{\leq 1} A \longrightarrow T_{\leq 0} A$

13 a square-zero extension.

Application: Given
$$A, B \in (Alg^{cn})$$
, we can understand $Map_{CAlg}(A, B)$ as
 $\lim_{n} Map_{CAlg}(A, T_{\leq n}B)$,
For $n=0$, we have $Map_{CAlg}(A, T_{\leq n}B) \simeq Hom(\pi_0A, \pi_0B)$.
For $n>0$, we have a pullback square
 $T_{\leq n}B \longrightarrow T_{\leq n-1}B$
 $\int \int \int D_{T_{\leq n-1}B} \oplus (\pi_{n}, B) [n+1]$
The solution of the stable (M and ($n = n$) and ($n = n$).

This reduces us to the study of MapcAlg (A, TEMB) and the linear problem

of derivations from A to $(\pi_n B)$ [nt1], which is controlled by the cotangent complex.

2.2 Deformation theory of Exp-rings
Def: Let A be an Exp-ring,
$$\tilde{A}$$
 a square-zero extension of A by an A-module
M, $B \in (Alg_A)$. Then a deformation of B to \tilde{A} is a pair (\tilde{B} . a) where
 $\tilde{B} \in (Alg_{\tilde{A}})$ and a is an equivalence $\tilde{B} \otimes A \cong B$ in (Alg_A) .
 \tilde{A}
 \tilde{A}
 \tilde{B}
 $\tilde{Spec} \tilde{B}$
 $\tilde{Spec} \tilde{B}$
 $\tilde{Spec} \tilde{A}$
 $\tilde{Spec} \tilde{A}$

Rem: If A, M are connective, then \tilde{B} is flat over \tilde{A} if and only if B is flat over A.

Proof: $\Rightarrow \bigvee \iff \text{let us show that for every discrete } \widetilde{A}-\text{module } N$, $\widetilde{B} \bigotimes N$ is discrete. Let $I := \text{ker}(\pi_0 \widetilde{A} \to \pi_0 A)$, we have a short exact seg \widetilde{A} $0 \longrightarrow IN \longrightarrow N \longrightarrow N/IN \longrightarrow D$ modules over $\pi_0 \widetilde{A}$.

So it's enough to show that $\widetilde{B} \bigotimes_{\widetilde{A}} IN$ and $\widetilde{B} \bigotimes_{\widetilde{A}} N/IN$ are discrete.

Let
$$Der := Der(CAlg)$$
, the ∞ -cat of derivations in CAlg.
Define a subcategory $Der^{+} \subset Der$ as follows:

(i) objects: derivations $\eta: A \longrightarrow M[1]$ where both A and M are connective. (i) morphism: $f: (\eta: A \longrightarrow M[1]) \longrightarrow (\eta': B \longrightarrow N[1])$ s.t. $B \bigotimes A \longrightarrow N$. Proposition: A connective E_{∞} -ring, M connective A-module, $\eta: A \rightarrow M[I]$ a derivation. Then we have an equivalence of ∞ -categories $Der_{\eta/}^{+} \xrightarrow{\sim} CAlg_{A\eta}^{cn}$ $(\eta': B \rightarrow N[I]) \longmapsto B^{\eta'}:= fib(\eta')$

Idea: Giving a deformation \tilde{B} of B over \tilde{A} is equivalent to providing a factorization of η_{B} : $B \bigotimes L_{A} \longrightarrow B \bigotimes M[1]$ as a composition $B \bigotimes L_{A} \longrightarrow L_{B} \xrightarrow{\eta'} B \bigotimes M[1]$ and the corresponding extension is given by $B = B^{\eta'}$. In particular, B admits a deformation over \tilde{A} if and only if the composite map $L_{B/A}[-1] \longrightarrow B \bigotimes L_{A} \xrightarrow{\eta_{B}} B \bigotimes M[1]$ vanishes.

2.3 Connectivity of the cotangent complex
Theorem: f: A
$$\rightarrow$$
 B map of connective \mathbb{E}_{∞} -rings. If cofib(f) is n-connective
for n $\geqslant 0$ then there is a canonical (2n)-connective map of B-modules
 \mathcal{E}_{f} : B \bigotimes cofib(f) \longrightarrow LB/A.

Construction of the map E_f : We have $\gamma: L_B \longrightarrow L_{B/A}$ map of B-modules $\longrightarrow B^{\eta}$ the associated square-zero extension of B by $L_{B/A}[-1]$. Since the restriction of η to L_A is nullhomotopic, the map f factors as a composition $A \xrightarrow{f'} B^{\eta} \xrightarrow{f''} B$ So we obtain a map of A-modules $cofib(f) \rightarrow cofib(f'')$, hence a map of B-modules \mathcal{E}_{f} : B \bigotimes $cofib(f) \longrightarrow cofib(f'') \simeq L_{B/A}$.

Corollary 1: f: $A \rightarrow B$ map of connective Energy. If cofib(f) is n-connective for $n \ge 0$, then the relative cotangent complex $L_{B/A}$ is n-connective. The converse holds provided that f induces an isomorphism $\pi_0 A \xrightarrow{\sim} \pi_0 B$.

Proof: fiber sequence of B-modules

$$fib(\varepsilon_{f}) \longrightarrow B \bigotimes_{A} cofib(t) \longrightarrow L_{B/J}$$

Corollary 2: A connective Es-ring. Then the absolute cotangent complex LA Is Connective. Proof: Apply Cor 1 to the unit map $S \longrightarrow A$ in the case n=0. Corollary 2': $f: A \rightarrow B$ map of connective Eorrings. Then the relative cotangent complex LB/A is connective. Corollary 3: f: A->B map of connective Eco-rings. Then f is an equivalence $\iff \begin{cases} f \text{ induces an isomorphism } \pi_0 A \xrightarrow{\sim} \pi_0 B. \\ \text{ the relative cotangent complex } L_{B/A} \cong 0. \end{cases}$ Corollary 4: $f: A \rightarrow B$ map of connective \mathbb{E}_{os} -rings st. cofib(f) is n-connective for $n \ge 0$. Then the induced map $L_f: L_A \longrightarrow L_B$ has

n-connective cofiber. In particular, the canonical map $\pi_0 L_A \longrightarrow \pi_0 L_{\pi_0}A$ is an isomorphism.

Corollary S:
$$f: A \longrightarrow B$$
 map of connective \mathbb{E}_{∞} -rings st. $cofib(f)$ is
n-connective for $n \ge 0$. Then there exists a canonical $(2n-1)$ -connective
map of A-module $cofib(f) \longrightarrow L_{B/A}$.

Proposition:
$$f: A \longrightarrow B$$
 map of connective \mathbb{E}_{∞} -rings. Then $\pi_{\circ} L_{B/A} \cong \Omega_{\pi_{\circ} B/\pi_{\circ} A}$ as $\pi_{\circ} B = modules$.

Proof: By fiber sequence for
$$L_{B/A}$$
, and short exact sequence $\Sigma I_{\pi \circ B}/I_{\pi \circ A}$.
 \longrightarrow Lemma: A discrete $E_{\pi \circ} - ring$, $\pi_{\circ} L_{A} \cong \Omega_{A}$ as discrete A-modules.
We show that $\pi_{\circ} L_{A}$ and Ω_{A} corepresent the same functor on the category
of discrete A-modules: let M be a discrete A-module, we have
 $Map_{Mod_{A}}(\pi_{\circ} L_{A}, M) \cong Map_{Mod_{A}}(L_{A}, M) \cong Map_{CAlg/A}(A, A \oplus M)$
 $\cong Map_{Rings/A}(A, A \oplus M)$.

2.4 Finiteness of the cotangent complex Theorem: A connective E_{∞} -ring, B connective E_{∞} -algebra over A. 1) If B is locally of finite presentation over A, then $L_{B/A}$ is perfect as B-module.

The converse holds provided that ToB is finitely presented over TGA.

2) If B is almost of finite presentation over A, then LBIA is almost perfect as B-module. The converse holds provided that $\pi_0 B$ is finitely presented over $\pi_0 A$. 3. Étale morphisms Def: A map $\phi: A \longrightarrow B$ of E_{or} -rings is tale if $\pi_{o}A \longrightarrow \pi_{o}B$ is étale and B is flat as A-module. Theorem : A Ess-ring. Every Etale map of discrete commutative rings $\pi_0 A \longrightarrow \pi_0 B$ can be lifted (essentially unique) to a étale map $\phi: A \rightarrow B \quad of \quad E_{oo} - nings.$ Corollary: The relative cotangent complex of an Etale morphism of Ex-rings Vanishes. DAG VII. 8.9: $A \rightarrow B$ map of connective $E_{1} - rings$ s.t. $L_{B/A}$ vanishes. TFAE: (1) πoB is finitely presented over πoA B is finitely presented over A (L) B is almost finitely presented over A (3) (A→B is étale.