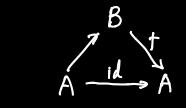
IV. Cotangent complexes
1. The cotangent complex formalism
Goal: derive Kähler differentials
Recall: A commutative ring, M A-module
A derivation from A to M is a map
$$d: A \rightarrow M$$
 satisfying
 $d(x+y) = dx + dy$ $d(xy) = x dy + y dx$
Let Der (A, M) be the abelian group of derivations from A to M.
Fix A, the functor $M \mapsto Der(A, M)$ is corepresented by an
A-module Ω_A , called the A-module of absolute Kähler differentials.
Explicitly, $\Omega_A =$ free module generated by the symbols $\{dx_{x}\}_{x \in A}$
 $/relations d(x+y) = dx+dy$, $d(xy) = xdy + ydz$.
Reformulation:

$$Ring^{\dagger} = \{ (A, M) \mid A \text{ is a commutative ring, } M \text{ is an } A-module \}$$

Mor:
$$(f, f')$$
: $(A, M) \rightarrow (B, N)$
 $f: A \rightarrow B$ ring morphism $f': M \rightarrow N$ map of A-modules.
 $G: Ring^+ \rightarrow Ring$ $(A, M) \rightarrow A \oplus M$ trivial square-zero extension.
 G admits a left adjoint $F: A \rightarrow (A, \Omega_A)$.
Steps for generalizing the above construction to derived geometry:
1) Generalize trivial square-zero extension
2) Generalize Ring⁺ to C^+ for any presentable co-category C .
 $E: T_E$ called the tangent bundle to C .
3) Define the cotangent complex functor $L: C \rightarrow T_E$ via adjunction.
4) Define derivation via the tangent correspondence to C .
1.1 Trivial square-zero extension
Goal: Given $A \in C_{0}$ -ring, $M \in Mod_{A}$, construct the trivial square-zero
extension $A \oplus M$. We want a functorial construction, i.e. a trivial
Square-zero extension functor
 $G = M d \longrightarrow CAla i$

Construction: Let X be an object of Sp $(CAlg_A)$. Then the 0^{th} -space $\Omega^{\infty}(X)$ is a pointed object of $CAlg_A$, i.e. an Exp-ring B which fits into a commutative diagram



Note that the fiber of f inherits the structure of an A-module \longrightarrow functor F': $Sp(CAlg/A) \longrightarrow Mod_A$

HA7.3.4.14: F' is an equivalence of co-categories.

Define the trivial square-zero extension functor G to be the composition $Mod_A \xrightarrow{\sim} Sp((Alg_A) \xrightarrow{\Omega^{\infty}} (Alg_A)$

Denote $A \oplus M := G(M)$.

HA7.3.4.15: Forgetting the algebra structure, $A \oplus M$ is canonically identified with the coproduct of A and M.

HA7.3.4.17: The multiplication on $\pi_{\pi}(A \oplus M)$ is given on homogeneous elements by the formula $(a,m)(a',m') = (aa', am' + (-1)^{|a'||m|}a'm)$. In particular, if A and M are discrete, then $A \oplus M$ is identified with the classical trivial square-zero extension.

1.2 Stable envelopes and tangent bundles Idea: make the above construction in families, i.e. fiberwise stabilization. Let's first give a characterization of the stabilization Sp(C):

Def: C presentable co-category. A stable envelope of C is a functor

$$u: C' \rightarrow C$$
 st.
(i) C' is a presentable stable co-category.
(ii) U admits a left adjoint
(iii) U presentable stable co-category. E, composition with u indues an equiv
 $Rfun(E, C') \longrightarrow RFun(E, C)$
 $timeters which are right adjoints$
Example: $\Omega \in Sp(C) \rightarrow C$ exhibits $Sp(C)$ as a stable envelope
 $f \in C$.
Def: A functor $p: X \rightarrow S$ of so-categories is a presentable fibration
if it is both cartesian and cocartesian, and every fiber $X_s = X \times \{s\}$
is a presentable co-category.
Def: A stable envelope of a presentable fibration $p: C \rightarrow D$ is
a functor $u: C' \rightarrow C$ st.
(i) pou is a presentable fibration.
(ii) U carries (pou)-cartesian morphisms of C' to p-cartesian morphisms
of C
(iv) $\forall D \in D$, the induced map $C'_D \rightarrow C_D$ is a stable envelope of C'.
Def: C presentable co-category. A tangent bundle to C is a functor
 $T_C \longrightarrow Fun(A', C)$

which exhibits $T_{\mathcal{C}}$ as the stable envelope of the presentable fibration Fun $(\Delta', \mathcal{C}) \longrightarrow$ Fun $(\{1\}, \mathcal{C}) \cong \mathcal{C}$.

Idea: Objects of Te are pairs (A, M), where $A \in C$, $M \in Sp(C_{A})$. For $C = (Alg, M \in Sp(CAlg_{A}) \cong Mod_{A}$. The functor $T_{C} \longrightarrow Fun(\Delta', C)$ sends (A, M) to the projection $A \oplus M \longrightarrow A$.

Explicit construction of tangent bundle
$$Te:$$

 $Exc \left(\int_{\pi}^{\pm in}, C \right) \longrightarrow Fun \left(\Delta', C \right)$
 $\left(X: S_{\pi}^{\pm in} \rightarrow T \right) \longmapsto \left(\chi(S^{\circ}) \rightarrow \chi(\pi) \right)$

Def: C presentable
$$\infty$$
-category. The absolute cotangent complex functor
L: C \rightarrow Te is a left adjoint to the composition
Te \rightarrow Fun $(\Delta', C) \rightarrow$ Fun $(205, C) \simeq C$.

Rem: relative adjunction $T_{e} \xrightarrow{G} F_{un}(\Delta', C)$

Rem: For $A \in C$, the object $L_A \in Sp(C_{A}) \simeq (T_C)_A$ corresponds to the image of $id_A \in C_{/A}$ under the suspension spectrum functor $\sum_{+}^{\infty} : C_{/A} \rightarrow Sp(C_{/A})$.

1.3 The relative cotangent complex C presentable so-contegery, $A \in C$ \longrightarrow absolute cotangent complex $L_{A} \in Sp(C_{IA}).$ Goal: define a relative cotangent complex LB/A associated to a morphism f: A→B in C. Idea: Recall that for Kähler differentials, we have an exact sequence $\Omega_A \otimes B \longrightarrow \Omega_B \longrightarrow \Omega_{B/A} \longrightarrow 0$ for a homomorphism of rings. So we want to define LBIA via some cofiber sequence. Def: C presentable ∞ -category, p: $T_C \rightarrow C$ tangent bundle. A relative cofiber sequence in Te is a pushout square in Te $\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & \\ &$ s.t. each column lies in a fiber of p. Let $\mathcal{E} \subset Fun(I, T_e) \times Fun(\neg, C)$ Fun(I, C) Spanned by relative cofiber sequences. The relative cotangent complex functor is the composition

Fun
$$(\Delta', \mathbb{C}) \xrightarrow{} \text{Fun}(\Delta', \mathbb{T}_{C}) \xrightarrow{} \mathbb{E} \xrightarrow{} \mathbb{T}_{C}$$

make relative take Cover right corner
cofiber sequence
 $(f: A \rightarrow B) \xrightarrow{} L_{B/A} \in (\mathbb{T}_{C})_{B} \cong \text{Sp}(C_{A})$
Ren: By definition, we have a relative cofiber sequence in \mathbb{T}_{C}
 $L_{A} \longrightarrow L_{B}$
 $\downarrow \qquad \downarrow \qquad \downarrow$
 $0 \longrightarrow L_{B/A}$
 $(\mathbb{T}_{C})_{A} \cong \mathbb{C}_{C}$ fiber sequence $f: L_{A} \rightarrow L_{B} \rightarrow L_{B/A}$ in $(\mathbb{T}_{C})_{B} \cong \text{Sp}(C_{B})$
where $f_{1}: \text{Sp}(C_{A}) \rightarrow \text{Sp}(C_{B})$ denotes the functor induced by the coartesian
fibration p.
Example: \cdot For $f: A \rightarrow B$, A an initial object of C, we have
 $L_{B} \longrightarrow L_{B/A} \in \text{Sp}(C_{C})$.
 \cdot For $f: A \rightarrow B$ an equivalence, we have $L_{B/A} \cong 0 \in \text{Sp}(C_{B})$.
 \hat{F} for $f: A \implies B$ an equivalence, we have $L_{B/A} \cong 0 \in \text{Sp}(C_{B})$.
 \hat{F} oposition: \mathbb{C} presentable co-category, \mathbb{T}_{C} tangent bundle
 $A \xrightarrow{} B \xrightarrow{} C$ commutative diagram in \mathbb{C}
 \Rightarrow pushout diagram $L_{B/A} \longrightarrow L_{C/A}$ in \mathbb{T}_{C} (also a relative
 $\downarrow \qquad \downarrow \qquad Cofiber sequence.)$

A $\in \mathbb{C}$, $M \in (T_{\mathbb{C}})_{A}$. By the cocartesian property, it can also be identified with a map $d: L_{A} \longrightarrow M$ in the fiber $(T_{\mathbb{C}})_{A}$. Let $Der(\mathbb{C})$ be the on-category of derivations in \mathbb{C} . Def: \mathbb{C} presentable on-category. For every derivation $\eta: A \rightarrow M$ in \mathbb{C} , form a pullback diagram $A^{\eta} \longrightarrow A$ in the on-cat $M^{T}(\mathbb{C})$. $\int_{\mathbb{C}} \int_{\mathbb{C}} \eta^{\eta}$

A morphism $f: A \rightarrow A$ in C is a square-zero extension if there exists a derivation $\eta: A \rightarrow M$ in C and an equiv $A \simeq A^{\eta}$ in $C_{/A}$. We also call A a square-zero extension of A by M[-1].