HA7.2.1.19: $R \in [-ring]$, $M \in RMod_R$, $N \in LMod_R$. There exists a spectral sequence $\{E_r^{P, \theta}, d_r\}_{r \ge 2}$ with E_2 -page $E_2^{P, \theta} = \operatorname{Tor}_p^{\pi_{nR}}(\pi_{*M}, \pi_{*N})_{\theta}$ which converges to $\pi_{p+q}(M \otimes N)$. Applications of the spectral sequence: 1) If R, M, N are all discrete, then $\pi_n(M \otimes N) \simeq \operatorname{Tor}_n^R(M, N)$. 2) If R, M, N are all connective, then $M \otimes N$ is connective and $\pi_0(M \otimes N) \simeq \pi_0 M \otimes \pi_0 N$. For those who need grades for this course, please send me an email

to yuyue tony @gmail.com

Flat and projective modules over a connective E,-ning.

Def: $R \in E_1$ -ring. A left R-module M is free if it is equivalent to a coproduct of copies of R. A free left module M is finitely generated if it is a finite coproduct of copies of R.

Def: Let C be an ∞-category which admits geometric realizations of simplicial objects. An object $X \in C$ is projective if the functor $Map_{C}(X, \bullet): C \rightarrow S$ corepresented by X commutes with geometric realizations.

Def: R connective
$$E_1$$
-ring. A left R-module is projective if it is a
projective object of the ∞ -category $LMod_R^{cn}$ of connective left R-module
Def: C ∞ -category, X, YEC, Y is called a retract of X if there
exists a 2-simplex $\Delta^2 \rightarrow C$ corresponding to a diagram X
 $\frac{i}{id_Y}$

HA7.2.2.7-8: R connective
$$\mathbb{E}_{1}$$
-ring. P connective left R-module. Then
P is projective \iff P is a retract of a free R-module M
P is projective and π_{0} P is finitely generated over π_{0} R
 \iff P is a compact projective object of $LMod_{R}^{cn}$
 \iff P is a retract of a finitely generated free R-module M.
Def: R \mathbb{E}_{1} -ring, $M \in LMod_{R}$ is flat if $\pi_{0}M$ is flat over $\pi_{0}R$,
 $\forall n \in \mathbb{Z}$, $\pi_{n}R \otimes \pi_{0}M \xrightarrow{\sim} \pi_{n}M$.

Easy consequences:
1) R
$$E_1$$
-ring, $f: M \rightarrow N$ map of flat R-modules
Thun f is an equiv \iff it induces an isomorphism $\pi \circ M \cong \pi \circ N$.
2) R connective E_1 -ring. A flat left R-module M is projective
 $\iff \pi_0 M$ is projective over $\pi_0 R$.

3)
$$R \in \operatorname{Fing}$$
, $M \in \operatorname{RMod}_R$, $N \in \operatorname{LMod}_R$, N flat, $\forall n \in \mathbb{Z}$, we have
 $\operatorname{Tor}_{o}^{\pi_{o}R}(\pi_{n}M, \pi_{o}N) \xrightarrow{\sim} \pi_{n}(M \otimes N)$.

Lazard's theorem: R connective E₁-ring, N connective left R-module.
TFAE: 1) N is a filtered colimit of finitely generated free modules
2) N is a filtered colimit of projective left R-modules
3) N is flat
4) The functor M→ M⊗N is left t-exact, i.e. it carries R
(RMod_R)≤0 into Sp≤0.
5) If M is discrete, then M ⊗N is discrete.

Finiteness properties of rings and modules (Ref HA7.2.4) Def: R \mathbb{E}_1 -ring. A left R-module M is perfect if it belongs to $LMod_R^{perf}$, the smallest stable subcat of $LMod_R$ which contains R and is closed under retracts. Similarly we define $RMod_R^{perf}$, and perfect right R-module. Idea: M is perfect if it can be built from finitely many copies of R by forming shifts, extensions, and retracts. Recall: Curcategory admitting filtered columits. An object $X \in C$ is called compact if the corepresentable functor $Map_e(X, \bullet)$ commutes with filtered columits.

Proposition: R E,-ring. An object of LMode is compact if and only if it is perfect. Cor: R connective E, -ring, MELModer, thun (1) $\pi_m M = 0$ for m < co(2) If $\pi_m M = 0$ for all m < k, then $\pi_k M$ is finitely presented over $\pi_0 R$. Proposition: Duality between left and right modules. R E,-ring. The relative tensor product functor ®: RMod_R × LMod_R → Sp induces fully faithful embeddings 0: RModr - Fun (LModr, Sp) O': LMode - Fran (RMode, Sp). Essential îmage = functors presening small colimits. Proposition: R E,-ring, ME LMode, Then M is perfect if and only if I M'ERMode st. the composition LModer M'&. Sp IS equiv to the functor corepresented by M. In this case, M' is also perfect. called dual of M Def-Lem: C, D w-cats. A functor F: CXD -> 5 is a perfect pairing if it satisfies the following two equiv conditions:

(1) The induces map $f: \mathcal{C} \longrightarrow Fun(\mathcal{D}, S) = \mathcal{P}(\mathcal{D}^{\circ \mathcal{P}})$ is fully faithful, and the essential image of f coincides with the essential image of the

Def: R connective E_1 -ring. A left R-module M is almost perfect if there exists an integer k such that $M \in (LMod_R)_{\ge k}$ and is almost compact as an object of $(LMod_R)_{\ge k}$. Denote $LMod_R \subset LMod_R$.

Prop: $M \in (LMod_R^{apart})_{\geq 0}$, then M is the geometric realization of a simplicial left R-module P. where each Pn is free and finitely generated.

Recall: An associative ring R is left coherent if every finitely generated left ideal of R is finitely presented (as a left R-module). Def: R E, -ring. R is left coherent if the following conditions are satisfied: (1) R is connective (2) TtoR is left coherent. (3) For each $n \ge 0$, $\pi_0 R$ is finitely presented as a left module over $\pi_0 R$. Proposition: R left coherent E, - ring, M & LMode. Then M is almost perfect if and only if (i) $\pi_m M = 0$ $\forall m < < 0$ (ii) π_m M is finitely presented over π_o R, Hm∈ Z. Proposition: R left coherent E, -ring. Then t-structure on LMode my t-structure on LModer. Proposition: R connective E, - ring, M connective left R-module. TFAE (1) M is a retract of a finitely generated free R-module (In particular, M is perfect.) (2) M is flat and almost perfect.

Def: R connective \mathbb{E}_{i} -ring. A left R-module M has Tor-amplitude $\leq n$ if for every discrete R-module N, $\pi_{i}(N \otimes M)$ vanishes for i > n. M is of finite Tor-amplitude if it has Tor-amplitude $\leq n$ for some n.

- Remark: A connective left R-module M has $Tor-amplitude \leq 0$ if and only of M is flat.
- Proposition: R connective E₁-ring. MELMode Assume M almost perfect. Thun M is perfect (=>>> M has finite Tor-amplitude.
- Def: R connective E_{∞} -ring. Free: $LMod_R \longrightarrow CAlg_R$ A connective E_{∞} -algebra over R. We say A is
- finitely generated and free if $A \cong Free (M)$ for some finitely generated and free $M \in LMod_R$.
- of finite presentation if A is a finite colimit of finitely generated and free algebras.
- · locally of finite presentation if A is a compact object of CAlg_R.
- · almost of finite presentation if A is an almost compact object of CAlgR