Introduction to Derived Geometry

- I. Motivations
- 1. Bézout theorem

X, $Y \subset \mathbb{CP}^2$ smooth algebraic curves Y deg 3 X deg 2 deg a deg b BEZONT theorem: If X and Y meet transversely, then the intersection XAY has ab points. $\# X \cap Y = \deg X \cdot \deg Y$ Q: What about non-transverse intersections? $\int proper non-transverse intersection // dim XnY = 0.$ non-proper intersection Self-intersectionIf we want Bézont theorem to continue to hold for non-transverse intersections, we need to reinterpret XNY, ie. equip XNY

with more structures than just a set.

Proper non-transverse intersection: y

We equip each intersection point p with a multiplicity:

$$mult(p) := \dim \mathcal{O}_{X,p} \otimes \mathcal{O}_{Y,p}$$

$$Cr_{p}^{X}$$
then $\sum mult(p) = dag \times dag \times g$

$$pe \times nY$$
(Narning from comm alg: \otimes is not exact, we have Tor functors.
Indeed, the above multiplicity formula is wrong in higher dim for
singular subvarieties, and should be corrected by Tor.
Assume $X,Y \subset CP^{n}$ (singular) subvar, dim $X + \dim Y = n$
 $X \cap Y$ properly i.e. $\dim X \cap Y = 0$.
For every $p \in X \cap Y$, the correct multiplicity should be
 $mult(p) := \sum (-1)^{i} \dim Tor_{i}^{Qp^{n}, r} (\mathcal{O}_{X,p}, \mathcal{O}_{Y,p})$
Serre's intersection formula
 $Note that Tor_{i} = \bigotimes product$, Tor_{i} iso are connection
terms
Then besout thm still holds: $\sum mult(p) = dag \times dag Y$.
 $Q:$ What about non-proper intersections? $\dim X \cap Y > 0$.
2. Review of Tor functors
 R comm ring, A,B R-modules. $Tor_{i}^{R}(A,B)$

Choose a proj resolution of A:
....
$$\rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow A \rightarrow O$$
 R: proj R-modules
then $\operatorname{Tor}_{i}^{R}(A, B)$ are the homology groups of the chain complex
... $\rightarrow P_{2} \otimes B \rightarrow P_{0} \otimes B \rightarrow P_{0} \otimes B =: A \otimes B$
derived tensor product
Recall Serve's intersection formula for proper intersections:
mult(P) := $\sum (-1)^{i} \operatorname{din} \operatorname{Tor}_{i}^{PP,P}(O_{X,P}, O_{Y,P})$
Rewrite $\chi(O_{X,P} \otimes O_{Y,P})$
 $Rewrite Besout$ theorem $\sum mult(P) = \operatorname{deg} X \cdot \operatorname{deg} Y$
 $OS \quad \chi(O_{X} \otimes O_{Y}) = \operatorname{deg} X \cdot \operatorname{deg} Y$
This reformulation actually generalizes to arbitrary non-proper
non-transverse intersections.
Example: $C = CP^{2} \operatorname{deg} d$. Self-intersection $C \cap C$
 $(at's compute O_{C} \otimes Q)$
 $O = O(-C) \rightarrow O \rightarrow Q \rightarrow Q$

(c) $H_n(O_X)$ vanish for n < 0.

Rem: 1) (anguage of 20-categories 2) cdga ~~> simplicial rings derived scheme 3) multiplications on are strictly comm and assoc. Not natural or convenient. me relax me Ens-rings spectral schame cdga, simplicial rings, En-rings are all equiv. over char O. 3. Enumerative geometry Problem: Given X sm proj var /C, $\beta \in H_2(X, \mathbb{Z})$ Want to count algebraic curves in X with class & and some constraints Example: • Count rational curves in 1P² of dag d passing through 3d-1 goneral pts. Answer: 1 1 12 620 87304 26312976 14616808192 · Count degree-d rational curves on a general quintic X c CP4. Answer: 2875 609250 317206375 242467530000 Idea: let M be the moduli space of curves in X with class & and constraints. We want to count the number of pts in M. Similar to Bezout thm: multiplicities, dim M>0. Us cannot naively take the cardinality of M. We should endow M with an extra structure : derived structure

Historically: perfect obstruction theory Li-Tian Behrend-Fantechi 4. Homotopy theory (Iga and Ess-rings occur naturally in homotopy theory: de Rham complex : M smooth manifold, $H^{*}(M, \mathbb{R})$ can be computed by the de Rham complex: $\Omega_{M}^{\circ} \xrightarrow{d} \Omega_{M}^{i} \xrightarrow{d} \Omega_{M}^{2} \xrightarrow{d} \dots$ cdga More generally, I topological space X Sullivan polynomial de Kham complex $C_{dR}^{*}(X; Q)$ cdga Theorem (Sullivan): X simply conn top space s.t. $\dim H^n(X; Q) < +0$. Then the rational homotopy type of X can be recovered from its polynomial de Rham complex $C_{dR}^{*}(X; \mathbb{Q})$. More precisely, the canonical map $X \longrightarrow X_{Q} := Map \left(C_{dR}^{*}(X; Q), Q \right)$ is a rational homotopy equivalence. Reformulate: $\hat{X} := Spec C_{dR}^{*}(X; Q) dg-scheme schematization$ Then $X_{R} = \hat{X}(Q)$ the space of Q-valued points of \hat{X} is rationally homotopy equivalent to X. More generally, I top space X, I field k, the singular chain complex (*(X; k)) has the structure of an \mathbb{E}_{s-s} -algebra /k.

Thm (Mandell): X simply coun top space, dim H"(X, IFp) < +15. Then the canonical map $\chi \longrightarrow \chi_p^{\prime} := Map \left(C^*(X; H_p), H_p \right)$ is an isom on IF-cohomology. $\pi_n X_p^{\Lambda} \simeq p$ -adic completion of $\pi_n X_p$ 5. Derived categories. Fourier-Mukai transform: E elliptic curve/C Consider functor QCoh(E) - QCoh(E) $\varphi \longmapsto \pi_{i*} (P \otimes \pi_{i}^{*} \varphi)$ Poorly behaved: neither exact, nor faithfull. mas Great improvement by parsing to derived categories: FM transform: $DQGh(E) \longrightarrow DQGh(E)$ is an equivalence $\mathcal{F} \mapsto R\pi_{i*}(\mathcal{P} \otimes \pi_{o}^{*}\mathcal{F})$ Theorem (Bondal-Orlov): X Gm proj var/field k, Kx is either ample or antiample. then X is determined by $D^{b}(ch(X) \subset DQ(ch(E))$ Chain complexes of bounded coherent cohomology Base change theorem