
Dynamics of nonlinear wave equations

November 22, 2018



Chapter 1

Introduction

1.1 Deriving the linear wave equation from a spring system

1.1.1 Using Newton’s second law

Recall how the wave equation is derived in elementary dynamics. Let h = 1
N+1 > 0 and suppose

that for each n ∈ {0, 1, . . . , N + 1} we have a node at the point xn := nh ∈ [0, 1] ∈ R, connected
with its neighbours with springs of length lh < h. The nodes number 0 and N+1 are fixed, whereas
all the others can be moved in the vertical direction. We denote the vertical direction u and we call
un = un(t) the vertical displacement of the n-th node at time t.

Let n ∈ {1, . . . , N}. We compute the vertical component of the force acting on the n-th node.
Denote ∆ul := un−1 − un, ∆ur := un+1 − un, ll :=

√
h2 + (∆ul)2 and lr :=

√
h2 + (∆ur)2. We

have
F = Fl + Fr =

∆ul
ll

k

h
(ll − lh) +

∆ur
lr

k

h
(lr − lh)

If we assume
|∆ul| � h, |∆ur| � h,

then
1− lh

ll
' 1− l, 1− lh

lr
' 1− l,

so we obtain

F ' k(1− l/h)(∆ul + ∆ur) = k(1− l)(un−1(t) + un+1(t)− 2un(t)).

If we assume that all the nodes have the same mass mh, then the Newton’s 2nd law leads to the
system:

u′′1(t) =
k0

h2
(u2(t)− 2u1(t)), u′′N (t) =

k0

h2
(uN−1(t)− 2uN (t)),

u′′n(t) =
k0

h2
(un−1(t) + un+1(t)− 2un(t)), for all n ∈ {1, . . . , N},

with k0 := (1−l)k
m .
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Now suppose we take h→ 0, so that we consider a continuous medium. Let u(t, x) be the vertical
displacement at time t, for x ∈ [0, 1]. Then un(t) = u(t, nh), and 1

h2
(un−1(t) + un+1(t)− 2un(t)) '

∂2
xu(t, x). We obtain the wave equation on the interval [0, 1] with Dirichlet boundary conditions:

u(t, 0) = u(t, 1) = 0,

∂2
t u(t, x) = k0∂

2
xu(t, x).

It is also called the equation of a vibrating string.
Analogously, we could consider displacements at any point x ∈ Ω ⊂ Rd, with values in Rm,

obtaining

u(t, x) = 0, for all x ∈ ∂Ω, (1.1.1)

∂2
t u

j(t, x) = k0∆uj(t, x), j ∈ {1, . . . ,m},

where ∂Ω is the boundary of Ω and ∆ := ∂2
x1 + . . . ∂2

xd
is the Laplace operator in Rd. For d = 2 and

m = 1, it describes a vibrating membrane (like in a drum).

1.1.2 Using Lagrange variational principle

We consider directly the general case u : R × Rd → Rm. Each node nh ∈ Ω has mass mhd. The
kinetic energy is given by

T =
∑
nh∈Ω

mhd

2
|u′n(t)|2.

The potential energy is given (at first order) by

V =
∑
|ñ−n|=1

khd−2

2
(
√
h2 + |uñ(t)− un(t)|2−lh)2 '

∑
|ñ−n|=1

(1− l)khd

2

(
(1−l)+

|uñ(t)− un(t)|2

h2

)
.

The Lagrangian is L = T − V , and the Euler-Lagrange equations read

d

dt

( ∂L
∂u′n

)
=

∂L

∂un
⇔ u′′n(t) =

k0

h2

( ∑
|ñ−n|=1

uñ(t)− 2dun(t)
)
,

which are the Newton equations which we found before. Instead of passing to h→ 0 in the equations,
we can pass to the limit in the Lagrangian and then use the variational principle.

Passing to h→ 0, we have

T → m

2

∫
Ω
|∂tu(t, x)|2 dx, V → (1− l)k

2

∫
Ω
|∇xu(t, x)|2 dx,

so that
1

m
L→

∫
Ω

(1

2
|∂tu(t, x)|2 − k0

2
|∇xu(t, x)|2

)
dx

We have ∂L
∂u = ∆u, where ∆ is the Dirichlet Laplacian in Ω. The Euler-Lagrange equation is

∂2
t u = k0∆u.

In the sequel, we usually choose units so that m = k0 = 1. Note that, if we consider a compact Rie-
mannian manifold (M, g) instead of Ω, the Laplacian is replaced by the Laplace-Beltrami operator
(which is defined as − ∂

∂u

∫
M

1
2 |∇u|

2
g dx).
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1.2 Nonlinearities

Equation (1.1.1) is linear. A nonlinearity can appear in at least three ways:

1. The interaction (potential) energy is not quadratic.

2. We apply an external potential which is not quadratic.

3. The nodes are constrained to lie on a sub-manifold of Rm.

We will not consider the first option here.

1.2.1 Adding a potential

Suppose that the nodes are subject to an external potential W (x, u). Then the potential energy
becomes

V =

∫
Ω

(1

2
|∇xu(t, x)|2 +W (x, u)

)
dx,

and the corresponding wave equation is

∂2
t u(t, x) = ∆u(t, x)− ∂uW (x, u(t, x)). (1.2.1)

In a special caseW (x, u) = q(x)u2, the equation is still linear: ∂2
t u = (∆−q(x))u. If q(x) = const >

0, this is the linear Klein-Gordon equation. However, in some well-known models the potential is
not quadratic in u, and the resulting equation is nonlinear. For example, taking d = m = 1 and
W (x, u) = W (u) = 1

4(1− u2)2, we obtain the so-called φ4 model:

∂2
t u = ∂2

xu+ u− u3.

1.2.2 Constrained motion

Another typical situation leading to a nonlinear model happens when for some reasons u(t, x) is
required to belong to a manifold N ⊂ Rm. In this case the Euler-Lagrange equation is:

∂2
t u−∆u ⊥ TuN , for all (t, x) ∈ R× Ω. (1.2.2)

In general, this is a nonlinear equation, called the wave maps equation.
The potential energy is given by

V =

∫
Ω

1

2
|∇xu(t, x)|2 dx,

and its critical points are the harmonic maps form Ω to N .

1.3 Objectives of the course

In order to study mathematically models like (1.2.1) or (4.5.1), first we should study the local well-
posedness or Cauchy theory. The aim is to give a precise definition of a solution and prove that
for any initial data (u(0, x), ∂tu(0, x)) belonging to a certain functional space, there exists an open
time interval 0 3 I and a unique solution u(t, x). Moreover, the solution at a given time t should
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depend continuously on the initial data. The first part of the course will be devoted to the Cauchy
theory.

We saw that the wave equation can be viewed as an analogue of the Newton equation

u′′(t) = −∇V (u(t)), u(t) ∈ RN , (1.3.1)

with an infinite-dimensional phase space. For equation (1.3.1), the problem of local well-posedness
is settled using the Picard theorem. However, we are often interested in dynamics of solutions, that
is what happens to solutions after a long time. Note that this question remains largely open in
many seemingly simple cases, probably the most famous example being the problem of stability of
the solar system.

Example 1.3.1. Some solutions of the Newton equation u′′(t) = u2(t) blow up, which means cease
to exist in finite time.

Example 1.3.2. Assume the following growth condition holds: |∇V (u)| ≤ C|u| for some C > 0.
Then for any initial data (u(0), u′(0)) = (u0, u̇0) ∈ R2N the corresponding solution u(t) is global, by
which we mean it exists for all t ∈ R.

Example 1.3.3. Assume 0 is a strict local minimum of V . Then for any ε > 0 there exists δ > 0
such that if |(u0, u̇0)| ≤ δ, then the corresponding solution u(t) exists globally and |(u(t), u′(t))| ≤ ε
for all t.

In the last example, the energy E(u(t), u′(t)) = 1
2 |u
′(t)|2 + V (u(t)) plays a crucial role. In

particular, in the situation of Example 1.3.3, we obtain that there exists E1 > 0 such that if
E(u0, u̇0) ≤ E1 and u0 belongs to the same connected component of {u : V (u) ≤ E1} as 0, then the
solution u(t) exists globally. A natural question is to have some lower bound on E0.

Definition 1.3.4. We say that Ec is a critical value of V if there exists a sequence un ∈ RN such
that V (un)→ Ec and ∇V (un)→ 0.

Proposition 1.3.5. Assume that 0 is a strict local minimum of V and E0 is such that V has no crit-
ical values in (0, E0]. Then for any initial data (u0, u̇0) such that E(u0, u̇0) ≤ E0 the corresponding
solution u(t) exists for all time and is bounded.

Proof. It suffices to prove that the connected component of {u : V (u) ≤ E0} containing 0 is bounded.
By assumption, there exists E1 > 0 such that the connected component of {u : V (u) ≤ E1}
containing 0 is bounded. Let Φ : R× RN → RN be a modified gradient flow of V :

∂tΦ(t, u) = − ∇V (u)

1 + |∇V (u)|2
.

By assumption, there exists ε ∈ (0, 1) such that E1 ≤ V (u) ≤ E0 implies |∇V (u)| ≥ ε. Let
T := 2(E0−E1)

ε2
. We will check that

Φ(T, {u : V (u) ≤ E0}) ⊂ {u : V (u) ≤ E1}.

Let u0 ∈ {u : V (u) ≤ E0}, u(t) := Φ(t, u0) and suppose that u(T ) > E1. We have

d

dt
V (u(t)) = ∇V (u(t)) ·

(
− ∇V (u(t))

1 + |∇V (u(t))|2
)

= − |∇V (u(t))|2

1 + |∇V (u(t))|2
≤ − ε2

1 + ε2
≤ −ε

2

2
,
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thus

u(T ) ≤ u(0)− Tε2

2
≤ E0 − (E0 − E1) = E1,

a contradiction.
Since the image of a connected set by a continuous mapping is connected, we obtain that the

image of the connected component of {u : V (u) ≤ E0} containing 0 is contained in the connected
component of {u : V (u) ≤ E1} containing 0, thus bounded. We also have

|u(0)| ≤ |u(T )|+
∫ T

0
|u′(t)| dt ≤ T 1

2
= |u(T )|+ E0 − E1

ε2
.

As for the Newton equation, we can ask questions about the dynamical behaviour of solutions of
wave equations. We will provide some sufficient conditions for W (x, u) under which the solutions
of (1.2.1) are global. We will study an analogous problem for (4.5.1). The variational structure of
the potential energy, and in particular existence of critical energies, is going to play a crucial role.

1.4 Exercises

Exercise 1.4.1. Consider the differential equation from Example 1.3.1. Prove that if a solution
u(t) exists for all t ≥ 0, then u(t) = 6(t− t0)−2 for some t0 > 0. Similarly, if u(t) exists for all t ≤ 0,
then u(t) = 6(t0 − t)−2 for some t0 > 0. Thus “almost all” solutions blow up both for positive and
negative times.
Hint: You might use the fact that the energy 1

2(u′)2 − 1
3u

3 is conserved and that u′ is increasing.
Perhaps one could also deduce this from the phase portrait.

Exercise 1.4.2. Let u(t) be a solution of the equation in Example 1.3.2, defined on the maximal
interval of existence (T−, T+). Prove that there exists C̃ > 0 such that |(u(t), u′(t))| ≤ C̃eC̃|t| for all
t ∈ (T−, T+). Deduce that T− = −∞ and T+ = +∞.

Exercise 1.4.3. Prove the statement in Example 1.3.3.
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Chapter 2

Elements of harmonic analysis

2.1 Riesz-Thorin interpolation theorem

Lemma 2.1.1 (Three-line theorem, Phragmen-Lindelöf principle). Let F (z) be bounded and con-
tinuous on the strip 0 ≤ x ≤ 1 and analytic inside. If |F (it, y)| ≤M1 and F (1 + it, y) ≤M2 for all
y, then

|F (x, y)| ≤M1−x
1 Mx

2 , for all x ∈ [0, 1].

Proof. It is sufficient to consider M1 = M2 = 1. By considering the function F̃ (z) := F (z)eε(z
2−1),

we reduce to the case limy→∞ |F (z)| = 0, and the conclusion follows from the Maximum Principle.

Proposition 2.1.2 (Riesz-Thorin interpolation theorem). Let (X,µ) and (X̃, µ̃) be measure spaces.
Let 1 ≤ p1, p2 ≤ ∞ and assume that Y ⊂ Lp1(X,µ) ∩ Lp2(X,µ) is dense in both Lp1(X,µ) and
Lp2(X,µ). Let T be a linear operator defined on Y taking its values in measurable functions on
(X̃, µ̃) and assume that 1 ≤ q1, q2 ≤ ∞, M1, M2 are such that

‖Tf‖
Lqj (X̃,µ̃)

≤Mj‖f‖Lpj (X,µ), for all f ∈ Y and j ∈ {1, 2}.

Then for all θ ∈ [0, 1]

‖Tf‖
Lq(X̃,µ̃)

≤M θ
1M

1−θ
2 ‖f‖Lp(X,µ) for all f ∈ Y,

where
1

p
=

θ

p1
+

1− θ
p2

,
1

q
=

θ

q1
+

1− θ
q2

.

Proof. The conclusion is obvious if θ = 0 or θ = 1, so assume 0 < θ < 1. If p1 = p2 =∞, then the
theorem follows from the Hölder inequality, thus we may assume p1 <∞ or p2 <∞, which allows
us to consider only f being a step function with finite set of values. Note that we can assume that Y
contains such functions (extending T by density if needed; we could also assume that Y = Lp1∩Lp2).

We need to estimate
sup{〈Tf, g〉 : ‖f‖Lp ≤ 1, ‖g‖Lq′ ≤ 1},

with the supremum taken over step functions with a finite set of values:

f =
∑
j

ajIAj , g =
∑
k

bkIBk .
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(Attention to the case q = q1 = q2 = 1).
For 0 ≤ <z ≤ 1 we set

1

p(z)
:=

1− z
p1

+
z

p2
,

1

q′(z)
:=

1− z
q′1

+
z

q2
,

φ(z) :=
∑
j

|aj |
p
p(z) ei arg ajIAj , ψ(z) :=

∑
k

|bk|
q′
q′(z) ei arg bkIBk .

We apply the three-line theorem to 〈Tφ(z), ψ(z)〉.

2.2 Real analysis

In this section, we follow Chapter 1 from the book [1].

Proposition 2.2.1 (Minkowski inequality). If (X,µ), (Y, ν) measure spaces, 1 ≤ p ≤ q ≤ ∞ and
f : X × Y → R+ is measurable, then∥∥y 7→ ‖f(·, y)‖Lp(X)

∥∥
Lq(Y )

≤
∥∥x 7→ ‖f(x, ·)‖Lq(Y )

∥∥
Lp(X)

.

Proof. We can assume that f ≥ 0 and, upon replacing f by fp, also that p = 1. Let g ∈ Lq′(Y ).
We have ∫

Y
g(y)

∫
X
f(x, y) dx dy ≤

∫
X
‖f(x, ·)‖Lq‖g‖Lq′ dx

by Hölder inequality.

2.2.1 Young inequalities for convolutions

Recall that for f, g functions on Rd we denote

(f ∗ g)(x) :=

∫
Rd
f(x− y)g(y) dy,

whenever this expression makes sense.

Proposition 2.2.2 (Young’s inequality). Let f ∈ Lp(Rd), g ∈ Lq(Rd). If

1

p
+

1

q
= 1 +

1

r
,

then
‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq .

Proof. If q = 1, this follows from Minkowski inequality. If q = p′ and r = ∞, this follows from
Hölder inequality. The remaining cases follow from Riesz-Thorin.
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2.2.2 Weak Lp spaces

For a measurable function g we define

‖g‖q
Lqw

:= sup
λ>0

λqµ{x : |g(x)| ≥ λ}.

Lemma 2.2.3 (Markov inequality). For any measurable g, ‖g‖Lqw ≤ ‖g‖Lq .

Proposition 2.2.4 (Refined Young’s inequality). Under assumptions of Proposition 2.2.2, if 1 <
p, q, r <∞, there exists C > 0 such that for all measurable f, g

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lqw .

Corollary 2.2.5 (Hardy-Littlewood-Sobolev inequality). If α ∈ (0, d) and (p, r) ∈ (1,∞) satisfy

1

p
+
α

d
= 1 +

1

r
,

then
‖| · |−α ∗ f‖Lr ≤ C‖f‖Lp .

Proof. The function |x|−α is in the space Ld/αw (Rd).

In order to prove the refined Young inequality, we use the following tool.

Proposition 2.2.6 (Atomic decomposition). Let (X,µ) a measure space, p ∈ [1,∞), f ∈ Lp(X)
positive. There exist sequences of positive real numbers (ck)k∈Z and functions (fk)k∈Z such that

supp fj ∩ supp fk = ∅,
µ(supp fk) ≤ 2k+1,

‖fk‖L∞ ≤ 2
− k
p ,

1

2
‖f‖pLp ≤

∑
k∈Z

cpk ≤ 2‖f‖pLp .

Proof. We set

λk := inf{λ : µ(f > λ) < 2k},

ck := 2
k
pλk,

fk := c−1
k Iλk+1<f≤λkf.

We will check all the requirements.

Remark 2.2.7. Many other decompositions of this type are used in harmonic analysis. We will
encounter at least one more example, the Littlewood-Paley decomposition.

Proof of Proposition 2.2.4. Next lecture.

8



2.3 Fourier transform

In this section, the presentation is often close to the one in Chapter 4, Volume 1 of the book by
Muscalu and Schlag [2].

Let µ be a complex-valued Borel measure on Rd of finite total variation. We define its Fourier
transform:

(Fµ)(ξ) = µ̂(ξ) :=

∫
Rd

e−ix·ξµ( dx), ∀ξ ∈ Rd.

We see that µ̂ is a bounded continuous function.
If f ∈ L1( dx), we set Ff := F(f dx).

2.3.1 Fourier transform on the Schwartz space

It is useful to extend the Fourier transformation on functions which are not in L1. In order to do
this, we introduce the space of tempered distributions.

Definition 2.3.1. The Schwartz space S(Rd) is the space of complex-valued functions f ∈ C∞(Rd)
such that for any multi-indices α, β ∈ Nd

xα∂βf ∈ L∞(Rd).

We say that a sequence fn ∈ S(Rd) converges to f ∈ S(Rd) if for any multi-indices α, β

lim
n→∞

‖xα∂β(fn − f)‖L∞ = 0.

Proposition 2.3.2. The Fourier transform F is continuous S → S.

Proof. This follows from the formulas:

(i∂)αf̂(ξ) = F(xαf)(ξ),

(iξ)αf̂(ξ) = F(∂αf)(ξ).

Proposition 2.3.3 (Fourier inversion theorem). The Fourier transform takes S(Rd) onto S(Rd).
For any f ∈ S(Rd),

f(x) = (2π)−d
∫
Rd

eix·ξ f̂(ξ) dξ, ∀x ∈ Rd. (2.3.1)

Proof. We need the following fact. For any ε > 0 we have (see Exercise 2.6.2):∫
Rd

eix·ξ−
ε
2
|ξ|2 dξ =

(2π

ε

) d
2
e−
|x|2
2ε . (2.3.2)

Using this, we can write, for any ε > 0:

(2π)−d
∫
Rd

eix·ξ f̂(ξ)e−
ε
2
|ξ|2 dξ = (2π)−d

∫
Rd

eix·ξ
∫
Rd

e−iy·ξf(y)e−
ε
2
|ξ|2 dy dξ

= (2π)−d
∫
Rd
f(y)

∫
Rd

ei(x−y)·ξ− ε
2
|ξ|2 dξ dy

= (2π)−
d
2

∫
Rd
f(y)ε−

d
2 e
− 1

2
|x−y√

ε
|2

dy
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When ε→ 0, the left hand side tends to the right hand side of (2.3.1), and the right hand side tends
to f(x). This finishes the proof.

Definition 2.3.4. A tempered distribution on Rd is a continuous linear functional on S(Rd), that
is a linear functional φ : S(Rd)→ C such that 〈φ, un〉 → 〈φ, u〉 whenever un → u in S(Rd).

We say that a sequence φn ∈ S(Rd) converges to u ∈ S(Rd) if 〈φn, u〉 → 〈φ, u〉 for all u ∈ S(Rd).

Proposition 2.3.5. If φ ∈ S ′(Rd), then there exists C,N ≥ 0 such that for all u ∈ S(Rd)

|〈φ, u〉| ≤ C
∑

|α|≤N,|β|≤N

‖xα∂βu‖L∞(Rd).

Proof. Exercise 2.6.4.

Example 2.3.6. If f is locally integrable and there exists k such that (1 + |x|)−kf(x) ∈ L1(Rd),
then we define Tf ∈ S ′ by the formula

〈Tf , u〉 =

∫
Rd
fudx.

Note that traditionally we do not use the complex conjugate in this case.

Definition 2.3.7. For any continuous operator A : S → S we define the operator At : S ′ → S ′ by
the formula:

〈Atφ, u〉 = 〈φ,Au〉.

The Fubini theorem implies F tu = Fu for u ∈ L1(Rd), hence we will write F instead of F t.
Analogously, we define ∂α := (−1)|α|(∂α)t itp. If θ ∈ S, then we define φ ∗ θ by

〈φ ∗ θ, u〉 =
〈
φ, x 7→

∫
Rd
θ(y − x)u(y) dy

〉
.

Proposition 2.3.8. The usual properties of the Fourier transform continue to hold. For any u ∈ S ′:

(i∂)αû = F(xαu),

(iξ)αû = F(∂αu),

e−ia·ξû(ξ) = F(x 7→ u(x− a))(ξ),

û(ξ − ω) = F(eix·ωu)(ξ),

F(x 7→ u(λx))(ξ) = λ−dû(ξ/λ),

F(u ∗ θ) = ûθ̂, for all θ ∈ S.

Proof. Exercise 2.6.5.

Proposition 2.3.9. Let φ ∈ S(Rd) be such that 〈φ, u〉 for all u ∈ S(Rd) with suppu ⊂ Rd \ {0}.
Then φ̂ is a polynomial, in other words φ is a finite linear combination of the Dirac delta and its
derivatives.

Proof. Exercise 2.6.6.
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Proposition 2.3.10. For any α ∈ (0, d) there exists C(α, d) such that

F(|x|−α) = C(α, d)|ξ|α−d.

Remark 2.3.11. The functions |x|−α are called Riesz potentials.

Proof. Exercise 2.6.7.

Proposition 2.3.12 (Plancherel formula). For all f ∈ L2(Rd),

‖Ff‖L2(Rd) = (2π)
d
2 ‖f‖L2(Rd).

Proof. Exercise 2.6.8.

Proposition 2.3.13 (Hausdorff-Young inequality). For all p ∈ [1, 2] and f ∈ Lp(Rd) the inequality
‖Ff‖Lp′ (Rd) ≤ (2π)

d
p′ ‖f‖Lp(Rd) is true.

Proof. This is clear for p = 1, for p = 2 follows from Proposition 2.3.12, and for the remaining
values from the Riesz-Thorin theorem.

Lemma 2.3.14 (Bernstein inequality). There exists Cd ≥ 0 such that if f ∈ S(Rd) is such that
supp f̂ ⊂ {|ξ| ≤ R}, then for any multi-index α

‖∂αf‖Lq(Rd) ≤ C(α, d)R|α|+d(1/p−1/q)‖f‖Lp(Rd), for all 1 ≤ p ≤ q ≤ ∞.

Proof. Considering g(x) := f(x/R), we reduce the proof to the case R = 1. Indeed, ĝ is sup-
ported in the unit ball (see Proposition 2.3.8), ‖g‖Lp(Rd) = Rd/p‖f‖Lp(Rd) and ‖∂αg‖Lq(Rd) =

R−|α|+d/q‖∂αf‖Lq(Rd).
In order to prove the lemma for R = 1, we write ∂̂αf(ξ) = (iξ)αχ̂(ξ)f̂(ξ), where χ̂ ∈ C∞ is

identically 1 on {|ξ| ≤ 1} and suppχ ⊂ {|ξ| ≤ 2}. In particular χ ∈ S(Rd). Taking the inverse
Fourier transform we obtain ∂αf = f ∗ F−1((iξ)αχ̂). Let r := (1/(p′) + 1/q)−1 ≥ 1 (the last
inequality follows from q ≥ p). Proposition 2.2.2 yields

‖∂αf‖Lq ≤ ‖F−1((iξ)αχ̂)‖Lr‖f‖Lp ≤ C(α, d)‖f‖Lp ,

with
C(α, d) := max(‖F−1((iξ)αχ̂)‖L1 , ‖F−1((iξ)αχ̂)‖L∞).

Remark 2.3.15. A more careful analysis shows that one can take C(α, d) = C
1+|α|
d , where Cd

depends only on d.
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2.4 Sobolev spaces

Definition 2.4.1. For any s ∈ R the Sobolev space Hs is defined as the completion of S in S ′ for
the topology defined by the norm

‖f‖Hs :=
(∫

Rd
(1 + |ξ|2)s|f̂(ξ)|2 dξ

) 1
2
.

Lemma 2.4.2. . For any s > d
2 there is the inclusion Hs(Rd) ⊂ C(Rd) and there exists Cs ≥ 0

such that for all f ∈ Hs(Rd)
‖f‖L∞(Rd) ≤ Cs‖f‖Hs(Rd).

Proof. Exercise 2.6.9

We denote S0 the set of functions u ∈ S such that supp û ⊂ Rd \ {0}.

Definition 2.4.3. For any s < d
2 the homogeneous Sobolev space Ḣs is defined as the completion

of S0 in S ′ for the topology defined by the norm

‖f‖Ḣs :=
(∫

Rd
|ξ|2s|f̂(ξ)|2 dξ

) 1
2
.

Proposition 2.4.4 (Sobolev embedding). Let s < d
2 and let p > 0 be determined by the relation

1

2
− 1

p
=
s

d
⇔ p =

2d

d− 2s
.

There exists a constant C = C(s, d) such that

‖f‖Lp(Rd) ≤ C‖f‖Ḣs(Rd), for all f ∈ Ḣs(Rd).

Proof. We can assume f ∈ S(Rd) (for f ∈ Ḣs(Rd) will follow by density). Let g := F−1(|ξ|sf̂(ξ)),
so that f = F−1(|ξ|−s) ∗ g. Now we use the Hardy-Littlewood-Sobolev inequality.

2.4.1 Stationary and non-stationary phase

We now study oscillatory integrals, that is integrals of the form

I(λ) =

∫
Rd

eiλφ(ξ)a(ξ) dξ,

where a ∈ C∞0 (Rd) and φ ∈ C∞(Rd). We are interested in the asymptotic behaviour of I(λ) as
λ→ +∞. Notice that if φ is a non-trivial affine function, then Proposition 2.3.2 implies that |I(λ)|
decays faster than any power of λ. The lemma below generalises this fact.

Lemma 2.4.5 (Non-stationary phase). If ∇φ 6= 0 on supp a, then for any N ≥ 1 there exists
C(N, a, φ) ≥ 0 such that

|I(λ)| ≤ C(N, a, φ)λ−N , as λ→∞.

12



Proof. Consider the differential operators

Lu :=
1

iλ

∇φ · ∇u
|∇φ|2

, L∗u :=
i

λ
∇ ·
( u∇φ
|∇φ|2

)
.

We have Leiλφ = eiλφ, hence integration by parts yields

|I(λ)| =
∣∣∣ ∫

Rd
LNeiλφ(ξ)a(ξ) dξ

∣∣∣ =
∣∣∣ ∫

Rd
eiλφ(ξ)(L∗)Na(ξ) dξ

∣∣∣ ≤ ∫
Rd

∣∣(L∗)Na(ξ)
∣∣ dξ ≤ C(N, a, φ)λ−N .

Lemma 2.4.6 (Stationary phase). Assume that all the critical points of φ belonging to supp a are
non-degenerate, in other words

ξ0 ∈ supp a and ∇φ(ξ0) = 0 ⇒ det
(
∇2φ(ξ0)

)
6= 0.

Then there exists C(a, φ) ≥ 0 such that

|I(λ)| ≤ C(a, φ)λ−
d
2 , as λ→∞.

Proof. Let χ ∈ C∞ be a cut-off function, that is χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2.
Since non-degenerate critical points are isolated, in supp a there is a finite number of them. Call
them ξ1, . . . , ξm. For each critical point ξj , let

Ij(λ) :=

∫
Rd

eiλφ(ξ)a(ξ)χ
(√
λ(ξ − ξj)

)
dξ.

Obviously |Ij(λ)| ≤ C(a)λ−
d
2 . Set

I0(λ) := I(λ)−
m∑
j=1

Ij(λ) =

∫
Rd

eiλφ(ξ)ã(ξ) dξ,

where ã(ξ) :=
(
1 −

∑m
j=1 χ

(√
λ(ξ − ξj)

)
a(ξ). From the non-degeneracy condition, there exists

c(a, φ) > 0 such that
|∇φ(ξ)| ≥ c(a, φ)

√
λ, ∀ξ ∈ supp ã.

We also have the following improved version.

Lemma 2.4.7. Assume that ξ0 is the only critical point of φ in supp a and that it is non-degenerate.
Then for any k ∈ N there exists C(k, a, φ) such that∣∣∣ dk

dλk
(
e−iλφ(ξ0)I(λ)

)∣∣∣ ≤ C(k, a, φ)λ−
d
2
−k, as λ→∞.

Proof.

Corollary 2.4.8. Let σSd−1(ξ) be the surface measure of the unit sphere Sd−1 ⊂ Rd. Then

F−1σSd−1(x) = ei|x|ω+(|x|) + e−i|x|ω−(|x|), |x| ≥ 1,

where ω± are smooth and for all k ∈ N there exists Ck ≥ 0 such that

|∂krω±| ≤ Ckr−
d−1
2
−k, for all r ≥ 1.

Proof.
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2.5 Littlewood-Paley theory

Lemma 2.5.1 (Partition of unity over a geometric scale). There exists a radial nonnegative function
ψ ∈ C∞(Rd) such that suppψ ⊂ {1

2 ≤ x ≤ 2} and

∞∑
j=−∞

ψ(2−jx) = 1, ∀x 6= 0.

Proof. We take χ ∈ C∞ a radial non-increasing cut-off function such that χ(x) = 1 for |x| ≤ 1 and
χ(x) = 0 for |x| ≥ 2. We set ψ(x) := χ(x)− χ(2x).

Definition 2.5.2. For j ∈ Z we define the homogeneous dyadic block ∆̇j and the homogeneous
low-frequency cut-off operator Ṡj :

∆̇ju := ψ(2−jD)u := F−1(ψ(2−jξ)û(ξ)) = 2jd
∫
Rd

(F−1ψ)(2jy)u(x− y) dy,

Ṡju :=
∑
j′<j

∆ju = F−1(χ(2−jξ)û(ξ)) = 2jd
∫
Rd

(F−1χ)(2jy)u(x− y) dy.

Lemma 2.5.3. The operators ∆̇j and Ṡj are bounded Lp → Lp for all p ∈ [1,∞], with bounds
independent of j.

Proof. Exercise 2.6.12.

Note that ∆̇j and Ṡj are Fourier multipliers, and as such they commute with other Fourier
multipliers, like convolutions, derivatives, . . .

The formal homogeneous Littlewood-Paley decomposition is

Id =
∑
j∈Z

∆̇j ,

but in what sense the series converges is, for now, unclear.

Definition 2.5.4 (Homogeneous Besov norms). Let s ∈ R and p, r ∈ [1,∞]. For any u ∈ S0 we
define

‖u‖Ḃsp,r :=
(∑
j∈Z

2rjs‖∆̇ju‖rLp
) 1
r
.

We call ‖ · ‖Ḃsp,r the homogeneous Besov norm.

Remark 2.5.5. We can think of the homogeneous Besov norms as follows. For each j ∈ Z, take
the Lp norm of ∆̇ju, multiply it by 2js and take the lr norm of the resulting sequence.

Remark 2.5.6. One can check that, up to a constant, the definition of the Besov norm does not
depend on the choice of the function ψ.

Remark 2.5.7. One also defines homogeneous Besov spaces, but there are some functional-theoretic
subtleties which we would like to avoid here.
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Proposition 2.5.8 (Duality for Besov norms). For any s ∈ R and p, r ∈ [1,∞] there exists C ≥ 0
such that

〈φ, u〉 ≤ C‖φ‖Ḃ−s
p′,r′
‖u‖Ḃsp,r , ∀u, φ ∈ S0

and
‖u‖Ḃsp,r ≤ C sup

φ∈Q−s
p′,r′

〈φ, u〉, ∀u ∈ S0,

where Q−sp′,r′ is the set of φ ∈ S0 such that ‖φ‖Ḃ−s
p′,r′
≤ 1.

Proof.

Proposition 2.5.9. For any p ∈ [2,∞) there exists Cp such that for all u ∈ S0

‖u‖Lp ≤ Cp‖u‖Ḃ0
p,2
.

For any p ∈ (1, 2] there exists Cp such that for all u ∈ S0

‖u‖Ḃ0
p,2
≤ Cp‖u‖Lp .

Remark 2.5.10. This result is a part of the Littlewood-Paley theorem, a fundamental result in
harmonic analysis, which is more difficult and hopefully we will not need it.

Proof of Proposition 2.5.9.

Proposition 2.5.11 (Refined Sobolev inequality). Let 0 < s < d
2 and p = 2d

d−2s . Then

‖f‖Lp ≤ C‖f‖
p−2
p

Ḃs2,∞
‖f‖

2
p

Ḣs
.

Proof.

2.6 Exercises

Exercise 2.6.1. Prove the following special case of the Marcinkiewicz interpolation theorem. Let
(X,µ) be a measure space and let T be a sublinear positive operator, that is an operator satisfying

f ≥ 0 ⇒ Tf ≥ 0, for all measurable f
T (af + bg) ≤ aTf + bTg, ∀a, b ≥ 0 and measurable positive f, g.

Suppose moreover that T is bounded L1 → L1
w and L∞ → L∞, in other words there exist constants

C1, C∞ > 0 such that

sup
λ>0

λ · µ{Tf > λ} ≤ C1‖f‖L1 ,

‖Tf‖L∞ ≤ C∞‖f‖L∞ .

Then T is bounded Lp → Lp for all p ∈ (1,∞).
Hint.
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• Show that T (0) = 0 and T (λf) = λTf for all λ > 0.

• It suffices to prove that there exists C > 0 such that for all f, g satisfying ‖f‖Lp ≤ 1 and
‖g‖Lp′ ≤ 1 there is 〈Tf, g〉 ≤ C.

• Let f =
∑

j cjfj and g =
∑

k dkgk be atomic decompositions of f and g. Let ajk := 〈Tfj , gk〉.
Thus 〈Tf, g〉 ≤

∑
(j,k)∈Z2 ajkcjdk. Using the Young inequality for the counting measure, prove

that it is sufficient to show that ajk ≤ A(j − k) for some summable function A : Z→ R+.

• We will prove that there exist C̃, ε > 0 (depending on C1 and C∞) such that A(n) = C̃2−ε|n|

works. We treat separately j ≥ k and k ≥ j.

• If j ≥ k, use ‖gk‖L1 ≤ 2
− k
p′ 2k+1, ‖Tfj‖L∞ ≤ C∞2

− j
p and conclude.

• In the case j ≤ k, choose some a ∈ (1, p), and then prove and use the following bounds:

‖gk‖La′ ≤ 2
− k
p′ 2

k+1
a′ ,

‖Tfj‖aLa ≤
a

a− 1
C1C

a−1
∞ ‖fj‖L1‖fj‖a−1

L∞ . 2
− j
p

+(j+1)− j
p

(a−1) ⇒ ‖Tfj‖La . 2
− j
p 2

j+1
a .

Exercise 2.6.2. Prove (2.3.2).
Hint. Reduce to ε = 1 and d = 1. Define I(x) :=

∫
R eixξ−

1
2
|ξ|2 dξ. The value of I(0) is well-known.

There are at least two ways to conclude the proof:

• either use complex analysis to show that e
|x|2
2 I(x) is independent of x,

• or check that I ′(x) = −xI(x) for all x ∈ R.

Exercise 2.6.3. Prove the following generalisation of (2.3.2). Let z ∈ C \ {0} with <z ≥ 0. Then

F
(
e−

z
2
|x|2) =

(2π

z

) d
2
e−
|ξ|2
2z ,

where z−
d
2 := |z|−

d
2 e−i

d
2
θ for z = |z|eiθ with −π

2 ≤ θ ≤
π
2 .

Hint. For <z > 0, this follows from the unique continuation principle in complex analysis. In order
to treat the case <z, use the fact that F is continuous S ′ → S ′.

Exercise 2.6.4. Prove Proposition 2.3.5.
Hint. Assuming the conclusion is false, construct a sequence un ∈ S(Rd) such that un → 0 in S(Rd)
and 〈φ, un〉 ≥ 1 for all n.

Exercise 2.6.5. Prove Proposition 2.3.8.

Exercise 2.6.6. Prove Proposition 2.3.9.

Exercise 2.6.7. Prove Proposition 2.3.10.
Hint. Denote φ := F(|x|−α). Prove that ψ is homogeneous of degree α−d (which means 〈φ, u(λ·)〉 =
λ−α〈φ, u〉 for any λ > 0 and u ∈ S) and rotationally symmetric (which means 〈φ, u(R·)〉 = 〈φ, u〉
for any rotation R and u ∈ S). Set ψ(ξ) := |ξ|d−αφ(ξ) and deduce that ψ is homogeneous of degree
0 and rotationally symmetric. Show that x · ∇ψ = 0 and (xj∂k − xk∂j)ψ = 0 for j 6= k in the
distributional sense. Taking an appropriate linear combination deduce that 〈∇ψ, u〉 = 0 for all
u ∈ S0. Deduce that ∂jψ is a polynomial for all j. One should be able to conclude from here, but
to be honest at the moment I’m not sure how.
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Exercise 2.6.8. Prove Proposition 2.3.12.
Hint. First prove, using Fubini’s theorem, that for any f, g ∈ S we have

∫
Rd f(ξ)ĝ(ξ) dξ =∫

Rd f̂(x)g(x) dx.

Exercise 2.6.9. Prove Lemma 2.4.2.

Exercise 2.6.10. Show that S ⊂ Ḣs if and only if s > −d
2 . What about Ḃs

p,r instead of Ḣs?

Exercise 2.6.11. Complete the proof of Proposition 2.4.4.

Exercise 2.6.12. Prove Lemma 2.5.3.

Exercise 2.6.13. Show that for any u ∈ S0 and any s ∈ R, p ∈ [1,∞], r ∈ [1,∞] the Ḃs
p,r norm of

u is finite.
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Chapter 3

Strichartz estimates

3.1 The linear wave propagator

We consider the linear wave equation without potential from Rd to R:

∂2
t u(t, x) = ∆u(t, x), (t, x) ∈ R× Rd, u(t, x) ∈ R.

Notice that there is no loss of generality in considering u(t, x) ∈ R instead of u(t, x) ∈ Rm, because
in the vector-valued case the components u(j) are decoupled.

We rewrite this equation in a standard way as a first-order in time system:

∂t

(
u(t, x)
u̇(t, x)

)
=

(
u̇(t, x)

∆u(t, x)

)
, (t, x) ∈ R× Rd, u(t, x), u̇(t, x) ∈ R. (3.1.1)

We will write u := (u, u̇).

Definition 3.1.1. Let u = (u, u̇) ∈ C([0, T ],S ′ × S ′). We say that u is a weak solution of (3.1.1)
if for all φ = (φ, φ̇) ∈ C∞([0, T ],S) ∫ T

0
〈φ̇, u− u̇〉+ 〈φ,

Proposition 3.1.2. Let s < d
2 . Denote Hs := Ḣs × Ḣs−1 and ‖u0‖Hs :=

√
‖u0‖2Ḣs

+ ‖u̇0‖2Ḣs−1
.

For all u0 = (u0, u̇0) ∈ Hs and t0 ∈ R there exists a unique weak solution u ∈ C(R,S ′ × S ′) of
(3.1.1) such that u(t0) = u0. This solution satisfies:

u ∈ C(R,Hs),
‖u(t)‖Hs = ‖u0‖Hs , for all t ∈ R.

Let γ

We write u(t) = S(t, t0)u0. Thus S(t, t0) is an isometry of Hs for all t, t0 and s < d
2 .

We also consider the non-homogeneous equation

∂2
t u(t, x) = ∆u(t, x) + f(t, x), (t, x) ∈ R× Rd, u(t, x) ∈ R. (3.1.2)
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Proposition 3.1.3 (Energy estimate). Let s < d
2 . For all u0 = (u0, u̇0) ∈ Hs, f ∈ L1(I, Ḣs−1)

and t0 ∈ I there exists a unique weak solution u ∈ C(R,S ′ × S ′) of (3.1.2) such that u(t0) = u0.
This solution satisfies:

u ∈ C(I,Hs),

‖u(t)‖Hs ≤ ‖u0‖Hs +
∣∣∣ ∫ t

t0

‖f(t′)‖Ḣs−1 dt′
∣∣∣, for all t ∈ I.

Moreover, if u0(x) = 0 for |x− x0| ≤ |t− t0|+ R and f(t′, x) = 0 for |x− x0| ≤ |t− t′|+ R, then
u(t, x) = 0 for |x− x0| ≤ R.

Remark 3.1.4. The last property is the finite speed of propagation.

Proof. We only treat the case of smooth data.
In order to prove the finite speed of propagation, we consider the vector field in R1+d

G(t, x) :=
(1

2

(
(∂tu)2 + |∇u|2

)
,−∂tu∇u

)
.

We compute

divR1+d G(t, x) = ∂2
t u∂tu+ ∂t∇u · ∇u− ∂t∇u · ∇u− ∂tu∆u = f∂tu.

Without loss of generality take t0 = 0, x0 = 0 and t ≥ 0. We apply the space-time divergence
theorem to the cone bounded by the disks D((0, x), R + |t|) and D((t, x), R). We obtain the so-
called energy identity :∫
K
f∂tu dx = −

∫
|x|≤R+|t|

1

2

(
(u̇0)2 + |∇u0|2

)
dx+

∫
|x|≤R

1

2

(
(∂tu(t))2 + |∇u(t)|2

)
dx+

1

2
√

2

∫
M
|∇⊥u|2 dσ,

where K is the cone, M is the “side” of the cone and ∇⊥ is the tangential derivative. If the first
two terms are identically zero, then the other two as well, which proves the claim.

We can solve explicitly (3.1.2) by taking the Fourier transform in space variables. We obtain

û(t, ξ) = û0(ξ) cos(|ξ|(t− t0)) + ̂̇u0
sin(|ξ|(t− t0))

|ξ|
+

∫ t

t0

f̂(s, ξ)
sin(|ξ|(t− s))

|ξ|
ds,

or equivalently

u(t) = cos((t− t0)|D|)u0 +
sin((t− t0)|D|)

|D|
u̇0 +

∫ t

t0

sin((t− s)|D|)
|D|

f(s) ds.

We are led to study dispersive properties of the half wave propagators e±it|D|. Note that we can
transform the wave equation to the half-wave equation formally by taking u+(t) := u(t)+ 1

i|D|∂tu(t).
Denote

〈x〉 :=
√

1 + x2.

Proposition 3.1.5. There exists C ≥ 0 such that for all complex-valued f ∈ S such that supp f̂ ⊂
{1

2 ≤ |ξ| ≤ 2} and all t ∈ R
‖e±it|D|f‖L∞ ≤ C〈t〉−

1
2 ‖f‖L1 . (3.1.3)
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Proof. Without loss of generality take the sign “+”. Let χ(ξ) = χ(|ξ|) ∈ C∞ be equal to 1 for
1
2 ≤ |ξ| ≤ 2 and to 0 for |ξ| ≤ 1

4 or ξ ≥ 4. By our assumption, we have

eit|D|f = eit|D|χ(|D|)f.

Taking the inverse Fourier transform, up to a normalising factor we get(
eit|D|f

)
(x) = (Kt ∗ f)(x),

where
Kt(x) :=

∫
Rd

eit|ξ|+iξ·xχ(ξ) dξ.

Thus it suffices to show that
‖Kt‖L∞ . 〈t〉−

d−1
2 .

Changing to polar coordinates, we find

Kt(x) =

∫ ∞
0

eitrχ(r)rd−1F−1σ(rx) dr =

∫ ∞
0

eir(t±|x|)χ(r)rd−1ω±(rx) dr,

where σ is the surface measure of Sd−1 and we have used Corollary 2.4.8. If 1
2 t ≤ |x| ≤ 2t, the

conclusion follows directly from Corollary 2.4.8. If not, we integrate by parts.

From Plancherel we have ‖e±it|D|γ‖L2 = ‖γ‖L2 , so (3.1.3) and Riesz-Thorin theorem yield

‖e±it|D|γ‖Lq ≤ C〈t〉
− 1

2
( 1
p′−

1
p

)t‖γ‖Lp′ , ∀f ∈ S, p ∈ [2,∞].

3.2 The TT ∗ method

In this section, we prove general Strichartz estimates. For f a measurable function on R× Rd and
p, q ∈ [1,∞] we define

‖f‖LpLq :=

(∫
R
‖f(t, ·)‖pLq dt

) 1
p

.

Measurability.

Lemma 3.2.1. Let (pj , qj) ∈ [1,∞]2 and θj ≥ 0 with
∑m

j=1 θj = 1. Suppose that

1

p
=

m∑
j=1

θj
pj
,

1

q
=

m∑
j=1

θj
qj
.

Then

‖f‖LpLq ≤
m∏
j=1

‖f‖θj
LpjLqj

, ∀f ∈ S(R× Rd).

Proof. Exercise.
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Definition 3.2.2. Let σ > 0. We say that a pair (p, q) is σ-admissible if

1

p
+
σ

q
=
σ

2
, (p, q, σ) 6= (2,∞, 1).

If σ is known from the context, we can call such a pair admissible.

Remark 3.2.3. It is easy to see that in the case σ = 0 we do not obtain anything interesting. We
would be forced to admit (∞, 2) is the only 0-admissible pair.

Theorem 3.2.4. Let U(t) be a bounded family of continuous operators such that

‖U(t)U∗(t′)f‖L∞ ≤ C|t− t′|−σ‖f‖L1 , ∀t, t′ ∈ R, f ∈ S. (3.2.1)

Let χ : R2 → C be a measurable function such that |χ(t, t′)| ≤ 1 for all t, t′. Then for all σ-admissible
pairs (p, q) ∥∥∥∥∫

R
χ(t, t′)U(t)U∗(t′)f(t′) dt′

∥∥∥∥
Lp1Lq1

≤ C‖f‖
Lp
′
2Lq
′
2
, (3.2.2)

with C independent of χ.

Proof of Theorem 3.2.4 in the non-endpoint case. The proof is considerably easier in the non-endpoint
case p > 2, so we present it first.
Step 1. For f, g ∈ C∞(R,S) we define

Tχ(f, g) :=

∫
R2

χ(t, t′)〈U(t)U∗(t′)f(t′), g(t)〉 dt dt′,

where 〈·, ·〉 is the L2 inner product. By duality, (3.2.2) is equivalent to

|Tχ(f, g)| ≤ C‖f‖
Lp
′
2Lq
′
2
‖g‖

Lp
′
1Lq
′
1
. (3.2.3)

Step 2. We show (3.2.3) with (p2, q2) = (p1, q1). Interpolating between (3.2.1) and the L2 → L2

bound we have
‖U(t)U∗(t′)f(t′)‖Lq ≤ |t− t′|−σ

(
1− 2

q

)
‖f(t′)‖Lq′ ,

thus

〈U(t)U∗(t′)f(t′), g(t)〉 ≤ C|t− t′|−σ
(

1− 2
q

)
‖f(t′)‖Lq′‖g(t)‖Lq′ = C|t− t′|−

2
p ‖f(t′)‖Lq′‖g(t)‖Lq′ ,

and we conclude using Hardy-Littlewood-Sobolev inequality, using the fact that 2 < p <∞.
Step 3. We prove that ∥∥∥∥∫

R
U∗(t)f(t) dt

∥∥∥∥
L2

≤ C‖f‖Lp′Lq′ . (3.2.4)

Denote T = Tχ with χ(t, t′) = 1 for all t, t′. Directly from the definition of Tχ we obtain

T (f, f) =

∥∥∥∥∫
R
U∗(t)f(t) dt

∥∥∥∥2

L2

,

so (3.2.4) follows from Step 1.
Step 4. We prove (3.2.3) for any σ-admissible pairs (p1, q1) and (p2, q2). By symmetry, without loss
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of generality we can assume q1 ≤ q2. Fixing t and using (3.2.4) with t′ instead of t and χ(t, t′)f(t′)
instead of f(t) we get ∥∥∥∥∫

R
χ(t, t′)U(t)U∗(t′)f(t′) dt′

∥∥∥∥
L∞L2

≤ C‖f‖
Lp
′
2Lq
′
2
.

Lemma 3.2.1 and (3.2.2) for (p1, q1) = (p2, q2) thus imply (3.2.2) in the general case.

The endpoint case p = 2 is much more difficult. It was first settled by Keel and Tao [5]. The
Hardy-Littlewood-Sobolev inequality is not directly applicable. Instead, we will revisit its proof in
our particular setting. First, we write

Tχ(f, g) =
∑
j∈Z

Tj(f, g) :=
∑
j∈Z

∫
R2

χj(t, t
′)〈U(t)U∗(t′)f(t′), g(t)〉 dt dt′,

where χj(t, t′) := I2j≤|t−t′|<2j+1χ(t, t′). Our main goal is to prove (3.2.3) with p1 = p2 = 2 and
q1 = q2 = q = 2σ

σ−1 <∞.

Lemma 3.2.5. There exists an open neighbourhood V of (q, q) in R2 such that for all (a, b) ∈ V
and j ∈ Z

|Tj(f, g)| ≤ C2−jβ(a,b)‖f‖L2La′‖g‖L2Lb′ , β(a, b) := σ − 1− σ

a
− σ

b
. (3.2.5)

Proof of Theorem 3.2.4 in the endpoint case, assuming Lemma 3.2.5. The proof is based on the atomic
decomposition lemma.

Proof of Lemma 3.2.5. Considering Ũ(t) := U(2jt), f̃(t, x) := f(2jt, 2σjx) and g̃(t, x) := g(2jt, 2σjx)
we reduce to j = 0.
Step 1. We prove (3.2.5) for a = b =∞. This easily follows from (3.2.1).
Step 2. Using the non-endpoint case, we show that (3.2.5) holds for b = 2 and 2 ≤ a < q, as well
as for a = 2 and 2 ≤ b < q. Step 3. We use interpolation. What exactly interpolation theorem are
we using?

3.3 Strichartz estimates for the wave equation

Definition 3.3.1. We say that a pair (p, q) is wave-admissible if there exists 2 ≤ q̃ ≤ q such that

2

p
+
d− 1

q̃
=
d− 1

2
, (p, q̃, d) 6= (2,∞, 3).

Theorem 3.3.2. Suppose that (p, q) and (a, b) are wave-admissible and

1

p
+
d

q
=

1

a′
+
d

b′
− 2 =

d

2
− σ.

Let u be the solution of (3.1.2). Then

‖u‖LpLq ≤ C
(
‖u0‖Hσ + ‖f‖La′Lb′

)
.
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We first prove that the theorem is true if all the functions involved have spatial Fourier transforms
contained in {1

2 ≤ |ξ| ≤ 2}. This is done using Theorem 3.2.4.
By scaling invariance, this implies that the conclusion holds if all the functions involved have

spatial Fourier transforms contained in {2j−1 ≤ |ξ| ≤ 2j+1} for some j ∈ Z.
The third step is to “glue the Littlewood-Paley pieces”, which we are now going to explain.
Note that ∆̇j commutes with eit|D|. Thus

‖∆̇je
it|D|f‖LpLq ≤ C‖∆̇jf‖Ḣσ . (3.3.1)

For fixed t we can write:
‖eit|D|f‖2

Ḃ0
q,2

=
∑
j∈Z
‖∆̇je

it|D|f‖2Lq ,

so the Minkowski inequality and (3.3.1) yield

‖eit|D|f‖LpḂ0
q,2
≤ C‖f‖Ḣσ .

Finally, we use Ḃ0
q,2 ⊂ Lq.
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Chapter 4

Cauchy theory for wave equations

4.1 ODE in Banach spaces

Theorem 4.1.1. Let E be a Banach space, Ω an open subset of E, I an open interval and (t0, x0) ∈
I × Ω. Let F ∈ C(I,Lip(Ω;E)). There exists J ⊂ I such that the equation

x(t) = x0 +

∫ t

t0

F (t′, x(t′)) dt′ (4.1.1)

has a unique continuous solution on J . Moreover, this solution is continuous with respect to the
initial data.

Proof. For x(t) a continuous function on [t0 − ε, t0 + ε] with values in Ω we define

Φ(x)(t) := x0 +

∫ t

t0

F (t′, x(t′)) dt′.

We see that Φ(x)(t) is also a continuous function on [t0 − ε, t0 + ε] with values in Ω if ε is small
enough, and it is a contraction. The conclusion follows from the Uniform Contraction Principle
(with t0 and x0 as parameters).

For a solution of (4.1.1) we can define its maximal interval of existence (T−, T+), with −∞ ≤
T− < t0 < T+ ≤ ∞.

Proposition 4.1.2. If T+ <∞, then limt→T+ ‖x(t)‖ =∞.

Proof.

4.2 Cauchy problem by the energy method

Consider the equation (1.2.1), which we write as follows:

∂2
t u = ∆u+ f(x, u).
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We assume that d ≥ 3 for some integer s > d
2 the derivatives ∂jx,uf(x, u) are bounded for 0 ≤ j ≤ s

(locally with respect to u and globally with respect to x) and f(x, 0) = 0. We consider the initial
value problem

∂2
t u = ∆u+ f(x, u),

u(0) = u0.
(4.2.1)

We would like to prove existence and uniqueness for smooth enough initial data, but the general
ODE theory does not directly apply, because the Laplacian is not bounded on any reasonable
space. There are several remedies. Probably the simplest one is to solve the non-homogeneous wave
equation instead of just integrating in time.

Proposition 4.2.1. For any u0 ∈ Xs := (Ḣs ∩ Ḣ1) ×Hs−1 the initial value problem (4.2.1) has
a unique solution u(t) ∈ C1((T−, T+), Xs). Moreover, if T+ < ∞, then limt→T+ ‖u(t)‖Xs = ∞.
Finally, finite speed of propagation holds.

Proof.

Remark 4.2.2. If f is analytic with respect to u, then the solution map is analytic with respect
to t0 and u0.

Remark 4.2.3. It is also possible to use explicit representation formulas for the wave equation to
prove existence of solutions in Ck × Ck−1 with appropriate k for sufficiently regular initial data.

4.3 Low regularity

We will need to work with solutions having less regularity. We take inspiration from the last proof
to define what a solution means.

Definition 4.3.1. Let 0 ≤ s < d
2 . We say that a function u ∈ L∞(I,Hs) solves the Cauchy

problem (4.2.1) on an open interval I if for any closed J ⊂ I:

1. f(x, u(t, x)) ∈ L1(J ; Ḣs−1),

2. u(t, x) solves the non-homogeneous wave equation in the sense of formula (3.1.2).

As an example, consider f(x, u) = ±|u|p−1u with 3 ≤ p < 5 in dimension d = 3.

Proposition 4.3.2. For all u0 ∈ H1(R3) the equation

∂2
t u = ∆u± |u|p−1u (4.3.1)

has a unique solution u ∈ C((T−, T+),H1). It is continuous with respect to the initial data u0.
There is finite speed of propagation. Moreover, if T+ <∞, then limt→T+ ‖u(t)‖H1 =∞.

Remark 4.3.3. We usually express the first part of the proposition by saying that the equation is
locally well-posed in H1.
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Proof. Without loss of generality assume t0 = 0 and denote uL the solution of the linear homoge-
neous wave equation with initial data uL(0) = u0. We define the functional Φ as follows. If u(t) is
any function in the ball B(uL, ρ) Define the norm, then

Φ(u)(t) := uL(t) +

∫ t

0

sin((t− s)|D|)
|D|

(
|u(s)|p−1u(s)

)
ds.

We should prove that this is a contraction. This relies on the following inequality:

‖uL‖LpL2p ≤ ‖uL‖αL3L6‖uL‖1−αL5L10 . T
β‖u0‖H1 , for some β > 0.

The main reason to care about low regularity is to use conservation laws. Here is an example.

Lemma 4.3.4. For u0 define

E(u0) :=

∫
R3

1

2
u̇2

0 +
1

2
|∇u0|2 ∓

1

p+ 1
|u0|p+1.

Let u(t) be the solution constructed in the last Lemma. Then for all t ∈ (T−, T+)

E(u(t)) = E(u0).

Proof. Approximate with smooth solutions and use continuity with respect to the initial data.

Theorem 4.3.5. Let u0 ∈ S × S and let u(t) be the solution of the Cauchy problem

∂2
t u = ∆u− |u|p−1u,

u(0) = u0.

Then T− = −∞ and T+ =∞.

First proof. Our first proof only needs u0 ∈ H1. Since ‖u(t)‖2H1 ≤ 2E(u(t)), the conclusion follows
from the conservation of energy.

Second proof. The second proof is the original proof due to Jörgens [?], long before Strichartz
estimates where invented.

4.4 Critical regularity

One often uses the following intuitive reasoning. Let u(t, x) be a solution of (4.3.1) and λ > 0.
Consider

u1/λ(t, x) := λ
2
p−1u(λt, λx).

We easily see that uλ also solves (4.3.1). If λ � 1, this means we are zooming in. An integration
by parts yields

‖(u0)1/λ‖H1 = λ
5−p

2(p−1) ‖u0‖H1 , E((u0)1/λ) = λ
5−p
p−1E(u0),

26



where it is understood that

(u0)1/λ = (λ
2
p−1u0(λx), λ

1+ 2
p−1 u̇0(λx)).

Blow-up is supposed to be a small-scale phenomenon. But on the small scale we are dealing with
small-energy solutions, so nothing “bad” should happen.

With an equation like (4.3.1) we can associate a critical norm. Its main purpose is to have a
homogeneous (with respect to rescaling) functional which allows to meaningfully speak of “small
data” for a given problem. Let sc := 3

2 −
2
p−1 . We call sc the critical exponent, ‖ · ‖Hs the critical

norm and Hs the critical space. If the space Hsc is directly related to some important conserved
quantity, the equation has a special name, for instance when p = 5 we have sc = 1, which is related
to the energy, and we say (4.3.1) for p = 5 is energy-critical.

For u0 ∈ Hs set
(u0)λ(x) := (λu0(λx), λ1+u̇0(λx)).

It is easy to check that
‖(u0)λ‖Hs = ‖u0‖Hs ,

so that “small” or “large” does not depend on rescaling.
A phenomenon often related to small data is the so-called scattering.

Definition 4.4.1. Let u(t) be a solution of (4.2.1). We say that u(t) scatters for positive times in
norm Hs if T+ = ∞ and there exists a solution of the homogeneous linear wave equation u− such
that

lim
t→∞
‖u(t)− u−(t)‖Hs = 0.

Theorem 4.4.2. Assume 3p2−11p+4 ≥ 0. Equation (4.2.1) is locally well-posed in Hsc . Moreover,
there exists η > 0 such that if ‖u0‖Hsc ≤ η, then the corresponding solution is globally defined and
scatters in both time directions.

Proof. We use Strichartz estimates for the wave-admissible pairs (p, 3p(p−1)
p+1 ) and (∞, 3(p−1)

2p−4 ). By a
fixed point argument, we obtain a solution such that |u|p−1u ∈ L1(R, Ḣsc−1). It follows that the
solution scatters.

Remark 4.4.3. I think this is true also for smaller p, but I don’t know how small.

4.5 Equivariant wave maps

We will study wave maps ψ : R1+2 → S2 ⊂ R3. Recall that they are critical points for the Lagrangian∫ t2

t1

∫
R2

(1

2
|∂tψ|2 −

1

2
|∇xψ|2

)
dx.

The equation can be written explicitly:

∂2
t ψ −∆ψ = (|∂tψ|2 − |∇ψ|2)ψ. (4.5.1)
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This equation is difficult to study. We will consider a particular class of solutions. Take k ∈ {1, 2, . . .}
and consider initial data of the form

ψ0(r cos θ, r sin θ) =
(

sin(u0(r)) cos(kθ), sin(u0(r)) sin(kθ), cos(u0(r))
)
.

The evolution preserves this particular form of initial data and we obtain a simple equation for the
scalar-valued function u(t, r):

∂2
t u = ∂2

ru+
1

r
∂ru−

k2 sin(2u)

2r2
. (4.5.2)

Until the end of the course, we will be concerned with equation (4.5.2), and perhaps with its
generalization

∂2
t u = ∂2

ru+
1

r
∂ru−

f(u)

r2
,

where f = gg′ for some smooth odd function g : R→ R.
There is the conserved energy given by

E(u0) := 2π

∫ ∞
0

(1

2
(u̇0)2 +

1

2
(∂ru0)2 +

g(u0)2

2r2

)
r dr,

in the case of (4.5.2) given by

E(u0) := 2π

∫ ∞
0

(1

2
(u̇0)2 +

1

2
(∂ru0)2 +

k2 sin(u0)2

2r2

)
r dr.

We see that our problem is energy-critical.
For m,n ∈ Z we define

Hm,n := {u0 : E(u0) <∞, lim
r→0

u(r) = mπ, lim
r→∞

u(r) = nπ}.

Exercise 4.5.1. Prove that if E(u0) <∞, then there exist m,n ∈ Z such that limr→0 u0(r) = mπ
and limr→∞ u0(r) = nπ.

The sets Hm,n are affine spaces and play the role of the critical space. We will mainly work in
the space H0 := H0,0, which is a linear space. We define the critical norm:

‖u0‖2H0
:=

∫ ∞
0

(
u̇2

0 + (∂ru0)2 +
1

r2
u2

0

)
r dr.

We also denote the part corresponding to the potential energy

‖u0‖H :=

∫ ∞
0

(
(∂ru0)2 +

1

r2
u2

0

)
r dr.
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4.5.1 Review of the Cauchy theory

For the time being, this part is a copy-paste of my paper with Andy Lawrie. I need to work on it,
so please handle with care.

For initial data (ϕ0, ϕ1) in the class H0 the formulation of the Cauchy problem (??) can be
modified to take into account the strong repulsive potential term in the nonlinearity:

k2 sin(2φ)

2r2
=
k2

r2
φ+

k2

2r2
(sin(2φ)− 2φ) =

k2

r2
φ+

O(φ3)

r2

The presence of the potential k
2

r2
indicates that the linear wave equation,

(∂2
t −∆R2 +

k2

r2
)ψ = 0, (4.5.3)

of (??) has more dispersion than the 2d wave equation. In fact, it has the same dispersion as the
free wave equation in dimension d = 2k + 2 as can be seen from the following change of variables:
given a radial function φ ∈ H, define v(r) by φ(r) = rkv(r). Then

1

rk
(−∆R2 +

k2

r2
)φ = −∆R2k+2v, ‖φ‖H = ‖v‖Ḣ1(R2k+2).

Thus one way of studying solutions ~ψ(t) ∈ H0 of Cauchy problem (??) is to define ~v(t) = (r−kψ(t), r−kψt(t)) ∈
Ḣ1×L2(R2k+2) and analyse the equivalent Cauchy problem for the radial nonlinear wave equation
in R1+(2k+2)

t,x satisfied by ~v(t). Unfortunately, this route leads to unpleasant technicalities when
k > 2 (spatial dimension = 2k + 2 > 6) due to the high dimension and the particular structure of
the nonlinearity.

There is a simpler approach that allows us to treat the scattering theory for the Cauchy prob-
lem (??) for all equivariance classes k ≥ 1 in a unified fashion. The idea is to make use of some, but
not all, of the extra dispersion in −∆R2 + k2/r2. Indeed, given a solution ~ψ(t) to (??) we define u
by ru = ψ and obtain the following Cauchy problem for u.

∂2
t u− ∂2

ru−
3

r
∂ru+

k2 − 1

r2
u = k2 2ru− sin(2ru)

2r3
=: Z(ru)u3 (4.5.4)

~u(0) = (u0, u1).

where the function Z defined above is a clearly smooth, bounded, even function. The linear part
of (4.5.4) is the radial wave equation in R1+4 with a repulsive inverse square potential, namely

vtt − vrr −
3

r
vr +

k2 − 1

r2
v = 0. (4.5.5)

For each k ≥ 1, define the norm Hk for radially symmetric functions v on R4 by

‖v‖2Hk(R4) :=

∫ ∞
0

[
(∂rv)2 +

(k2 − 1)

r2
v2

]
r3 dr

Solutions to (4.5.5) conserve the Hk norms. By Hardy’s inequality we have

‖v‖Hk(R4) ' ‖v‖Ḣ1(R4)
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The mapping,

Hk × L2(R4) 3 (u0, u1) 7→ (ψ0, ψ1) := (ru0, ru1) ∈ H × L2(R2)

satisfies
‖(u0, u1)‖Ḣ1×L2(R4) ' ‖(u0, u1)‖Hk×L2(R4) = ‖(ψ0, ψ1)‖H×L2(R2)

Thus we can conclude that the Cauchy problem for (4.5.4) with initial data in Ḣ1 × L2(R4) is
equivalent to the Cauchy problem for (??) for initial data (ψ0, ψ1) ∈ H0, allowing us to give a
scattering criterion for solutions ~ψ(t) ∈ H0 to (??).

Lemma 4.5.2. Let ~ψ(0) = (ψ0, ψ1) ∈ H0. Then there exists a unique solution ~ψ(t) ∈ H0 to (??)
defined on a maximal interval of existence Imax(~ψ) := (−T−(~ψ), T+(~ψ)) with the following properties:
Define

~u(t, r) = (r−1ψ(t, r), r−1ψt(t, r)) ∈ Ḣ1 × L2(R4)

Then for any compact time interval J b Imax we have

‖u‖L3
t (J ;L6

x(R4)) ≤ C(J) <∞

In addition, if
‖u‖

L3
t ([0,T+(~ψ));L6

x(R4))
<∞

then T+ =∞ and ~ψ(t) scatters t→∞, i.e., there exists a solution ~φL(t) ∈ H0 to (4.5.3) so that

‖~ψ(t)− ~φL(t)‖H0 → 0 as t→∞.

Conversely, any solution ~ψ(t) that scatters as t→∞ satisfies

‖ψ/r‖L3
tL

6
x([0,∞)×R4) <∞.

The proof of Lemma 4.5.2 is standard consequence of Strichartz estimates for (4.5.5) and the
equivalence of the Cauchy problems (??) and (4.5.4). In this case, we need Strichartz estimates for
the radial wave equation in R1+4 with a repulsive inverse square potential. For these we can cite
the more general results of Planchon, Stalker, and Tahvildar-Zadeh [?]; see also [?, ?] which cover
the non-radial case.

Lemma 4.5.3 (Strichartz estimates). [?, Corollary 3.9] Fix k ≥ 1 and let ~v(t) be a radial solution
to the linear equation

vtt − vrr −
3

r
vr +

k2 − 1

r2
v = F (t, r), ~v(0) = (v0, v1) ∈ Ḣ1 × L2(R4)

Then, for any time interval I ⊂ R we have

‖v‖L3
tL

6
x(I×R4) + sup

t∈I
‖~v(t)‖Ḣ1×L2(R4) . ‖~v(0)‖Ḣ1×L2(R4) + ‖F‖L1

t ,L
2
x(I×R4)

where the implicit constant above is independent of I.

We’ll also explicitly require the following nonlinear perturbation lemma from [?]; see also [?,
Lemma 2.18].
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Lemma 4.5.4 (Perturbation Lemma). [?, Theorem 2.20] [?, Lemma 2.18] There are continuous
functions ε0, C0 : (0,∞) → (0,∞) such that the following holds: Let I ⊂ R be an open interval,
(possibly unbounded), ψ,ϕ ∈ C0(I;H) ∩ C1(I;L2) radial functions satisfying for some A > 0

‖~ψ‖L∞(I;H×L2(R2)) + ‖~ϕ‖L∞(I;H×L2(R2)) + ‖ϕ/r‖L3
t (I;L

6
x(R4)) ≤ A

‖eq(ψ/r)‖L1
t (I;L

2
x(R4)) + ‖eq(ϕ/r)‖L1

t (I;L
2
x(R4)) + ‖w0‖L3

t (I;L
6
x) ≤ ε ≤ ε0(A)

where eq(ψ/r) := (�R4 + k2−1
r2

)(ψ/r) + (ψ/r)3Z(ψ) in the sense of distributions, and ~w0(t) :=

S(t − t0)(~ψ − ~ϕ)(t0) with t0 ∈ I arbitrary, but fixed and S denoting the linear wave evolution
operator in R1+4 (i.e., the propagator for (4.5.3)). Then,

‖~ψ − ~ϕ− ~w0‖L∞t (I;H×L2(R2)) + ‖1

r
(ψ − ϕ)‖L3

t (I;L
6
x(R4)) ≤ C0(A)ε

In particular, ‖ψ/r‖L3
t (I;L

6
x(R4)) <∞.
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Chapter 5

Profile decomposition

5.1 Abstract theory

We consider the following situation. Let H be a separable Hilbert space and G a topological group
acting on H. We assume that G is locally compact and write gn → ∞ if for any compact K ⊂ G
we have gn /∈ K for n large.

Definition 5.1.1. We say that un converges to 0 weakly with concentration if

gnun ⇀ 0, ∀gn ∈ G.

We notice that the topology of weak with concentration convergence on a ball in H is metrisable
as follows. Let φk be a dense sequence in the unit ball of H. We define

‖u‖G := sup
g∈G

( K∑
k=1

〈φk, gu〉2

2k

) 1
2

.

Definition 5.1.2. We say that two sequences gn and g̃n are orthogonal if limn→∞ g
−1
n g̃n =∞.

Concerning the action of G on H, Lg : H → H (we could say, the representation of G), we
assume

• ‖Lg‖ bounded in the operator topology,

• gn →∞ implies Lgn → 0 in the weak operator topology, in other words 〈u, Lgnv〉 → 0 for all
u, v ∈ H,

• g 7→ Lg is continuous in the strong operator topology, in other words g 7→ Lgu is continuous
for all u ∈ H.

Theorem 5.1.3. Let un be a bounded sequence. Up to extracting a subsequence, there exist profiles
U (j) and shifts g(j)

n such that g(j)
n and g(k)

n are orthogonal for j 6= k and

un =

J∑
j=1

g(j)
n U (j) + r(J)

n , lim
J→∞

lim sup
n→∞

‖r(J)
n ‖G = 0.
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Moreover,

‖un‖2H =
J∑
j=1

‖U (j)‖2H + ‖r(J)
n ‖2H + o(1), as n→∞.

The decomposition is essentially unique, meaning that ‖un‖G → 0 implies U (j) = 0 for all j.

Proof.

Remark 5.1.4. The weak with concentration topology is the unique topology, for which the theorem
above holds.

5.2 Description of the topology

5.2.1 Translations in Rd

Let H := H1(Rd) and G = Rd act by translations.

Theorem 5.2.1. The topology of weak with concentration convergence on the unit ball is the Lp

topology for any 2 < p < 2∗.

Proof.

5.2.2 Translations and dilations in Rd

Restrict to d ≥ 3 and consider (0,∞)× Rd acting on Ḣs for some s ∈ (0, d/2) by

(λ, x0)u := x 7→ λ
d
2
−su(λ(x− x0)).

Theorem 5.2.2. The topology of weak with concentration convergence on the unit ball is the L2∗

topology.

Proof. Again, it is clear that the L2∗ topology is stronger than the G topology. We should show
that if ‖un‖L2∗ ≥ 1, then there exists a sequence gn such that gnun does not converge weakly to 0.

5.3 Translations, dilations and wave evolution

Finally, consider the group R× (0,∞)× Rd acting on Ḣ1 × L2 by

(t, λ, x0)u0 := x 7→ uL(t/λ, (x− x0)/λ).

where uL is the solution of (H) with initial data u0.

Theorem 5.3.1. The weak with concentration topology is given by the Strichartz norms of uL.

Proof.

5.4 Nonlinear profile decomposition

For this part, I’m using my old notes written for the radial 3d power nonlinearity wave equation,
available here: https://math.univ-paris13.fr/~jendrej/other/M2.pdf, pages 15–22. At some
point I hope to write properly the equivariant wave maps version.
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